JP5118392B2 - 半導体発光素子およびその製造方法 - Google Patents
半導体発光素子およびその製造方法 Download PDFInfo
- Publication number
- JP5118392B2 JP5118392B2 JP2007153045A JP2007153045A JP5118392B2 JP 5118392 B2 JP5118392 B2 JP 5118392B2 JP 2007153045 A JP2007153045 A JP 2007153045A JP 2007153045 A JP2007153045 A JP 2007153045A JP 5118392 B2 JP5118392 B2 JP 5118392B2
- Authority
- JP
- Japan
- Prior art keywords
- group iii
- layer
- iii nitride
- nitride semiconductor
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
- H01S5/32025—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2302/00—Amplification / lasing wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
- H01S5/0282—Passivation layers or treatments
- H01S5/0283—Optically inactive coating on the facet, e.g. half-wave coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2201—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
c面を主面とする窒化ガリウム(GaN)基板上にIII族窒化物半導体を有機金属化学気相成長法(MOCVD法)によって成長させる窒化物半導体の製造方法が知られている。この方法を適用することにより、n型層およびp型層ならびにこれらに挟まれた活性層(発光層)を有するIII族窒化物半導体積層構造を形成することができ、この積層構造を利用した発光デバイスを作製できる。このような発光デバイスは、たとえば、液晶パネル用バックライトの光源として利用可能である。
しかし、半導体レーザにおいても、450nm以上の長波長域での発光を実現しようとすると、前述の場合と同様の問題に遭遇する。そのため、長波長域で発振効率に優れた半導体レーザを実現するには、なお課題が残されていた。
そこで、この発明の目的は、活性層の熱ダメージを抑制することにより、優れた発光効率を実現することができる半導体発光素子およびその製造方法を提供することである。
m面およびa面は、c面に垂直であり、m軸およびa軸方向に沿う分極はないので、非極性面と呼ばれる。
請求項2記載の発明は、前記活性層の発光波長が450nm以上である、請求項1記載の半導体発光素子である。発光波長が450nm以上(たとえば、450nm以上550nm以下。より具体的には、たとえば500nm)である場合、活性層のIn組成は、たとえば、15%以上(たとえば、15%以上25%以下。発光波長が500nmの場合にはたとえば20%)とする必要がある。この発明を適用することによって、このようにIn組成の大きな活性層を比較的高温(たとえば、750℃以上)の条件で成長させることができる。したがって、450nm以上の波長域においても、活性層の熱ダメージを抑制して、発光効率の高い半導体発光素子を実現できる。
請求項5記載の発明は、前記活性層の発光波長が450nm以上である、請求項4記載の半導体発光素子の製造方法である。450nm以上の波長域の発光のためには、活性層のIn組成を高める必要があるが、この発明では、In組成の高い活性層の形成も比較的高温の温度条件で行うことができる。これにより、450nm以上の波長域においても、発光効率の良い半導体発光素子を実現できる。
請求項7記載の発明は、前記III族窒化物半導体積層構造を形成する工程は、c軸方向へのオフ角θが−1°<θ<0°を満たす非極性面を主面とするIII族窒化物半導体を成長させる工程を含む、請求項4〜6のいずれか一項に記載の半導体発光素子の製造方法である。オフ角θの範囲を−1°<θ<0°とすることにより、平坦なIII族窒化物半導体積層構造を形成することができる。これにより、半導体発光素子の発光効率を一層向上することができる。
図1は、この発明の一実施形態に係る半導体レーザダイオードの構成を説明するための斜視図であり、図2は、図1のII−II線に沿う縦断面図であり、図3は、図1のIII−III線に沿う横断面図である。
この半導体レーザダイオード70は、基板1と、基板1上に結晶成長によって形成されたIII族窒化物半導体積層構造2と、基板1の裏面(III族窒化物半導体積層構造2と反対側の表面)に接触するように形成されたn側電極3と、III族窒化物半導体積層構造2の表面に接触するように形成されたp側電極4とを備えたファブリペロー型のものである。
III族窒化物半導体積層構造2は、発光層(活性層)10と、n型半導体層11と、p型半導体層12とを備えている。n型半導体層11は発光層10に対して基板1側に配置されており、p型半導体層12は発光層10に対してp側電極4側に配置されている。こうして、発光層10が、n型半導体層11およびp型半導体層12によって挟持されていて、ダブルヘテロ接合が形成されている。発光層10には、n型半導体層11から電子が注入され、p型半導体層12から正孔が注入される。これらが発光層10で再結合することにより、光が発生するようになっている。
発光層10は、たとえばInGaNを含むMQW(multiple-quantum well)構造(多重量子井戸構造)を有しており、電子と正孔とが再結合することにより光が発生し、その発生した光を増幅させるための層である。発光層10は、具体的には、InGaN層(たとえば3nm厚)とGaN層(たとえば9nm厚)とを交互に複数周期繰り返し積層して構成されている。この場合に、InGaN層は、Inの組成比が5%以上とされることにより、バンドギャップが比較的小さくなり、量子井戸層を構成する。一方、GaN層は、バンドギャップが比較的大きなバリア層(障壁層)として機能する。たとえば、InGaN層とGaN層とは交互に2〜7周期繰り返し積層されて、MQW構造の発光層10が構成されている。発光波長は、量子井戸層(InGaN層)におけるInの組成を調整することによって、400nm〜550nmとされている。前記MQW構造は、Inを含む量子井戸の数が3以下とされることが好ましい。たとえば、発光波長を450nm以上とするときの量子井戸層のIn組成は、15%以上とされる。より具体的には、発光波長を500nmとするときのIn組成は18%〜22%である。
共振器端面21,22は、それぞれ絶縁膜23,24(図1では図示を省略した。)によって被覆されている。共振器端面21は、+c軸側端面であり、共振器端面22は−c軸側端面である。すなわち、共振器端面21の結晶面は+c面であり、共振器端面22の結晶面は−c面である。−c面側の絶縁膜24は、アルカリに溶けるなど化学的に弱い−c面を保護する保護膜として機能することができ、半導体レーザダイオード70の信頼性の向上に寄与する。
一方、六角柱の側面がそれぞれm面(10-10)であり、隣り合わない一対の稜線を通る面がa面(11-20)である。これらは、c面に対して直角な結晶面であり、分極方向に対して直交しているため、極性のない平面、すなわち、非極性面(Nonpolar Plane)である。
このようにして得られるGaN単結晶基板上に、有機金属気相成長法によって、半導体レーザダイオード構造を構成するIII族窒化物半導体積層構造2が成長させられる。
また、m面を主面としたGaN単結晶基板上に結晶成長させられるIII族窒化物半導体は、m面を成長主面として成長する。c面を主面として結晶成長した場合には、c軸方向の分極の影響で、発光層10での発光効率が悪くなるおそれがある。これに対して、m面を結晶成長主面とすれば、量子井戸層での分極が抑制され、発光効率が増加する。これにより、閾値の低下やスロープ効率の増加を実現できる。また、分極が少ないため、発光波長の電流依存性が抑制され、安定した発振波長を実現できる。
発光層10は、m面を結晶成長主面として成長させられたIII族窒化物半導体からなるので、ここから発生する光は、a軸方向、すなわちm面に平行な方向に偏光しており、TEモードの場合、その進行方向はc軸方向である。したがって、半導体レーザダイオード70は、結晶成長主面が偏光方向に平行であり、かつ、ストライプ方向、すなわち導波路の方向が光の進行方向と平行に設定されている。これにより、TEモードの発振を容易に生じさせることができ、レーザ発振を生じさせるための閾値電流を低減することができる。
GaN単結晶基板1の主面は、c軸方向へのオフ角θが−1°〜0°の負の値を有する。このGaN単結晶基板1の表面には、原子レベルのステップ100が生じている。各ステップ100は、−c軸方向に向いた表面、すなわち、−c面(窒素面)となっている。このようなGaN単結晶基板1の主面上にIII族窒化物半導体を結晶成長させると、−c軸方向に膜状に半導体結晶が二次元成長しながら、厚さ方向(m軸方向)へと結晶成長していく。
図8は、III族窒化物半導体積層構造2を構成する各層を成長させるための処理装置の構成を説明するための図解図である。処理室30内に、ヒータ31を内蔵したサセプタ32が配置されている。サセプタ32は、回転軸33に結合されており、この回転軸33は、処理室30外に配置された回転駆動機構34によって回転されるようになっている。これにより、サセプタ32に処理対象のウエハ35を保持させることにより、処理室30内でウエハ35を所定温度に昇温することができ、かつ、回転させることができる。ウエハ35は、前述のGaN単結晶基板1を構成するGaN単結晶ウエハである。
一方、処理室30には、サセプタ32に保持されたウエハ35の表面に向けて原料ガスを供給するための原料ガス供給路40が導入されている。この原料ガス供給路40には、窒素原料ガスとしてのアンモニアを供給する窒素原料配管41と、ガリウム原料ガスとしてのトリメチルガリウム(TMG)を供給するガリウム原料配管42と、アルミニウム原料ガスとしてのトリメチルアルミニウム(TMAl)を供給するアルミニウム原料配管43と、インジウム原料ガスとしてのトリメチルインジウム(TMIn)を供給するインジウム原料配管44と、マグネシウム原料ガスとしてのエチルシクロペンタジエニルマグネシウム(EtCp2Mg)を供給するマグネシウム原料配管45と、シリコンの原料ガスとしてのシラン(SiH4)を供給するシリコン原料配管46とが接続されている。これらの原料配管41〜46には、それぞれバルブ51〜56が介装されている。各原料ガスは、いずれも水素もしくは窒素またはこれらの両方からなるキャリヤガスとともに供給されるようになっている。
ウエハ35(GaN単結晶基板1)上にIII族窒化物半導体積層構造2の構成層10,13〜19を成長するのに際しては、いずれの層の成長の際も、処理室30内のウエハ35に供給されるガリウム原料(トリメチルガリウム)のモル分率に対する窒素原料(アンモニア)のモル分率の比であるV/III比は、1000以上(好ましくは3000以上)の高い値に維持される。より具体的には、n型クラッド層14から最上層のp型コンタクト層19までにおいて、V/III比の平均値が1000以上であることが好ましい。これにより、n型クラッド層14、発光層10およびp型クラッド層18の全ての層において、点欠陥の少ない良好な結晶を得ることができる。
リッジストライプ20の形成後には、絶縁層6が形成される。絶縁層6の形成は、たとえば、リフトオフ工程を用いて行われる。すなわち、ストライプ状のマスクを形成した後、p型AlGaNクラッド層18およびp型GaNコンタクト層19の全体を覆うように絶縁体薄膜を形成した後、この絶縁体薄膜をリフトオフしてp型GaNコンタクト層19を露出させるようにして、絶縁層6を形成できる。
次の工程は、個別素子への分割である。すなわち、ウエハ35をリッジストライプ20に平行な方向およびこれに垂直な方向に劈開して、半導体レーザダイオードを構成する個々の素子が切り出される。リッジストライプに平行な方向に関する劈開はa面に沿って行われる。また、リッジストライプ20に垂直な方向に関する劈開はc面に沿って行われる。こうして、+c面からなる共振器端面21と、−c面からなる共振器端面22とが形成される。
以上のように、この実施形態によれば、c軸方向へのオフ角θが−1°<θ<0°の範囲の負の値を有するm面を主面としたGaN単結晶基板1を用い、このGaN単結晶基板1の主面上にIII族窒化物半導体積層構造2を結晶成長させるようにしている。これにより、発光層10の形成時に、比較的高温の条件でIn組成の高いInGaN層を形成することができる。したがって、発光層10は、熱ダメージに対して良好な耐久性を有する。そのため、発光層10を形成した後のp型半導体層12の形成時における特性劣化を抑制することができる。これにより、発光効率の高い窒化物半導体発光素子を得ることができる。とくに、発光層10のIn組成を高くして長波長(450nm以上)化を図る場合に、すぐれた発光効率を実現することができる。
この実施形態の半導体レーザダイオード80では、リッジストライプ20がa軸方向に平行に形成されており、したがって、共振器端面21,22は、いずれもa面となっている。これらの共振器端面21,22も、劈開によって形成された劈開面である。
この実施形態の半導体レーザダイオード90では、III族窒化物半導体積層構造2は、基板1とn型GaNコンタクト層13との間に、2軸性応力を含むInを含む層、すなわちn型InGaN層26(たとえば、0.1μm厚。n型不純物濃度は1×1018cm−3)が介在されている。このn型InGaN層26を設けることにより、その2軸性応力によって、III族窒化物半導体積層構造2にc面と平行なクラックが生じることを抑制することができる。
以上、この発明の3つの実施形態について説明したが、この発明はさらに他の形態で実施することもできる。
また、III族窒化物半導体積層構造2を形成した後にレーザリフトオフなどで基板1を除去し、基板1のない半導体レーザダイオードとすることもできる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1A 主面の法線方向
2 III族窒化物半導体積層構造
3 n側電極
4 p側電極
6 絶縁層
10 発光層
11 n型半導体層
12 p型半導体層
13 n型GaNコンタクト層
14 n型AlGaNクラッド層
15 n型GaNガイド層
16 p型AlGaN電子ブロック層
17 p型GaNガイド層
18 p型AlGaNクラッド層
19 p型GaNコンタクト層
20 リッジストライプ
21 端面
22 端面
23 絶縁膜
24 絶縁膜
26 n型InGaN層
30 処理室
31 ヒータ
32 サセプタ
33 回転軸
34 回転駆動機構
35 基板
36 排気配管
40 原料ガス導入路
41 窒素原料配管
42 ガリウム原料配管
43 アルミニウム原料配管
44 インジウム原料配管
45 マグネシウム原料配管
46 シリコン原料配管
51 窒素原料バルブ
52 ガリウム原料バルブ
53 アルミニウム原料バルブ
54 インジウム原料バルブ
55 マグネシウム原料バルブ
56 シリコン原料バルブ
70 半導体レーザダイオード
80 半導体レーザダイオード
90 半導体レーザダイオード
100 ステップ(窒素面)
Claims (9)
- Inを含む活性層ならびにこの活性層を挟むように積層されたp型層およびn型層を有するIII族窒化物半導体積層構造を含み、前記III族窒化物半導体積層構造が、c軸方向へのオフ角が負の非極性面を主面とするIII族窒化物半導体からなる、半導体発光素子。
- 前記活性層の発光波長が450nm以上である、請求項1記載の半導体発光素子。
- 前記III族窒化物半導体積層構造を構成するIII族窒化物半導体は、c軸方向へのオフ角θが−1°<θ<0°を満たしている、請求項1または2記載の半導体発光素子。
- Inを含む活性層ならびにこの活性層を挟むように積層されたp型層およびn型層を有するIII族窒化物半導体積層構造を含む半導体発光素子を製造するための方法であって、
c軸方向へのオフ角が負の非極性面を主面としてIII族窒化物半導体を成長させることにより、前記III族窒化物半導体積層構造を形成する工程を含む、半導体発光素子の製造方法。 - 前記活性層の発光波長が450nm以上である、請求項4記載の半導体発光素子の製造方法。
- 前記主面が、c軸方向へのオフ角が負のm面である、請求項4または5記載に半導体発光素子の製造方法。
- 前記III族窒化物半導体積層構造を形成する工程は、c軸方向へのオフ角θが−1°<θ<0°を満たす非極性面を主面とするIII族窒化物半導体を成長させる工程を含む、請求項4〜6のいずれか一項に記載の半導体発光素子の製造方法。
- 前記III族窒化物半導体積層構造を形成する工程は、c軸方向へのオフ角が負の主面を有するIII族窒化物半導体単結晶基板上にIII族窒化物半導体を成長させる工程を含む、請求項4〜7のいずれか一項に記載の半導体発光素子の製造方法。
- 前記III族窒化物半導体単結晶基板がGaN基板である、請求項8記載の半導体発光素子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007153045A JP5118392B2 (ja) | 2007-06-08 | 2007-06-08 | 半導体発光素子およびその製造方法 |
US12/451,920 US8124982B2 (en) | 2007-06-08 | 2008-06-05 | Semiconductor light-emitting element and method for fabrication the same |
PCT/JP2008/060385 WO2008149945A1 (ja) | 2007-06-08 | 2008-06-05 | 半導体発光素子およびその製造方法 |
TW097121317A TWI449208B (zh) | 2007-06-08 | 2008-06-06 | Semiconductor light emitting element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007153045A JP5118392B2 (ja) | 2007-06-08 | 2007-06-08 | 半導体発光素子およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008306062A JP2008306062A (ja) | 2008-12-18 |
JP5118392B2 true JP5118392B2 (ja) | 2013-01-16 |
Family
ID=40093755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007153045A Expired - Fee Related JP5118392B2 (ja) | 2007-06-08 | 2007-06-08 | 半導体発光素子およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8124982B2 (ja) |
JP (1) | JP5118392B2 (ja) |
TW (1) | TWI449208B (ja) |
WO (1) | WO2008149945A1 (ja) |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2176878A4 (en) * | 2007-08-08 | 2010-11-17 | Univ California | PLANAR NON-POLAR PLAN M GROUP III NITRIDE FILMS THAT ARE GROWN ON CUTTING ANGLE SUBSTRATES |
JP2009158647A (ja) * | 2007-12-26 | 2009-07-16 | Sharp Corp | 窒化物系半導体レーザ素子およびその製造方法 |
US8847249B2 (en) | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
US8259769B1 (en) | 2008-07-14 | 2012-09-04 | Soraa, Inc. | Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates |
US8143148B1 (en) | 2008-07-14 | 2012-03-27 | Soraa, Inc. | Self-aligned multi-dielectric-layer lift off process for laser diode stripes |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
US8284810B1 (en) | 2008-08-04 | 2012-10-09 | Soraa, Inc. | Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods |
CN102144294A (zh) | 2008-08-04 | 2011-08-03 | Soraa有限公司 | 使用非极性或半极性的含镓材料和磷光体的白光器件 |
JP2010205835A (ja) * | 2009-03-02 | 2010-09-16 | Sumitomo Electric Ind Ltd | 窒化ガリウム系半導体光素子、窒化ガリウム系半導体光素子を製造する方法、及びエピタキシャルウエハ |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
JP5004989B2 (ja) | 2009-03-27 | 2012-08-22 | シャープ株式会社 | 窒化物半導体発光素子及びその製造方法、並びに、半導体光学装置 |
US8422525B1 (en) * | 2009-03-28 | 2013-04-16 | Soraa, Inc. | Optical device structure using miscut GaN substrates for laser applications |
US8252662B1 (en) | 2009-03-28 | 2012-08-28 | Soraa, Inc. | Method and structure for manufacture of light emitting diode devices using bulk GaN |
US8242522B1 (en) | 2009-05-12 | 2012-08-14 | Soraa, Inc. | Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8294179B1 (en) | 2009-04-17 | 2012-10-23 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8254425B1 (en) | 2009-04-17 | 2012-08-28 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
DE112010001615T5 (de) * | 2009-04-13 | 2012-08-02 | Soraa, Inc. | Stuktur eines optischen Elements unter Verwendung von GaN-Substraten für Laseranwendungen |
US8416825B1 (en) | 2009-04-17 | 2013-04-09 | Soraa, Inc. | Optical device structure using GaN substrates and growth structure for laser applications |
JP4927121B2 (ja) | 2009-05-29 | 2012-05-09 | シャープ株式会社 | 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法 |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US20110001126A1 (en) * | 2009-07-02 | 2011-01-06 | Sharp Kabushiki Kaisha | Nitride semiconductor chip, method of fabrication thereof, and semiconductor device |
US20110042646A1 (en) * | 2009-08-21 | 2011-02-24 | Sharp Kabushiki Kaisha | Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device |
JP4970517B2 (ja) * | 2009-09-30 | 2012-07-11 | シャープ株式会社 | 窒化物半導体素子、窒化物半導体ウェハおよび窒化物半導体素子の製造方法 |
US8314429B1 (en) | 2009-09-14 | 2012-11-20 | Soraa, Inc. | Multi color active regions for white light emitting diode |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
WO2011035265A1 (en) | 2009-09-18 | 2011-03-24 | Soraa, Inc. | Power light emitting diode and method with current density operation |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US8975615B2 (en) | 2010-11-09 | 2015-03-10 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material |
JP5781292B2 (ja) * | 2010-11-16 | 2015-09-16 | ローム株式会社 | 窒化物半導体素子および窒化物半導体パッケージ |
JP5689297B2 (ja) * | 2010-12-07 | 2015-03-25 | ローム株式会社 | 半導体レーザ素子およびその製造方法 |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US9287684B2 (en) | 2011-04-04 | 2016-03-15 | Soraa Laser Diode, Inc. | Laser package having multiple emitters with color wheel |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US8971370B1 (en) | 2011-10-13 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices using a semipolar plane |
US9020003B1 (en) | 2012-03-14 | 2015-04-28 | Soraa Laser Diode, Inc. | Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates |
US9800016B1 (en) | 2012-04-05 | 2017-10-24 | Soraa Laser Diode, Inc. | Facet on a gallium and nitrogen containing laser diode |
US10559939B1 (en) | 2012-04-05 | 2020-02-11 | Soraa Laser Diode, Inc. | Facet on a gallium and nitrogen containing laser diode |
US9343871B1 (en) | 2012-04-05 | 2016-05-17 | Soraa Laser Diode, Inc. | Facet on a gallium and nitrogen containing laser diode |
JP2012178609A (ja) * | 2012-05-22 | 2012-09-13 | Sharp Corp | 窒化物半導体発光素子及びその製造方法、並びに、半導体光学装置 |
US9099843B1 (en) | 2012-07-19 | 2015-08-04 | Soraa Laser Diode, Inc. | High operating temperature laser diodes |
US8971368B1 (en) | 2012-08-16 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices having a gallium and nitrogen containing semipolar surface orientation |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
US9419189B1 (en) | 2013-11-04 | 2016-08-16 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
US9368582B2 (en) * | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
US12126143B2 (en) | 2014-11-06 | 2024-10-22 | Kyocera Sld Laser, Inc. | Method of manufacture for an ultraviolet emitting optoelectronic device |
US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
JPWO2020004250A1 (ja) * | 2018-06-26 | 2021-08-05 | 株式会社Flosfia | 結晶性酸化物膜 |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US12152742B2 (en) | 2019-01-18 | 2024-11-26 | Kyocera Sld Laser, Inc. | Laser-based light guide-coupled wide-spectrum light system |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
US12191626B1 (en) | 2020-07-31 | 2025-01-07 | Kyocera Sld Laser, Inc. | Vertically emitting laser devices and chip-scale-package laser devices and laser-based, white light emitting devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4204163B2 (ja) * | 2000-02-03 | 2009-01-07 | 株式会社リコー | 半導体基板の製造方法 |
JP3801125B2 (ja) * | 2001-10-09 | 2006-07-26 | 住友電気工業株式会社 | 単結晶窒化ガリウム基板と単結晶窒化ガリウムの結晶成長方法および単結晶窒化ガリウム基板の製造方法 |
WO2003036771A1 (fr) | 2001-10-26 | 2003-05-01 | Ammono Sp.Zo.O. | Laser a semi-conducteurs a base de nitrure et procede de production de ce laser |
CA2464083C (en) | 2001-10-26 | 2011-08-02 | Ammono Sp. Z O.O. | Substrate for epitaxy |
WO2004004085A2 (en) | 2002-06-26 | 2004-01-08 | Ammono Sp.Zo.O. | Nitride semiconductor laser device and a method for improving its performance |
PL225422B1 (pl) | 2002-06-26 | 2017-04-28 | Ammono Spółka Z Ograniczoną Odpowiedzialnością | Sposób otrzymywania objętościowych monokryształów azotku zawierającego gal |
JP2005340765A (ja) * | 2004-04-30 | 2005-12-08 | Sumitomo Electric Ind Ltd | 半導体発光素子 |
JP3816942B2 (ja) * | 2004-10-27 | 2006-08-30 | 三菱電機株式会社 | 半導体素子の製造方法 |
JP4917319B2 (ja) * | 2005-02-07 | 2012-04-18 | パナソニック株式会社 | トランジスタ |
US7432531B2 (en) * | 2005-02-07 | 2008-10-07 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
JP2007129042A (ja) | 2005-11-02 | 2007-05-24 | Rohm Co Ltd | 窒化物半導体発光素子 |
-
2007
- 2007-06-08 JP JP2007153045A patent/JP5118392B2/ja not_active Expired - Fee Related
-
2008
- 2008-06-05 WO PCT/JP2008/060385 patent/WO2008149945A1/ja active Application Filing
- 2008-06-05 US US12/451,920 patent/US8124982B2/en active Active
- 2008-06-06 TW TW097121317A patent/TWI449208B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2008306062A (ja) | 2008-12-18 |
US20100295054A1 (en) | 2010-11-25 |
TW200908391A (en) | 2009-02-16 |
TWI449208B (zh) | 2014-08-11 |
US8124982B2 (en) | 2012-02-28 |
WO2008149945A1 (ja) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5118392B2 (ja) | 半導体発光素子およびその製造方法 | |
US7843980B2 (en) | Semiconductor laser diode | |
US7792171B2 (en) | Nitride semiconductor laser device | |
US8017932B2 (en) | Light-emitting device | |
US8013356B2 (en) | Semiconductor light emitting device | |
US8432946B2 (en) | Nitride semiconductor laser diode | |
US7869482B2 (en) | Semiconductor laser device | |
JP2008198952A (ja) | Iii族窒化物半導体発光素子 | |
JP2010177651A (ja) | 半導体レーザ素子 | |
JP4924185B2 (ja) | 窒化物半導体発光素子 | |
JP2009094360A (ja) | 半導体レーザダイオード | |
US8664688B2 (en) | Nitride semiconductor light-emitting chip, method of manufacture thereof, and semiconductor optical device | |
US20090238227A1 (en) | Semiconductor light emitting device | |
US8344413B2 (en) | Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip | |
JP2008187044A (ja) | 半導体レーザ | |
JP2011003661A (ja) | 半導体レーザ素子 | |
JP2008226865A (ja) | 半導体レーザダイオード | |
JP2009239083A (ja) | 半導体発光素子 | |
JP5158834B2 (ja) | 半導体発光素子および半導体発光素子の製造方法 | |
JP2009239084A (ja) | 半導体レーザ素子 | |
JP2008235803A (ja) | 窒化物半導体発光素子 | |
JP5224312B2 (ja) | 半導体レーザダイオード | |
JP2009212343A (ja) | 窒化物半導体素子および窒化物半導体素子の製造方法 | |
JP2009043832A (ja) | 半導体発光素子 | |
JP2009088230A (ja) | 半導体発光素子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5118392 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |