JP5123910B2 - Press forming method of titanium plate - Google Patents
Press forming method of titanium plate Download PDFInfo
- Publication number
- JP5123910B2 JP5123910B2 JP2009172354A JP2009172354A JP5123910B2 JP 5123910 B2 JP5123910 B2 JP 5123910B2 JP 2009172354 A JP2009172354 A JP 2009172354A JP 2009172354 A JP2009172354 A JP 2009172354A JP 5123910 B2 JP5123910 B2 JP 5123910B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium plate
- press
- plate
- titanium
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010936 titanium Substances 0.000 title claims description 97
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 95
- 229910052719 titanium Inorganic materials 0.000 title claims description 95
- 238000000034 method Methods 0.000 title claims description 25
- 239000013078 crystal Substances 0.000 claims description 29
- 238000000465 moulding Methods 0.000 claims description 19
- 238000009825 accumulation Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 12
- 238000005336 cracking Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
本発明は、プレート式熱交換器の構成材用等として用いられるチタン板に、V字状のプレスパターン(凹凸)を形成するチタン板のプレス成形方法に関するものである。 The present invention relates to a titanium plate press-forming method for forming a V-shaped press pattern (unevenness) on a titanium plate used as a component of a plate heat exchanger or the like.
チタンは、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、従来から航空機産業を中心に多用されてきた。これらの特性を更に活用すべく、近年、チタンは、熱交換器や化学プラント部材の構成材等にも使用されるようになっており、特に海水に対して、耐腐食性に優れるという特性があることから、海水熱交換器に多く用いられている。 Titanium has been widely used mainly in the aircraft industry because it has various processing characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. In order to make further use of these properties, titanium has recently been used as a constituent material for heat exchangers and chemical plant members, and is particularly resistant to seawater. For this reason, it is often used in seawater heat exchangers.
特に純チタンの板材、すなわちチタン板は、プレート式熱交換器の構成材として広く採用されているが、伝熱効率を向上させる必要があるため、図2に示すように、チタン板1には、V字状のプレスパターン2(図2は説明のための概略図であり、詳細なプレスパターンは図3を参照。)がプレス成形で形成されていた。 In particular, a plate material of pure titanium, that is, a titanium plate, is widely adopted as a constituent material of the plate heat exchanger. However, since it is necessary to improve the heat transfer efficiency, as shown in FIG. A V-shaped press pattern 2 (FIG. 2 is a schematic diagram for explanation, see FIG. 3 for a detailed press pattern) was formed by press molding.
V字状のプレスパターン2は、圧延、焼鈍を終えたチタン板1を、V字状のプレスパターンを形成した金型(図示せず)でプレス成形することにより形成されているが、従来からのプレス成形では、チタン板1の圧延時の圧延方向XとV字状のプレスパターン2の頂点3方向が一致する方向になるようにチタン板1を板置きしてプレス成形していた。
The V-
その理由は、チタン板1の板幅が圧延工程での圧延ロールの長さの影響を受けるため、広幅のチタン板1を作製することには限界があり、大型の成型品を作製(プレス成形)する際には、チタン板1の圧延時の圧延方向XとV字状のプレスパターン2の頂点3の方向が一致する方向になるようにしてチタン板1を板置きせざるをえなかったことと、純チタンでなるチタン板1は、圧延方向Xの方が圧延垂直方向よりも延性が高く、圧延方向Xが、V字状のプレスパターン2の頂点方向と一致する方向になるようにして板置きしてプレス成形した方が割れを抑制することができると考えたためである。
The reason for this is that the width of the
具体的に、従来からのプレート式熱交換器の構成材用等として用いられるチタン板に、V字状のプレスパターンを形成する際のチタン板の板置き方向を示した先行技術文献は特にないが、本出願人が先に特許出願した特許文献1には、プレート式熱交換器では、伝熱性向上のためチタン板の表面をプレス成形により凹凸形状とするということが記載されており、実際にプレス成形は、圧延方向が、V字状のプレスパターンの頂点方向と一致する方向になるようにしてチタン板を板置きして実施されている。
Specifically, there is no prior art document showing the plate placement direction of the titanium plate when forming a V-shaped press pattern on a titanium plate used as a component for a conventional plate heat exchanger. However,
このように、プレート式熱交換器の構成材を作製する際には、圧延方向Xが、V字状のプレスパターンの頂点方向と一致する方向になるようにしてチタン板を板置きしてプレス成形されていたが、チタン板をプレス成形した際に、V字状のプレスパターンの頂点に割れが発生することがあった。 Thus, when producing the component material of a plate-type heat exchanger, the titanium plate is placed and pressed so that the rolling direction X coincides with the apex direction of the V-shaped press pattern. Although it was molded, when the titanium plate was press-molded, a crack sometimes occurred at the apex of the V-shaped press pattern.
本発明は、上記従来の実情に鑑みてなされたもので、プレス成形時にV字状のプレスパターンの頂点に割れが発生することがなく、プレス成形性に優れたチタン板のプレス成形方法を提供することを課題とするものである。 The present invention has been made in view of the above-described conventional circumstances, and provides a press forming method of a titanium plate that is excellent in press formability without causing cracks at the apex of a V-shaped press pattern during press forming. It is an object to do.
請求項1記載の発明は、質量%で、Feを0.15%以下(0%を含まない)、Oを0.15%以下(0%を含まない)含有するチタン板をプレス成形して、前記チタン板にV字状のプレスパターンを形成するチタン板のプレス成形方法であって、前記チタン板のα相(六方晶)のC軸の集積度が高い方向をA方向、その直交方向をB方向としたとき、V字状のプレスパターンの頂点方向をA方向として前記チタン板に前記プレスパターンを形成することを特徴とするチタン板のプレス成形方法である。
The invention according to
請求項2記載の発明は、前記チタン板のA方向の全伸びが、20%以上であることを特徴とする請求項1記載のチタン板のプレス成形方法である。
The invention according to
請求項3記載の発明は、前記チタン板のα相の平均結晶粒径が、10〜200μmであることを特徴とする請求項1または2記載のチタン板のプレス成形方法である。
The invention according to
本発明によると、プレス成形時にV字状のプレスパターンの頂点に割れが発生することはなく、プレス成形性に優れたチタン板をプレス成形により得ることができる。 According to the present invention, no crack is generated at the apex of the V-shaped press pattern during press forming, and a titanium plate having excellent press formability can be obtained by press forming.
前記したように、チタン板の圧延方向とV字状のプレスパターンの頂点方向が一致する方向になるようにしてチタン板を板置きしてプレス成形した場合、その頂点に割れが発生することがあったため、その問題を解消するために、本発明者らは、鋭意、実験、研究を進めた。 As described above, when the titanium plate is placed and pressed so that the rolling direction of the titanium plate and the apex direction of the V-shaped press pattern coincide with each other, cracks may occur at the apex. In order to solve the problem, the present inventors diligently experimented and researched.
その結果、Feの含有量とOの含有量を規定した上で、チタン板の六方晶の集積度が高い方向と、プレス成形で得られるV字状のプレスパターンの頂点方向を一致させてプレス成形を実施することで、プレス成形時にV字状のプレスパターンの頂点に割れが発生することはなく、プレス成形性に優れたチタン板を得ることが可能になることを見出し、本発明の完成に至った。 As a result, after prescribing the Fe content and the O content, the direction in which the hexagonal crystal is highly integrated on the titanium plate is aligned with the apex direction of the V-shaped press pattern obtained by press forming. By carrying out the molding, it was found that there was no cracking at the apex of the V-shaped press pattern during press molding, and it was possible to obtain a titanium plate with excellent press moldability, and the present invention was completed. It came to.
また、チタン板の六方晶の集積度が高い方向の全伸びが20%以上であれば、プレス成形時にV字状のプレスパターンの頂点に割れが発生することがなく、プレス成形性に優れたチタン板を得ることが、より確実にできることも確認した。 Also, if the total elongation of the titanium plate in the direction where the degree of hexagonal crystal accumulation is high is 20% or more, cracks do not occur at the apex of the V-shaped press pattern during press forming, and the press formability is excellent. It was also confirmed that a titanium plate can be obtained more reliably.
更には、チタン板のα相の平均結晶粒径が10〜200μmであれば、プレス成形時にV字状のプレスパターンの頂点に割れが発生することがなく、プレス成形性に優れたチタン板を得ることが、より確実にできることも確認した。 Furthermore, if the average crystal grain size of the α phase of the titanium plate is 10 to 200 μm, there is no crack at the top of the V-shaped press pattern at the time of press forming, and a titanium plate having excellent press formability is obtained. It was also confirmed that it can be obtained more reliably.
以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。 Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.
通常のチタン板1は、分塊圧延→熱間圧延→中間焼鈍→冷間圧延→最終焼鈍といった各工程間に、随時ブラスト、酸洗処理を入れて製造されるが、本発明は、これらの圧延、焼鈍を終えたチタン板1に対し、プレス成形で、V字状のプレスパターン2を形成する方法を発明の対象とする。
The
(プレスパターンの形成方向)
図1は、本発明の一実施形態を示す略図であり、チタン板1にV字状のプレスパターン2(図1は説明のための概略図であり、詳細なプレスパターンは図3を参照。)を形成する方法を例示する。図面中、両方向矢印で示すA方向は、チタン板1の板面上でのα相(六方晶)のC軸の集積度が高い方向を示し、B方向は、板面上でのその直交方向を示す。また、Xで示す矢印は、チタン板1の圧延時の圧延方向を示し、圧延方向とB方向は一致する。すなわち、チタン板1を圧延したときに、六方晶のC軸は、圧延方向(B方向)と直交する方向(A方向)に集積する。尚、図1は略図であり、実際のV字状のプレスパターン2は、3本のV字状の線ではなく、V字状の凹凸の繰返しである。
(Press pattern formation direction)
FIG. 1 is a schematic diagram showing an embodiment of the present invention. A V-
本発明のチタン板のプレス成形方法では、チタン板1に形成されるV字状のプレスパターン2の頂点3の方向を、チタン板1の板面上でのα相(六方晶)のC軸の集積度が高いA方向に向けてプレス成形する。プレス成形したチタン板1は、B方向の方がA方向より耐力が低くなるので、B方向の板の流れ込みが増加し、成形性が向上する。
In the press forming method of the titanium plate of the present invention, the direction of the
(成分組成)
本発明では、チタン板の成分組成も発明の要点とするが、次にその成分組成を規定した理由を説明する。
(Component composition)
In the present invention, the component composition of the titanium plate is also the main point of the invention. Next, the reason for defining the component composition will be described.
純チタンは、不可避的不純物としてC、H、O、N、Fe等を微量に含有し、残部がTiであるが、本発明では、その不可避的不純物の中でも含有量が比較的多く、機械的性質に影響を及ぼすFeとOの含有量の上限を規定した。 Pure titanium contains a small amount of C, H, O, N, Fe, etc. as inevitable impurities, and the balance is Ti, but in the present invention, the content is relatively large among the inevitable impurities and mechanical. The upper limit of the content of Fe and O affecting the properties was specified.
Feの含有量が0.15質量%を超えて多くなりすぎると、強度が大きくなりすぎてチタン板のA方向の伸びが低下してしまい、プレス成形性が劣化する。従って、Feの含有量の上限は0.15質量%とする。尚、Feの含有量の好ましい上限は0.10質量%であり、より好ましい上限は0.07質量%である。 If the Fe content exceeds 0.15% by mass and increases too much, the strength becomes too high and the elongation in the A direction of the titanium plate decreases, and the press formability deteriorates. Therefore, the upper limit of the Fe content is 0.15% by mass. In addition, the upper limit with preferable content of Fe is 0.10 mass%, and a more preferable upper limit is 0.07 mass%.
Oの含有量が0.15質量%を超えて多くなりすぎると、強度が大きくなりすぎてチタン板のA方向の伸びが低下してしまい、プレス成形性が劣化する。従って、Oの含有量の上限は0.15質量%とする。尚、Oの含有量の好ましい上限は0.10質量%であり、より好ましい上限は0.07質量%である。 If the O content exceeds 0.15% by mass and increases too much, the strength becomes too high and the elongation in the A direction of the titanium plate decreases, and the press formability deteriorates. Therefore, the upper limit of the O content is 0.15% by mass. In addition, the upper limit with preferable content of O is 0.10 mass%, and a more preferable upper limit is 0.07 mass%.
(A方向の全伸び)
また、本発明では、チタン板のA方向(六方晶のC軸の集積度が高い方向)の全伸びを20%以上とすることが好ましい。チタン板のA方向の全伸びが20%未満であると、プレス成形性が劣化する。このチタン板のA方向の全伸びは、25%以上とすることがより好ましく、30%以上とすることが更に好ましい。
(Total elongation in direction A)
In the present invention, it is preferable that the total elongation of the titanium plate in the A direction (the direction in which the degree of hexagonal C-axis integration is high) is 20% or more. If the total elongation in the A direction of the titanium plate is less than 20%, press formability deteriorates. The total elongation in the A direction of the titanium plate is more preferably 25% or more, and further preferably 30% or more.
(α相の平均結晶粒径)
本発明では、更に、チタン板のα相の平均結晶粒径が10〜200μmであることが好ましい。α相の平均結晶粒径は、大きいほどプレス成形時の変形双晶の頻度を増加させ、チタン板の全伸びが増加し、成形性が向上する。しかしながら、その平均結晶粒径が大きくなりすぎると、成形品の成形後の肌荒れ発生の原因となる。
(Average crystal grain size of α phase)
In the present invention, it is further preferable that the average crystal grain size of the α phase of the titanium plate is 10 to 200 μm. The larger the average crystal grain size of the α phase, the higher the frequency of deformation twins at the time of press forming, the total elongation of the titanium plate is increased, and the formability is improved. However, if the average crystal grain size becomes too large, it will cause rough skin after molding of the molded product.
α相の平均結晶粒径のより好ましい下限は20μm、更に好ましい下限は30μmである。一方、より好ましい上限は175μm、更に好ましい上限は150μmである。 A more preferable lower limit of the average crystal grain size of the α phase is 20 μm, and a further preferable lower limit is 30 μm. On the other hand, a more preferable upper limit is 175 μm, and a more preferable upper limit is 150 μm.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
本実施例では、まず、CCIM(コールドクルーシブル誘導溶解法)により表1に示す含有量でFe並びにOを含有するチタン鋳塊を鋳造した。残部はTiおよびC、H、N、等の不可避的不純物である。鋳塊の大きさはφ100mmの円柱形で、10Kgである。この鋳塊を用いて分塊圧延を行い、その後は放冷して厚み45mmの板形状の分塊圧延材を得た。更に、熱間圧延を実施し、スケール除去を行い厚み約5mmの熱延板を得た。 In this example, first, a titanium ingot containing Fe and O at the contents shown in Table 1 was cast by CCIM (cold crucible induction melting method). The balance is Ti and unavoidable impurities such as C, H, N, and the like. The size of the ingot is a cylindrical shape of φ100 mm and is 10 kg. Using this ingot, the ingot rolling was performed, and then cooled to obtain a plate-like ingot rolled material having a thickness of 45 mm. Furthermore, hot rolling was performed, scale removal was performed, and a hot rolled sheet having a thickness of about 5 mm was obtained.
次いで、大気炉にて、700℃で5分間加熱してから空冷する焼鈍処理(中間焼鈍)を行った後、スケール除去を行った。次に、冷間圧延率89%の冷間圧延を行った後、大気炉にて、800℃で3分間加熱してから空冷する焼鈍処理(最終焼鈍)を行い、スキンパスを実施し、スケール除去を行って厚み0.3mmのチタン板を製造した。 Next, after performing an annealing treatment (intermediate annealing) in which air cooling was performed at 700 ° C. for 5 minutes in an atmospheric furnace, scale removal was performed. Next, after performing cold rolling at a cold rolling rate of 89%, an annealing process (final annealing) is performed by heating in an atmospheric furnace at 800 ° C. for 3 minutes and then air cooling, skin pass is performed, and scale removal To produce a titanium plate having a thickness of 0.3 mm.
これらの圧延、焼鈍を終えたチタン板に対し、No.1〜3では、チタン板に形成されるV字状のプレスパターンの頂点方向を、六方晶のC軸の集積度が高い方向、すなわち圧延方向とは直交する圧延垂直方向(A方向)に向けてプレス成形した。一方、No.4,5では、チタン板に形成されるV字状のプレスパターンの頂点方向を、六方晶のC軸の集積度が高い方向とは直交する方向、すなわち圧延方向(B方向)に向けてプレス成形した。 For these titanium plates after rolling and annealing, no. 1 to 3, the apex direction of the V-shaped press pattern formed on the titanium plate is directed to the direction in which the hexagonal C-axis has a high degree of integration, that is, the rolling vertical direction (A direction) perpendicular to the rolling direction. And press-molded. On the other hand, no. 4 and 5, the apex direction of the V-shaped press pattern formed on the titanium plate is pressed in the direction perpendicular to the direction in which the hexagonal C-axis is highly integrated, that is, in the rolling direction (B direction). Molded.
プレス成形を終えた各チタン板の金属組織の観察・測定と、プレス成形性の評価を夫々下記の要領で行った。また、A方向(六方晶のC軸の集積度が高い方向)の全伸びと強度についても併せて測定した。 Observation and measurement of the metal structure of each titanium plate after press forming and evaluation of press formability were performed as follows. Further, the total elongation and strength in the A direction (direction in which the degree of accumulation of the hexagonal C-axis was high) were also measured.
本実施例では、電界放出型走査顕微鏡(Field Emission Scanning Electron Microscope:FESEM)(日本電子社製、JSM5410)に、後方錯乱電子回析像(Electron Back Scattering(Scattered) Pattern:EBSP)システムを搭載した結晶方位解析法によって金属組織の観察・測定を実施した。この測定方法を用いたのは、EBSP法は他の測定方法と比較して高分解能であり、高精度な測定ができるためである。まず、測定原理について説明する。 In this example, a field emission scanning electron microscope (FESEM) (manufactured by JEOL Ltd., JSM5410) is equipped with a back-scattered electron diffraction image (Electron Back Scattering (Scattered) Pattern system). The metal structure was observed and measured by the crystal orientation analysis method. This measurement method was used because the EBSP method has higher resolution than other measurement methods and can perform measurement with high accuracy. First, the measurement principle will be described.
EBSP法は、FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などと共に記録される。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万〜数十万点のデータを得ることができる。 In the EBSP method, an electron beam is irradiated onto a sample set in a lens barrel of FESEM to project EBSP on a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. The orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, data of tens of thousands to hundreds of thousands of points can be obtained at the end of measurement.
このように、EBSP法には、X線回析法や透過電子顕微鏡を用いた電子線回析法よりも、観察視野が広く、数百個以上の多数の結晶粒に対する各種情報を、数時間以内で得ることができる利点がある。また、結晶粒毎の測定ではなく、指定した領域を一定間隔で走査して測定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各情報を得ることができる利点もある。尚、これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66−70などに詳細に記載されている。 Thus, the EBSP method has a wider field of view than the X-ray diffraction method or the electron beam diffraction method using a transmission electron microscope, and can provide various information on hundreds of crystal grains for several hours. There are advantages you can get within. In addition, since the specified region is scanned at a fixed interval instead of the measurement for each crystal grain, there is an advantage that each of the above-mentioned information regarding the above-described many measurement points covering the entire measurement region can be obtained. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in Kobe Steel Technical Report / Vol. 52 no. 2 (Sep. 2002) P66-70 and the like.
<α相の平均結晶粒径>
α相(結晶粒)の平均結晶粒径については、チタン板の1mm×1mmの平面内に存在する結晶粒のうち、そのサイズが上位100個のα相の平均結晶粒径について、前記した測定により得た。この測定は、前記したように、FESEMにEBSPシステムを搭載した結晶方位解析法を用いて、チタン板の表面に平行な平面であって、且つ、板厚方向の1/4t部の集合組織を測定することで実施した。具体的には、チタン板の圧延面表面を機械研磨し、更にバフ研磨に次いで電解研磨を行って表面を調整した試料を準備した。その後、日本電子社製FESEM(JEOL JSM 5410)を用いて、EBSPによる測定を行った。EBSP測定・解析システムは、EBSP:TSL社製のOIM(Orientation Imaging Microscopy)を用いた。
<Average crystal grain size of α phase>
Regarding the average crystal grain size of the α phase (crystal grains), among the crystal grains existing in a 1 mm × 1 mm plane of the titanium plate, the average crystal grain size of the top 100 α phases of the crystal grains is measured as described above. Obtained. As described above, this measurement is performed using a crystal orientation analysis method in which an EBSP system is mounted on an FESEM, and a texture parallel to the surface of the titanium plate and a 1/4 t portion texture in the plate thickness direction. It was carried out by measuring. Specifically, a sample was prepared in which the surface of the rolled surface of the titanium plate was mechanically polished and further subjected to electrolytic polishing following buffing to adjust the surface. Then, the measurement by EBSP was performed using FESEM (JEOL JSM 5410) by JEOL. As the EBSP measurement / analysis system, EBSP: OIM (Orientation Imaging Microscopy) manufactured by TSL was used.
チタン板の測定範囲は、その平面のうち1mm×1mmの範囲とし、測定ピッチは縦横1μmピッチとした。チタン板のα相のサイズは平均50μmであると想定され、この測定で1mm×1mmの範囲に存在する全てのα相を、観察・測定することができる。この範囲で測定することができたα相のうち、サイズが上位100個の結晶粒を抽出して観察を行い、(Σx)/100という式からα相の平均結晶粒径を求め出した。尚、この式でxは、夫々の測定した各α相の結晶粒径を示す。 The measurement range of the titanium plate was 1 mm × 1 mm in the plane, and the measurement pitch was 1 μm in length and width. The average size of the α phase of the titanium plate is assumed to be 50 μm, and all α phases existing in the range of 1 mm × 1 mm can be observed and measured by this measurement. Of the α phase that could be measured in this range, the top 100 crystal grains with the largest size were extracted and observed, and the average crystal grain size of the α phase was determined from the formula (Σx) / 100. In this equation, x represents the crystal grain size of each α phase measured.
<A方向の全伸びと、引張強度の測定>
チタン板のA方向の全伸びを測定し、参考試験としてチタン板のA方向の引張強度についても測定した。
<Measurement of total elongation in A direction and tensile strength>
The total elongation in the A direction of the titanium plate was measured, and the tensile strength in the A direction of the titanium plate was also measured as a reference test.
チタン板のA方向の全伸びについては、製造した各チタン板からJISZ2201に規定される13号試験片を作製し、この試験片について、JISZ2241に準拠する引張試験を行うことで求めた。この全伸びは、標点距離を50mmとし、引張試験での引張破断後に試験片を突き合わせて標点距離を測定することで求めた。 The total elongation in the A direction of the titanium plate was determined by preparing a No. 13 test piece defined in JISZ2201 from each manufactured titanium plate and performing a tensile test in accordance with JISZ2241 on this test piece. This total elongation was obtained by setting the gauge distance to 50 mm and measuring the gauge distance by abutting the test pieces after the tensile fracture in the tensile test.
また、引張強度は、引張試験後A方向の引張強度(TS)を測定して求めた。尚、試験速度(引張試験での歪み速度)は、0.3mm/minとした。 The tensile strength was obtained by measuring the tensile strength (TS) in the A direction after the tensile test. The test speed (strain speed in the tensile test) was 0.3 mm / min.
<プレス成形性>
プレス成形性については、図3に示すような、V字形の溝を設けたプレート式熱交換器の熱交換部分をプレス成形することを模擬したプレス成形金型を用いてチタン板(試験体)のプレス成形を実施し、その評価を行った。プレス成形金型は、図3に示すように、成形部の大きさが100mm×100mmで、その表面には、ピッチ10mm、最大高さ4mmの平面V字形の平行する稜線部が6本形成されている。その各稜線部のR形状は、図3(a)の上から下に向かって順に、R=0.4、1.8、0.8、1.0、1.4、0.6の計6種類である。
<Press formability>
As for press formability, as shown in FIG. 3, a titanium plate (test body) using a press mold that simulates press forming of a heat exchange portion of a plate heat exchanger provided with a V-shaped groove. The press molding was carried out and evaluated. As shown in FIG. 3, the press mold has a size of a molded part of 100 mm × 100 mm, and on its surface, six parallel V-shaped ridges with a pitch of 10 mm and a maximum height of 4 mm are formed. ing. The R shape of each ridge line portion is a total of R = 0.4, 1.8, 0.8, 1.0, 1.4, 0.6 in order from the top to the bottom of FIG. There are six types.
この成形金型を用いて8ton油圧プレス機によってプレス成形を実施した。具体的には、各試験体の表裏面に動粘度34mm2/s(40℃)のプレス油を塗布し、各試験体を下金型の上面に配置し、そのフランジ部を板押さえで拘束した後、プレス速度1mm/s、押し込み深さ3.8mmの条件でプレス成形を実施した。プレス成形性の評価は、プレス成形後に認められる割れの数で評価した。具体的な評価方法を以下に説明する。 Using this molding die, press molding was performed by an 8 ton hydraulic press. Specifically, press oil with a kinematic viscosity of 34 mm 2 / s (40 ° C) is applied to the front and back surfaces of each test specimen, each test specimen is placed on the upper surface of the lower mold, and the flange portion is restrained by a plate presser. After that, press molding was performed under the conditions of a press speed of 1 mm / s and an indentation depth of 3.8 mm. The press formability was evaluated by the number of cracks observed after press forming. A specific evaluation method will be described below.
プレス成形後の各試験体の図3(a)に示す稜線部と、測定位置A、B、C、C´、D、Eの一点鎖線との交点計36箇所について、割れの有無を目視で観察した。尚、測定位置C´は、図3(b)に示すように、隣接する稜線部の間に位置する谷部である。 The presence or absence of cracks is visually observed at 36 points of intersection between the ridge line portion shown in FIG. 3A of each test body after press molding and the one-dot chain lines of measurement positions A, B, C, C ′, D, and E. Observed. Note that the measurement position C ′ is a valley portion located between adjacent ridge line portions, as shown in FIG.
この目視において、割れの起点となる測定位置A、C、C´、Eについては、割れもくびれも認められなければ2点、くびれが認められれば1点、割れが認められれば0点とし、他の測定位置B、Dについては、割れもくびれも認められなければ1点、くびれが認められれば0.5点、割れが認められれば0点とし、更にその各点数に加工Rの逆数を掛けて割れの状態を数値化し、その合計値を求めた。その合計値を、完全に割れ、くびれが認められない場合を100として規格化した後、温度(T)、潤滑油の粘度(μ)、試験体の板厚(t)に依存する関数F(T,μ,t)、並びに、プレス金型の稜線の角度(α)、ピッチ(p)に依存する関数G(α,p)を掛け合わせて、成形性スコアとして算出した。尚、F並びにGは0〜1の値である。 In this visual inspection, the measurement positions A, C, C ′, and E, which are the starting points of cracking, are 2 points if neither cracking nor constriction is observed, 1 point if constriction is recognized, 0 point if cracking is recognized, For other measurement positions B and D, 1 point is given if neither cracking nor constriction is observed, 0.5 point if constriction is recognized, 0 point if cracking is observed, and the reciprocal of machining R is added to each point. Multiply it and digitize the state of the cracks and determine the total. After normalizing the total value as 100 when the case where cracks are not completely observed and constriction is observed, the function F () depends on the temperature (T), the viscosity of the lubricating oil (μ), and the plate thickness (t) of the specimen. T, μ, t) and the function G (α, p) depending on the angle (α) and pitch (p) of the ridge line of the press mold were multiplied to calculate the formability score. Note that F and G are values from 0 to 1.
以上の成形性スコアの算出方法は、下記式によって表すことができる。
成形性スコア=F×G×ΣE(ij)/R(j)/(ΣA,C,C´,E 2/R(j)+ΣB,D 1/R(j))×100
この式において、A、C、C´、Eの場合は、E(ij)=1.0×(割れくびれなし:2、くびれ:1、割れ0)として、また、B、Dの場合は、E(ij)=0.5×(割れくびれなし:2、くびれ:1、割れ0)として算出した。また、本実施例では、温度(T)、潤滑油の粘度(μ)、試験体の板厚(t)、プレス金型の稜線の角度(α)、およびプレス金型の稜線のピッチ(p)を一定としたため、F×Gを便宜的に1として成形性スコアを算出した。
The calculation method of the above moldability score can be represented by the following formula.
Formability score = F × G × ΣE (ij) / R (j) / (ΣA, C, C ′, E2 / R (j) + ΣB,
In this equation, in the case of A, C, C ′, E, E (ij) = 1.0 × (no cracking of the neck: 2, necking: 1, cracking 0), and in the case of B and D, E (ij) = 0.5 × (no cracking: 2, necking: 1, cracking 0). In this example, the temperature (T), the viscosity of the lubricating oil (μ), the thickness of the specimen (t), the angle of the ridge line of the press mold (α), and the pitch of the ridge line of the press mold (p ) Was constant, the moldability score was calculated with F × G as 1 for convenience.
この算出した成形性スコアが、75点以上を◎、50点以上75点未満を○、50点未満を×とし、◎と○の試料をプレス成形性に優れていると評価した。 The calculated formability score was evaluated as being excellent in press formability, with ◎ being 75 points or more, ◯ being 50 points or more and less than 75 points, and x being less than 50 points.
以上の試験結果を表1に示す。 The test results are shown in Table 1.
No.1およびNo.2は、FeおよびOの含有量を共に0.15質量%以下とし、チタン板に形成されるV字状のプレスパターンの頂点方向を、六方晶のC軸の集積度が高い方向、すなわち圧延方向とは直交する方向(A方向)に向けてプレス成形した発明例である。 No. 1 and no. No. 2 is such that the Fe and O contents are both 0.15 mass% or less, and the apex direction of the V-shaped press pattern formed on the titanium plate is the direction in which the degree of accumulation of hexagonal C-axis is high, that is, rolling It is the invention example which carried out press molding toward the direction (A direction) orthogonal to a direction.
これに対し、No.3は、FeおよびOの含有量が上限を超える比較例、また、No.4,5は、チタン板に形成されるV字状のプレスパターンの頂点方向を、六方晶のC軸の集積度が高い方向とは直交する方向、すなわち圧延方向(B方向)に向けてプレス成形した比較例である。 In contrast, no. No. 3 is a comparative example in which the Fe and O contents exceed the upper limit. Nos. 4 and 5 press the apex direction of the V-shaped press pattern formed on the titanium plate in a direction perpendicular to the direction in which the hexagonal C-axis is highly integrated, that is, in the rolling direction (B direction). It is the comparative example which shape | molded.
No.1,2の発明例では、プレス成形性試験で割れが発生しなかったのに対し、No.3〜5の本発明の要件のうち何らかの要件を満足しない比較例では、プレス成形性試験でV字状のプレスパターンの頂点等に割れが発生した。すなわち、本発明の要件を満足するプレス成形方法で、プレス成形したNo.1,2のチタン板は、プレス成形性に優れたチタン板であるということができる。 No. In the inventive examples 1 and 2, no cracks occurred in the press formability test. In the comparative example which does not satisfy any requirement among the requirements of 3 to 5 of the present invention, cracks occurred at the apex of the V-shaped press pattern in the press formability test. In other words, the press forming method satisfying the requirements of the present invention was subjected to press forming No. It can be said that the 1 and 2 titanium plates are titanium plates excellent in press formability.
尚、No.1,2は、A方向の全伸びが20%以上、α相の平均結晶粒径が10〜200μmであり、これらの要件を満足することでも、プレス成形性に優れたチタン板とすることができる。 No. 1 and 2, the total elongation in the A direction is 20% or more and the average crystal grain size of the α phase is 10 to 200 μm. Even if these requirements are satisfied, a titanium plate having excellent press formability can be obtained. it can.
1…チタン板
2…プレスパターン
3…頂点
1 ...
Claims (3)
前記チタン板のα相(六方晶)のC軸の集積度が高い方向をA方向、その直交方向をB方向としたとき、
V字状のプレスパターンの頂点方向をA方向として前記チタン板に前記プレスパターンを形成することを特徴とするチタン板のプレス成形方法。 A titanium plate containing 0.15% or less of Fe (not including 0%) and 0.15% or less (not including 0%) of O in mass% is press-molded, and the titanium plate is V-shaped. A press forming method of a titanium plate for forming a press pattern of
When the direction in which the C-axis accumulation degree of the α phase (hexagonal crystal) of the titanium plate is high is the A direction, and the orthogonal direction is the B direction,
A press forming method of a titanium plate, wherein the press pattern is formed on the titanium plate with the apex direction of the V-shaped press pattern as the A direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009172354A JP5123910B2 (en) | 2009-07-23 | 2009-07-23 | Press forming method of titanium plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009172354A JP5123910B2 (en) | 2009-07-23 | 2009-07-23 | Press forming method of titanium plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011025269A JP2011025269A (en) | 2011-02-10 |
JP5123910B2 true JP5123910B2 (en) | 2013-01-23 |
Family
ID=43634635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009172354A Expired - Fee Related JP5123910B2 (en) | 2009-07-23 | 2009-07-23 | Press forming method of titanium plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5123910B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012214862A (en) * | 2011-04-01 | 2012-11-08 | Kobe Steel Ltd | Titanium sheet excellent in press formability |
JP5654934B2 (en) * | 2011-04-01 | 2015-01-14 | 株式会社神戸製鋼所 | Titanium plate with excellent press formability |
JP5937865B2 (en) * | 2011-05-30 | 2016-06-22 | 株式会社神戸製鋼所 | Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance |
JP6212019B2 (en) * | 2014-11-13 | 2017-10-11 | トヨタ自動車株式会社 | Planar member for fuel cell |
CN107755501A (en) * | 2017-10-09 | 2018-03-06 | 无锡市普尔换热器制造有限公司 | A kind of new titanium alloy fin moulding process |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS588996A (en) * | 1981-07-07 | 1983-01-19 | Nippon Mining Co Ltd | Manufacture of heat conductive plate in plate type heat exchanger |
JP2669004B2 (en) * | 1988-11-09 | 1997-10-27 | 住友金属工業株式会社 | Β-type titanium alloy with excellent cold workability |
JP2002180167A (en) * | 2000-12-08 | 2002-06-26 | Sumitomo Metal Ind Ltd | Titanium strip and method of manufacturing the same |
JP4633708B2 (en) * | 2006-11-10 | 2011-02-16 | 株式会社日阪製作所 | Plate heat exchanger and method of manufacturing plate heat exchanger |
JP5010309B2 (en) * | 2007-02-26 | 2012-08-29 | 新日本製鐵株式会社 | High strength titanium alloy material for cold forging |
JP5027603B2 (en) * | 2007-09-18 | 2012-09-19 | 株式会社神戸製鋼所 | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof |
-
2009
- 2009-07-23 JP JP2009172354A patent/JP5123910B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011025269A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102191418B (en) | Magnesium alloy plate, its manufacturing method, and worked member | |
JP5123910B2 (en) | Press forming method of titanium plate | |
JP5385038B2 (en) | Titanium plate with high yield strength and excellent press formability | |
KR101743380B1 (en) | Titanium sheet | |
JP5166921B2 (en) | Titanium alloy plate with high strength and excellent formability | |
JP5937865B2 (en) | Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance | |
US10119179B2 (en) | Titanium plate | |
JP5400824B2 (en) | Titanium plate with excellent press formability | |
KR102364142B1 (en) | Titanium alloy member | |
JP5988899B2 (en) | Titanium plate and method for producing titanium plate | |
JP2017088906A (en) | Aluminum alloy sheet for automobile structural member and manufacturing method therefor | |
JP2012214862A (en) | Titanium sheet excellent in press formability | |
JP5399759B2 (en) | Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate | |
JP5444182B2 (en) | Titanium plate with excellent formability | |
JP2010150607A (en) | Titanium alloy sheet having high strength and excellent deep drawability, and method for producing the titanium alloy sheet | |
JP2009068098A (en) | Titanium alloy sheet having high strength and superior formability, and manufacturing method therefor | |
JP5427154B2 (en) | Titanium plate with high strength and excellent formability | |
JP5654934B2 (en) | Titanium plate with excellent press formability | |
JP2013227618A (en) | α+β TYPE TITANIUM ALLOY PLATE, AND METHOD OF MANUFACTURING THE SAME | |
JP5654933B2 (en) | Titanium plate with high yield strength and excellent press formability | |
JP4928584B2 (en) | Titanium plate, manufacturing method thereof, and manufacturing method of heat exchange member of plate heat exchanger | |
JP6954211B2 (en) | Metal molding plate, painted metal molding plate and molding method | |
JP2023161303A (en) | aluminum alloy foil | |
JP2024157652A (en) | Aluminum alloy foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110414 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110414 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5123910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |