[go: up one dir, main page]

JP5116213B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5116213B2
JP5116213B2 JP2005093434A JP2005093434A JP5116213B2 JP 5116213 B2 JP5116213 B2 JP 5116213B2 JP 2005093434 A JP2005093434 A JP 2005093434A JP 2005093434 A JP2005093434 A JP 2005093434A JP 5116213 B2 JP5116213 B2 JP 5116213B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005093434A
Other languages
Japanese (ja)
Other versions
JP2006278076A (en
Inventor
和範 堂上
尊夫 井上
デニスヤウワイ ユ
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005093434A priority Critical patent/JP5116213B2/en
Publication of JP2006278076A publication Critical patent/JP2006278076A/en
Application granted granted Critical
Publication of JP5116213B2 publication Critical patent/JP5116213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は非水電解質二次電池に係り、特に、正極にオリビン型リン酸リチウムを主成分とする正極活物質を用いた非水電解質二次電池において、充分な容量が得られると共に、負荷特性に優れ、高レートの電流で急速充電できるようにした点に特徴を有するものである。   The present invention relates to a nonaqueous electrolyte secondary battery, and in particular, in a nonaqueous electrolyte secondary battery using a positive electrode active material mainly composed of olivine type lithium phosphate as a positive electrode, sufficient capacity is obtained and load characteristics are obtained. It is excellent in that it can be rapidly charged at a high rate of current.

近年、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が広く利用されるようになった。   In recent years, non-aqueous electrolyte secondary batteries using a non-aqueous electrolyte and charging / discharging by moving lithium ions between the positive and negative electrodes are widely used as new secondary batteries with high output and high energy density. It came to be used.

そして、このような非水電解質二次電池においては、一般に正極における正極活物質にLiCoO2を用いると共に、負極における負極活物質にリチウム金属やリチウム合金やリチウムの吸蔵・放出が可能な炭素材料を用い、また非水電解液として、エチレンカーボネートやジエチルカーボネート等の有機溶媒にLiBF4やLiPF6等のリチウム塩からなる電解質を溶解させたものが使用されている。 In such a non-aqueous electrolyte secondary battery, LiCoO 2 is generally used as the positive electrode active material in the positive electrode, and a lithium metal, a lithium alloy, or a carbon material capable of occluding and releasing lithium is used as the negative electrode active material in the negative electrode. In addition, as the non-aqueous electrolyte, an electrolyte made of a lithium salt such as LiBF 4 or LiPF 6 dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate is used.

しかし、正極活物質のLiCoO2に使用されるCoは埋蔵量が限られており、希少な資源であるため、生産コストが高くなるという問題があった。また、正極活物質にLiCoO2を用いた非水電解質二次電池の場合、充電状態において、通常の使用状態では考えられないような高温になると、熱安定性が極端に低下するという問題もあった。 However, Co used for the positive electrode active material LiCoO 2 has a limited reserve and is a scarce resource, and thus has a problem of high production costs. In addition, in the case of a non-aqueous electrolyte secondary battery using LiCoO 2 as the positive electrode active material, there is a problem in that the thermal stability is extremely lowered at a high temperature that cannot be considered in a normal use state in a charged state. It was.

このため、近年においては、上記のLiCoO2に代わる正極活物質として、LiMn24やLiNiO2等を使用することが検討されている。 For this reason, in recent years, the use of LiMn 2 O 4 , LiNiO 2 or the like as a positive electrode active material replacing the above LiCoO 2 has been studied.

しかし、正極活物質にLiMn24を用いた場合、充分な放電容量を得ることが困難であり、また電池温度が高まると、このLiMn24中におけるMnが溶解する等の問題があった。また、正極活物質にLiNiO2を用いた場合には、放電電圧が低くなる等の問題があった。 However, when LiMn 2 O 4 is used as the positive electrode active material, it is difficult to obtain a sufficient discharge capacity, and when the battery temperature increases, there are problems such as dissolution of Mn in this LiMn 2 O 4. It was. Further, when LiNiO 2 is used as the positive electrode active material, there are problems such as a low discharge voltage.

また、近年においては、正極活物質として、リン酸鉄リチウムLiFePO4等のオリビン型リン酸リチウムを用いることが検討されている。 In recent years, it has been studied to use olivine type lithium phosphate such as lithium iron phosphate LiFePO 4 as the positive electrode active material.

ここで、オリビン型リン酸リチウムは、一般式LiMPO4(式中、MはCo、Ni、Mn、Feから選択される少なくとも1種以上の元素である。)で表されるリチウム複合化合物であり、核となる金属元素Mの種類によって作動電圧が異なり、Mの選択によって電池電圧を任意に選定することができ、また理論容量も約140〜170mAh/gと比較的高く、単位質量当りの電池容量を大きくすることができるという利点がある。 Here, the olivine-type lithium phosphate is a lithium composite compound represented by a general formula LiMPO 4 (wherein M is at least one element selected from Co, Ni, Mn, and Fe). The operating voltage varies depending on the type of the core metal element M, the battery voltage can be arbitrarily selected by selecting M, and the theoretical capacity is relatively high at about 140 to 170 mAh / g, and the battery per unit mass. There is an advantage that the capacity can be increased.

そして、最近においては、正極活物質として、上記のオリビン型リン酸リチウムにおける金属元素Mが鉄であるリン酸鉄リチウムLiFePO4を用いた非水電解質二次電池が提案されている(例えば、特許文献1参照。)。 Recently, a nonaqueous electrolyte secondary battery using lithium iron phosphate LiFePO 4 in which the metal element M in the olivine type lithium phosphate is iron has been proposed as a positive electrode active material (for example, a patent) Reference 1).

ここで、正極活物質として、上記のオリビン型リン酸リチウムにおける金属元素Mが鉄であるリン酸鉄リチウムLiFePO4を用いるようにした場合、鉄は産出量が多くかつ安価であることから、生産コストを大幅に低減させることができるという利点がある。 Here, when the lithium iron phosphate LiFePO 4 in which the metal element M in the olivine-type lithium phosphate is iron is used as the positive electrode active material, iron is produced in a large amount and is inexpensive. There is an advantage that the cost can be greatly reduced.

また、正極活物質としてLiFePO4を用いた場合、充電反応において優れた負荷特性を示すという報告がある(例えば、非特許文献1参照。)。そして、この報告においては、正極厚みを70μm(塗布量10mg/cm2)程度に塗布し、対極にLi金属を用いたセルを作製し、定電圧充電を行えば、急速充電が可能であることが示されている。 In addition, when LiFePO 4 is used as the positive electrode active material, there is a report that it shows excellent load characteristics in the charging reaction (see, for example, Non-Patent Document 1). And in this report, if the positive electrode thickness is applied to about 70 μm (coating amount 10 mg / cm 2 ), a cell using Li metal is prepared for the counter electrode, and constant voltage charging is performed, rapid charging is possible. It is shown.

しかし、定電圧充電は制御が困難であり、また上記のように正極活物質としてLiFePO4を用いた非水電解質二次電池において、その負極活物質にLi金属を用いた場合、充放電によりデンドライトが発生して、サイクル特性が非常に悪くなるという問題があった。 However, constant voltage charging is difficult to control, and in the nonaqueous electrolyte secondary battery using LiFePO 4 as the positive electrode active material as described above, when Li metal is used as the negative electrode active material, dendrite is charged and discharged. Has occurred, resulting in a problem that the cycle characteristics become very poor.

さらに、上記の非水電解質二次電池において、その負極活物質に黒鉛を使用した場合においても、黒鉛へのLiの挿入反応が遅いため、高レートの電流で急速充電させるようにした場合、充電反応時の分極が増大して充分な充電容量が得られなくなったり、また負極活物質の黒鉛上にLiが析出して、サイクル特性が低下する等の問題があった。
特開2002−110162号公報 Electrochemical and Solid−State Letters,8(1)A55−A58(2005)
Furthermore, in the above non-aqueous electrolyte secondary battery, even when graphite is used as the negative electrode active material, since the insertion reaction of Li into the graphite is slow, the battery is charged rapidly when charged at a high rate. There was a problem that polarization at the time of reaction increased and a sufficient charge capacity could not be obtained, and Li was deposited on graphite as a negative electrode active material, resulting in deterioration of cycle characteristics.
JP 2002-110162 A Electrochemical and Solid-State Letters, 8 (1) A55-A58 (2005)

この発明は、正極にリン酸鉄リチウムLiFePO4等のオリビン型リン酸リチウムを主成分とする正極活物質を用いた非水電解質二次電池における上記のような問題を解決することを課題とするものであり、このような非水電解質二次電池において、充分な容量が得られると共に、負荷特性にも優れ、高レートの電流での急速充電が適切に行えるようにすることを課題としている。 An object of the present invention is to solve the above problems in a non-aqueous electrolyte secondary battery using a positive electrode active material mainly composed of olivine-type lithium phosphate such as lithium iron phosphate LiFePO 4 as a positive electrode. In such a non-aqueous electrolyte secondary battery, it is an object to provide a sufficient capacity and an excellent load characteristic so that rapid charging at a high rate of current can be appropriately performed.

この発明においては、上記のような課題を解決するため、オリビン型リン酸リチウムを主成分とする正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体の上に形成された正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記の負極にシリコンを主成分とする負極活物質を用いると共に、上記の正極集電体の上に形成される正極合剤層の厚みが片面当り25μm以下になるようにした。 In this invention, in order to solve the above problems, a positive electrode mixture layer containing a positive electrode active material mainly composed of olivine type lithium phosphate, a binder, and a conductive agent is formed on the positive electrode current collector. In a nonaqueous electrolyte secondary battery including a formed positive electrode, a negative electrode, and a nonaqueous electrolyte, a negative electrode active material mainly composed of silicon is used for the negative electrode, and the positive electrode current collector is disposed on the negative electrode. The thickness of the positive electrode mixture layer to be formed was adjusted to 25 μm or less per side.

ここで、上記の正極活物質に使用するオリビン型リン酸リチウムとしては、例えば、リン酸鉄リチウムを用いることが好ましい。   Here, as an olivine type lithium phosphate used for said positive electrode active material, it is preferable to use lithium iron phosphate, for example.

また、上記の負極としては、負極集電体の上にシリコンを主成分とする薄層が堆積されて形成され、この薄層が厚み方向の切れ目によって柱状に分離されたものを用いることが好ましい。   The negative electrode is preferably formed by depositing a thin layer mainly composed of silicon on a negative electrode current collector, and separating the thin layer into a columnar shape by a cut in the thickness direction. .

この発明における非水電解質二次電池においては、オリビン型リン酸リチウムを主成分とする正極活物質と結着剤とを含む正極合剤層が正極集電体の上に形成された正極を用いるにあたり、上記のように正極集電体の上に形成される正極合剤層の厚みを片面当り25μm以下にしたため、この正極における充電反応時の負荷特性が改善され、高レートの電流で急速充電させるようにした場合においても、充分な充電容量が得られるようになる。   In the nonaqueous electrolyte secondary battery according to the present invention, a positive electrode in which a positive electrode mixture layer containing a positive electrode active material mainly composed of olivine type lithium phosphate and a binder is formed on a positive electrode current collector is used. In this case, since the thickness of the positive electrode mixture layer formed on the positive electrode current collector is 25 μm or less per side as described above, the load characteristic at the time of charging reaction in this positive electrode is improved, and rapid charging is performed at a high rate of current. Even in such a case, a sufficient charge capacity can be obtained.

また、この発明における非水電解質二次電池においては、上記のように負極にシリコンを主成分とする負極活物質を用いるようにしたため、シリコンへのLiの挿入反応が黒鉛に比べて速くなり、高レートの電流で急速充電させるようにした場合においても、充電反応時の分極が抑制されて、充分な充電容量が得られるようになると共に、負極活物質のシリコン上にLiが析出するのも抑制されて、サイクル特性も向上する。   In the nonaqueous electrolyte secondary battery according to the present invention, since the negative electrode active material mainly composed of silicon is used for the negative electrode as described above, the insertion reaction of Li into silicon is faster than that of graphite. Even when fast charging is performed at a high rate of current, polarization during charging reaction is suppressed, and a sufficient charging capacity can be obtained, and Li can be deposited on silicon of the negative electrode active material. It is suppressed and the cycle characteristics are also improved.

また、この発明における非水電解質二次電池において、正極活物質に使用するオリビン型リン酸リチウムとして、リン酸鉄リチウムを用いると、前記のように鉄の産出量が多くかつ安価であることから、正極及び非水電解質二次電池の生産コストを大幅に低減させることができる。   In addition, in the nonaqueous electrolyte secondary battery according to the present invention, when lithium iron phosphate is used as the olivine type lithium phosphate used for the positive electrode active material, the amount of iron produced is large and inexpensive as described above. The production cost of the positive electrode and the nonaqueous electrolyte secondary battery can be greatly reduced.

また、この発明における非水電解質二次電池において、その負極として、負極集電体の上にシリコンを主成分とする薄層が堆積されて形成され、この薄層が厚み方向の切れ目によって柱状に分離されたものを用いると、シリコンへのLiの挿入反応がさらに速やかに行われるようになり、より充分な充電容量が得られると共に、負極活物質のシリコン上にLiが析出するのもさらに抑制されて、サイクル特性もさらに向上する。また、シリコンへのLiの挿入反応がさらに速やかに行われるようにするためには、上記のシリコンが非晶質又は微結晶シリコンであることが好ましい。   Further, in the nonaqueous electrolyte secondary battery according to the present invention, as the negative electrode, a thin layer mainly composed of silicon is deposited on the negative electrode current collector, and the thin layer is formed into a columnar shape by a cut in the thickness direction. When the separated material is used, the Li insertion reaction into silicon can be performed more quickly, and a sufficient charge capacity can be obtained, and the deposition of Li on the negative electrode active material silicon can be further suppressed. Thus, the cycle characteristics are further improved. In addition, in order to perform the Li insertion reaction into silicon more rapidly, the above silicon is preferably amorphous or microcrystalline silicon.

また、この発明の非水電解質二次電池における非水電解質としては、非水電解質二次電池において一般に使用されているものを用いることができ、例えば、非水系溶媒に電解質を溶解させた非水電解液などを用いることができる。   In addition, as the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery of the present invention, those generally used in nonaqueous electrolyte secondary batteries can be used, for example, nonaqueous electrolytes in which an electrolyte is dissolved in a nonaqueous solvent. An electrolytic solution or the like can be used.

ここで、上記の非水系溶媒としても、一般に使用されているものを用いることができ、例えば、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等を用いることができる。   Here, as the non-aqueous solvent, those generally used can be used. For example, cyclic carbonate, chain carbonate, ester, cyclic ether, chain ether, nitrile, amide Etc. can be used.

そして、環状炭酸エステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等を用いることができ、これらの水素基の一部又は全部がフッ素化されたものを用いることも可能で、トリフルオロプロピレンカーボネートやフルオロエチルカーボネート等を用いることができる。また、鎖状炭酸エステルとしては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等を用いることができ、これらの水素基の一部又は全部がフッ素化されたものを用いることも可能である。また、エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等を用いることができる。また、環状エーテル類としては、例えば、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等を用いることができる。また、鎖状エーテル類としては、例えば、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等を用いることができる。また、ニトリル類としては、アセトニトリル等を用いることができ、アミド類としては、ジメチルホルアミド等を用いることができる。特に、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステルや、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状炭酸エステルや、1,2−ジメトキシエタン等の鎖状エーテルを使用することが電圧安定性の観点から好ましく、さらに、エチレンカーボネートと1,2−ジメトキシエタンとを混合した非水系溶媒は、電圧安定性に優れ、低粘度で、高誘電率であるためより好ましい。   As the cyclic carbonate, for example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used, and those in which some or all of these hydrogen groups are fluorinated can also be used. Carbonate, fluoroethyl carbonate, etc. can be used. As the chain carbonate, for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate and the like can be used, and some or all of these hydrogen groups are fluorine. It is also possible to use a modified one. Examples of esters that can be used include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone. Examples of cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1 , 3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, and the like can be used. Examples of the chain ethers include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, and butyl phenyl. Ether, pentylphenyl ether, methoxytoluene, benzylethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether , It can be used tetraethylene glycol dimethyl like. Moreover, acetonitrile etc. can be used as nitriles, and dimethylformamide etc. can be used as amides. In particular, use cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, and chain ethers such as 1,2-dimethoxyethane. Is preferable from the viewpoint of voltage stability, and a non-aqueous solvent in which ethylene carbonate and 1,2-dimethoxyethane are mixed is more preferable because of excellent voltage stability, low viscosity, and high dielectric constant.

また、上記の電解質としても、非水電解質二次電池において一般に使用されているものを用いることができ、LiPF6、LiAsF6、LiBF4、LiCF3SO3、LiN(Cl2l+1SO2)(Cm2m+1SO2)(式中、l,mは1以上の整数である。)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(式中、p、q、rは1以上の整数である。)、下記の化1に示すジフルオロ(オキサラト)ホウ酸リチウム等を用いることができる。なお、これらの電解質は一種類で使用してもよく、二種類以上組み合わせて使用してもよい。また、この電解質は、前記の非水系溶媒に0.1〜1.5M、好ましくは0.5〜1.5Mの濃度で溶解させて使用することができる。 Further, as the above electrolyte, those generally used in non-aqueous electrolyte secondary batteries can be used, and LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C l F 2l + 1 SO 2) (in C m F 2m + 1 SO 2 ) ( wherein, l, m is an integer of 1 or more.), LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2 ) (wherein p, q, and r are integers of 1 or more), lithium difluoro (oxalato) borate represented by the following chemical formula 1, and the like can be used. These electrolytes may be used alone or in combination of two or more. The electrolyte can be used by dissolving in the non-aqueous solvent at a concentration of 0.1 to 1.5M, preferably 0.5 to 1.5M.

Figure 0005116213
Figure 0005116213

以下、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係る非水電解質二次電池においては、高レートの電流での充電が適切に行えると共に、正極の充電特性が向上することを明らかにする。なお、本発明における非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the nonaqueous electrolyte secondary battery according to this example, charging at a high rate of current can be performed appropriately. At the same time, it is clarified that the charging characteristics of the positive electrode are improved. In addition, the nonaqueous electrolyte secondary battery in the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.

(実験)
この実験においては、正極活物質のLiFePO4と導電剤のアセチレンブラックと結着剤のポリフッ化ビニリデンとを90:5:5の重量比になるように混合させた合剤に、N−メチル−2−ピロリドンを加えて合剤のスラリーを調製し、このスラリーをドクターブレード法によりアルミニウム箔からなる正極集電体の片面に塗布した後、これをホットプレートにより80℃で乾燥させ、これを2cm×2cmのサイズに切り取り、ローラを用いて圧延させて、上記の正極集電体の片面に、正極活物質のLiFePO4と導電剤のアセチレンブラックと結着剤のポリフッ化ビニリデンとを含む正極合剤層を形成し、これを100℃で真空乾燥させるようにした。
(Experiment)
In this experiment, N-methyl- was mixed with a mixture in which LiFePO 4 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 5: 5. 2-Pyrrolidone was added to prepare a slurry of the mixture, and this slurry was applied to one side of a positive electrode current collector made of an aluminum foil by a doctor blade method, and then dried at 80 ° C. with a hot plate. A positive electrode composite containing LiFePO 4 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder on one side of the positive electrode current collector is cut into a size of 2 cm and rolled using a roller. An agent layer was formed and vacuum-dried at 100 ° C.

ここで、この実験においては、上記の正極集電体の片面に塗布する合剤のスラリーの量を変更し、実験例1では上記の正極合剤層の厚みが17μmになった正極を、実験例2では上記の正極合剤層の厚みが25μmになった正極を、実験例3では上記の正極合剤層の厚みが60μmになった正極を作製した。   Here, in this experiment, the amount of the slurry of the mixture applied to one side of the positive electrode current collector was changed, and in Experimental Example 1, the positive electrode in which the thickness of the positive electrode mixture layer became 17 μm was tested. In Example 2, a positive electrode in which the thickness of the positive electrode mixture layer was 25 μm was produced, and in Experimental Example 3, a positive electrode in which the thickness of the positive electrode mixture layer was 60 μm was produced.

そして、図1に示すように、作用極1に上記の各正極を使用し、対極2となる負極と、参照極3とにそれぞれリチウム金属を用い、エチレンカーボネートとジエチルカーボネートを3:7の体積比で混合させた溶媒に1MのLiPF6を溶解させた非水電解液4が収容されたセル5内に、上記の参照極3を浸漬させると共に、上記の作用極1と対極2との間にセパレータ6を介在させるようにして浸漬させ、上記の各正極を使用した各試験セルを作製した。 As shown in FIG. 1, each of the positive electrodes described above is used for the working electrode 1, a lithium metal is used for the negative electrode as the counter electrode 2 and the reference electrode 3, and ethylene carbonate and diethyl carbonate are in a volume of 3: 7. The reference electrode 3 is immersed in a cell 5 containing a non-aqueous electrolyte 4 in which 1M LiPF 6 is dissolved in a solvent mixed in a ratio, and the working electrode 1 and the counter electrode 2 are placed between the working electrode 1 and the counter electrode 2. Each of the test cells using each of the positive electrodes described above was fabricated by immersing the separator 6 in the middle of the sample.

そして、上記の各試験セルをそれぞれ約0.2Itの電流で4.2Vまで充電させた後、約0.2Itの電流で2.0Vまで放電させる充放電サイクルを3サイクル行った後、それぞれ約10Itの高レートの電流で4.2Vまで充電させ、上記の各正極における正極活物質1g当りの充電容量を求め、その結果を下記の表1に示した。   And after charging each said test cell to 4.2V with the electric current of about 0.2 It, respectively, after performing the charge / discharge cycle which discharges to 2.0V with the electric current of about 0.2 It, respectively, The battery was charged to 4.2 V with a high-rate current of 10 It, and the charge capacity per 1 g of the positive electrode active material in each positive electrode was determined. The results are shown in Table 1 below.

Figure 0005116213
Figure 0005116213

この結果から明らかなように、正極集電体の片面に形成する正極合剤層の厚みが25μm以下になった実験例1,2の正極を用いた場合には、正極集電体の片面に形成する正極合剤層の厚みが25μmを超える60μmになった実験例3の正極を用いた場合に比べて、正極活物質1g当りの充電容量が大幅に上昇しており、高レートの電流での充電か適切に行え、正極の充電特性が大きく向上していた。   As is clear from this result, when the positive electrodes of Experimental Examples 1 and 2 in which the thickness of the positive electrode mixture layer formed on one side of the positive electrode current collector was 25 μm or less were used, Compared with the case of using the positive electrode of Experimental Example 3 in which the thickness of the positive electrode mixture layer to be formed is over 60 μm exceeding 25 μm, the charge capacity per 1 g of the positive electrode active material is greatly increased, and the current at a high rate The charging characteristics of the positive electrode were greatly improved.

(実施例1)
実施例1においては、上記の実験例2と同じ、正極集電体の片面に厚みが25μmになった正極合剤層が形成された正極を用いるようにした。
Example 1
In Example 1, the same positive electrode as in Experimental Example 2 described above, in which the positive electrode material mixture layer having a thickness of 25 μm was formed on one surface of the positive electrode current collector, was used.

また、負極としては、耐熱性圧延銅合金箔の表面に、電解法により銅を析出させて表面を粗面化させた銅合金箔(算術平均粗さRa:0.25μm、厚み:25μm)を負極集電体として用いた。そして、直流パルス周波数100kHz,直流パルス幅1856ns,直流パルス電力2000W,アルゴンガス流量60sccm(standard cubic centimeter perminutes),ガス圧力2.0〜2.5×10-1Pa,形成時間30分間の条件でスパッタリングを行い、上記の負極集電体の上に膜厚が1μmになった非晶質シリコン薄膜からなる負極活物質層を堆積させた。なお、このようにして非晶質シリコン薄膜からなる負極活物質層を堆積させた場合、上記の負極集電体の表面が粗面化されているため、上記の非晶質シリコン薄膜からなる負極活物質層は、その厚み方向の切れ目によって柱状に分離された状態になっていた。また、この実施例においては、スパッタリング用の電力として直流パルスを供給するようにしたが、直流や高周波でも同様の条件でスパッタリングが可能である。 Further, as the negative electrode, a copper alloy foil (arithmetic average roughness Ra: 0.25 μm, thickness: 25 μm) in which the surface of the heat resistant rolled copper alloy foil is roughened by depositing copper by an electrolytic method is used. Used as a negative electrode current collector. Then, under the conditions of a DC pulse frequency of 100 kHz, a DC pulse width of 1856 ns, a DC pulse power of 2000 W, an argon gas flow rate of 60 sccm (standard cubic centimeter permanents), a gas pressure of 2.0 to 2.5 × 10 −1 Pa, and a formation time of 30 minutes. Sputtering was performed to deposit a negative electrode active material layer made of an amorphous silicon thin film having a thickness of 1 μm on the negative electrode current collector. When the negative electrode active material layer made of the amorphous silicon thin film is deposited in this way, the negative electrode current collector made of the amorphous silicon thin film is made rough because the surface of the negative electrode current collector is roughened. The active material layer was in a state of being separated into a columnar shape by the cut in the thickness direction. In this embodiment, a DC pulse is supplied as power for sputtering. However, sputtering can be performed under the same conditions with DC and high frequency.

そして、上記のように負極集電体の上に非晶質シリコン薄膜からなる負極活物質層を堆積させたものを、2.5cm×2.5cmのサイズに切り取って負極を作製した。   And what deposited the negative electrode active material layer which consists of an amorphous silicon thin film on the negative electrode collector as mentioned above was cut out to the size of 2.5 cm x 2.5 cm, and the negative electrode was produced.

また、非水電解液としては、上記の実験の場合と同じ、エチレンカーボネートとジエチルカーボネートを3:7の体積比で混合させた溶媒に1MのLiPF6を溶解させたものを用いるようにした。 As the non-aqueous electrolyte, the same solution as in the above experiment, in which 1M LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7, was used.

そして、この実施例1の非水電解質二次電池を作製するにあたっては、図2及び図3(A),(B)に示すように、上記のように正極合剤層11aが形成された正極11の正極集電体11bに正極集電タブ11cを取り付けると共に、上記のように非晶質シリコン薄膜からなる負極活物質層12aが形成された負極12の負極集電体12bに負極集電タブ12cを取り付け、上記の正極11と負極12との間に多孔質ポリエチレンからなるセパレータ13を挟み込み、これをアルミニウムラミネートフィルムで構成された外装体14内に挿入させると共に、この外装体15内に上記の非水電解液を500μl加え、その後、上記の正極集電タブ11cと負極集電タブ12cとを外部に取り出すようにして、上記の外装体14の開口部を封口させた。なお、この実施例1の非水電解質二次電池の容量は約1.65mAhであった。   And in producing the nonaqueous electrolyte secondary battery of this Example 1, as shown in FIG.2 and FIG.3 (A), (B), the positive electrode in which the positive mix layer 11a was formed as mentioned above The positive electrode current collector tab 11c is attached to the positive electrode current collector 11b, and the negative electrode current collector tab 12b of the negative electrode 12 on which the negative electrode active material layer 12a made of an amorphous silicon thin film is formed as described above. 12c is attached, and a separator 13 made of porous polyethylene is sandwiched between the positive electrode 11 and the negative electrode 12, and the separator 13 is inserted into an exterior body 14 made of an aluminum laminate film. 500 μl of the nonaqueous electrolyte solution was added, and then the positive electrode current collector tab 11 c and the negative electrode current collector tab 12 c were taken out to seal the opening of the outer package 14. It was. The capacity of the nonaqueous electrolyte secondary battery of Example 1 was about 1.65 mAh.

次に、このように作製した実施例1を0.6mA,17mA(約10It),34mA(約20It)の各充電電流で4.2Vまで充電を行い、各充電電流における充電特性を調べると共に、放電電流0.6mAで2.0Vまで放電を行って放電特性を調べ、その結果を図4に示した。   Next, Example 1 manufactured in this way was charged to 4.2 V at each charging current of 0.6 mA, 17 mA (about 10 It), 34 mA (about 20 It), and the charging characteristics at each charging current were examined. Discharge characteristics were examined by discharging to 2.0 V at a discharge current of 0.6 mA, and the results are shown in FIG.

この結果、この実施例1の非水電解質二次電池においては、17mA(約10It)や34mA(約20It)の高レートの電流であっても充電が適切に行えて、充分な充電容量が得られることが分かった。   As a result, the nonaqueous electrolyte secondary battery of Example 1 can be charged properly even at a high current of 17 mA (about 10 It) or 34 mA (about 20 It), and a sufficient charging capacity can be obtained. I found out that

この発明の実験において作製した試験セルの概略説明図である。It is a schematic explanatory drawing of the test cell produced in the experiment of this invention. この発明の実施例に係る非水電解質二次電池の概略斜視図である。1 is a schematic perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 同実施例に係る非水電解質二次電池の概略断面図である。It is a schematic sectional drawing of the nonaqueous electrolyte secondary battery which concerns on the Example. 同実施例に係る非水電解質二次電池の充放電特性を示した図である。It is the figure which showed the charging / discharging characteristic of the nonaqueous electrolyte secondary battery which concerns on the same Example.

符号の説明Explanation of symbols

1 作用極(正極)
2 対極(負極)
3 参照極
4 非水電解液
5 セル
6 セパレータ
11 正極
11a 正極合剤層
11b 正極集電体
11c 正極集電タブ
12 負極
12a 負極活物質層
12b 負極集電体
12c 負極集電タブ
13 セパレータ
14 外装体
1 Working electrode (positive electrode)
2 Counter electrode (negative electrode)
DESCRIPTION OF SYMBOLS 3 Reference electrode 4 Non-aqueous electrolyte 5 Cell 6 Separator 11 Positive electrode 11a Positive electrode mixture layer 11b Positive electrode collector 11c Positive electrode current collection tab 12 Negative electrode 12a Negative electrode active material layer 12b Negative electrode current collector 12c Negative electrode current collection tab 13 Separator 14 Exterior body

Claims (3)

オリビン型リン酸リチウムを主成分とする正極活物質と結着剤と導電剤とを含む正極合剤層が正極集電体の上に形成された正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記の負極にシリコンを主成分とする負極活物質を用いると共に、上記の正極集電体の上に形成される正極合剤層の厚みを片面当り25μm以下にしたことを特徴とする非水電解質二次電池。 A positive electrode mixture layer including a positive electrode active material mainly composed of olivine-type lithium phosphate, a binder, and a conductive agent is provided on a positive electrode current collector, a negative electrode, and a nonaqueous electrolyte. In the non-aqueous electrolyte secondary battery, a negative electrode active material mainly composed of silicon is used for the negative electrode, and the thickness of the positive electrode mixture layer formed on the positive electrode current collector is 25 μm or less per side. A non-aqueous electrolyte secondary battery. 請求項1に記載した非水電解質二次電池において、上記のオリビン型リン酸リチウムがリン酸鉄リチウムであることを特徴とする非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the olivine type lithium phosphate is lithium iron phosphate. 請求項1又は請求項2に記載した非水電解質二次電池において、上記の負極は負極集電体の上にシリコンを主成分とする薄層が堆積されて形成され、この薄層が厚み方向の切れ目によって柱状に分離されていることを特徴とする非水電解質二次電池。 3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is formed by depositing a thin layer mainly composed of silicon on a negative electrode current collector, and the thin layer is formed in a thickness direction. A non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte secondary battery is separated into columns by the cuts.
JP2005093434A 2005-03-29 2005-03-29 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5116213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093434A JP5116213B2 (en) 2005-03-29 2005-03-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093434A JP5116213B2 (en) 2005-03-29 2005-03-29 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006278076A JP2006278076A (en) 2006-10-12
JP5116213B2 true JP5116213B2 (en) 2013-01-09

Family

ID=37212638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093434A Expired - Fee Related JP5116213B2 (en) 2005-03-29 2005-03-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5116213B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261961B2 (en) * 2007-04-06 2013-08-14 トヨタ自動車株式会社 Secondary battery positive electrode, secondary battery negative electrode, secondary battery, and vehicle
JP2010080298A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, method for manufacturing thereof, and lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079343B2 (en) * 1993-07-13 2000-08-21 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4780361B2 (en) * 2000-10-06 2011-09-28 株式会社豊田中央研究所 Lithium secondary battery
JP3997702B2 (en) * 2000-10-06 2007-10-24 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003331836A (en) * 2002-05-10 2003-11-21 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
JP4085986B2 (en) * 2003-04-01 2008-05-14 ソニー株式会社 battery
CA2432397A1 (en) * 2003-06-25 2004-12-25 Hydro-Quebec Procedure for preparing an electrode from porous silicon, the electrode so obtained, and an electrochemical system containing at least one such electrode

Also Published As

Publication number Publication date
JP2006278076A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
KR100982595B1 (en) Positive Electrode and Non-Aqueous Electrolyte Secondary Battery
CN111480251B (en) Negative electrode for lithium secondary battery, preparation method thereof, and lithium secondary battery including the negative electrode for lithium secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2010009799A (en) Nonaqueous electrolyte secondary battery
JP4286288B2 (en) Non-aqueous electrolyte battery
JP2008097879A (en) Lithium ion secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20080026289A1 (en) Non-aqueous electrolyte secondary battery
JP2006216508A (en) Nonaqueous electrolyte secondary battery
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JP4693372B2 (en) Nonaqueous electrolyte secondary battery
JP2005302300A (en) Nonaqueous electrolyte battery
WO2006103829A1 (en) Nonaqueous electrolyte secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP4753593B2 (en) Nonaqueous electrolyte secondary battery
KR101084080B1 (en) Nonaqueous Electrolyte Secondary Battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
JP5089028B2 (en) Sodium secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP5116213B2 (en) Nonaqueous electrolyte secondary battery
JP4212439B2 (en) How to use lithium secondary battery
JP4841125B2 (en) Method for manufacturing lithium secondary battery
JP4989049B2 (en) Nonaqueous electrolyte secondary battery
JP4798952B2 (en) Method for manufacturing lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees