JP5114251B2 - Vacuum processing equipment - Google Patents
Vacuum processing equipment Download PDFInfo
- Publication number
- JP5114251B2 JP5114251B2 JP2008055442A JP2008055442A JP5114251B2 JP 5114251 B2 JP5114251 B2 JP 5114251B2 JP 2008055442 A JP2008055442 A JP 2008055442A JP 2008055442 A JP2008055442 A JP 2008055442A JP 5114251 B2 JP5114251 B2 JP 5114251B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- diaphragm
- pressure
- temperature
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 13
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 238000009530 blood pressure measurement Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 description 49
- 239000002245 particle Substances 0.000 description 33
- 239000007789 gas Substances 0.000 description 18
- 239000000523 sample Substances 0.000 description 13
- 238000012937 correction Methods 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 9
- 230000010512 thermal transition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000005068 transpiration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000004863 hard-sphere model Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Description
本発明は圧力測定の技術分野にかかり、特に、隔膜真空計を用いた圧力測定の技術分野に関する。 The present invention relates to the technical field of pressure measurement, and more particularly to the technical field of pressure measurement using a diaphragm vacuum gauge.
半導体プロセスでは、0.01〜100Paの圧力範囲でプロセスが行なわれる場合が多い。
この圧力範囲で使用される真空計は隔膜真空計である。
In a semiconductor process, the process is often performed in a pressure range of 0.01 to 100 Pa.
The vacuum gauge used in this pressure range is a diaphragm vacuum gauge.
図3の符号110はCVD装置やエッチング装置等の真空処理装置であり、真空槽111を有している。真空槽111の外部には、恒温槽112が配置されており、恒温槽112の内部には、隔膜真空計113が配置されている。隔膜真空計113は枝管114によって真空槽111に接続されている。
真空槽111には真空排気系119が接続されており、真空槽111の内部は真空排気系119の真空排気によって真空雰囲気に置かれるように構成されている。
A
真空槽111の内部の圧力は、枝管114を介して隔膜真空計113によって伝達されており、隔膜真空計制御装置116により、真空槽111の内部圧力は隔膜真空計113内部のコンデンサの容量値として検出され、圧力値に変換されている。
恒温槽112の温度は、室温よりもやや高めの一定温度に維持されており、隔膜真空計113の容量値に温度ドリフトが生じないようにされている。
The internal pressure of the
The temperature of the
0.01〜100Paの圧力範囲では、枝管114におけるガス流れは、分子流・中間流・粘性流領域へと変化するが、隔膜真空計と真空槽の温度が異なると、隔膜真空計の指示値と真空槽の内部の実際の圧力との間に、圧力・温度差に依存した複雑なずれ(熱遷移効果)が生じる。
In the pressure range of 0.01 to 100 Pa, the gas flow in the
高精度のプロセスガス圧力の制御性、再現性が要求されるが、例えば100℃のガスが流れるCVD室を45℃に保持された真空計で計測する場合、圧力領域により最大8.3%から0%にわたる圧力誤差が生じる。またスパッタ室を25℃の常温ガスが流れているとき同じく45℃保持の真空計で計測した場合には、最大3.3%〜0%の範囲の圧力誤差が生じる。これはプロセス変動要因としては無視できない大きさの誤差である。
しかし現在までに圧力計測に熱遷移効果を正しく組み込んだ真空処理装置は存在しない。
Control of the process gas pressure with high accuracy, but reproducibility is required, for example, when the CVD chamber 100 ° C. of gas flow measured by the vacuum gauge held in 45 ° C., up to 8.3% by the pressure area Pressure error ranging from 0 to 0%. Further, when a normal temperature gas of 25 ° C. is flowing in the sputtering chamber, a pressure error in the range of 3.3% to 0% at maximum occurs when measured with a vacuum gauge maintained at 45 ° C. This is an error that cannot be ignored as a process variation factor.
However, there is no vacuum processing apparatus that correctly incorporates the thermal transition effect in pressure measurement.
熱遷移効果の補償方法については、例えば下記非特許文献に記載されている。
本発明の課題は熱遷移効果を反映した圧力測定技術を提供することにある。 An object of the present invention is to provide a pressure measurement technique that reflects the thermal transition effect.
本発明は、上記従来技術の課題を解決するため、真空排気可能な真空槽と、圧力を容量値として測定する隔膜真空計と、前記真空槽の内部雰囲気と前記隔膜真空計とを接続するゼロ以上の管長を有する枝管と、前記真空槽と前記隔膜真空計の温度をそれぞれ測定する第一、第二の温度計と、前記隔膜真空計の測定結果と前記第一、第二の温度計の測定結果が入力される圧力測定装置とを有し、前記圧力測定装置には、前記隔膜真空計の測定結果と、前記真空槽の温度と、前記隔膜真空計の温度と、前記真空槽の内部圧力との間の関係が記憶され、算出装置は、該算出装置に入力される測定結果から、前記真空槽の内部圧力を算出するように構成され、前記圧力測定装置には、前記枝管の管長Lと内径Dの比の値L/Dが基準値よりも大きい場合の前記関係と、小さい場合の前記関係が別々に記憶された真空処理装置である。
また、本発明は、前記基準値を10とし、前記管長Lと前記内径Dとの比の値L/Dが10よりも大きい場合には、下記(1)式と(2)式の関係を用いる真空処理装置である。
In order to solve the above-described problems of the prior art, the present invention provides a vacuum chamber that can be evacuated, a diaphragm vacuum gauge that measures pressure as a capacitance value, and a zero that connects the internal atmosphere of the vacuum chamber and the diaphragm vacuum gauge. Branch pipes having the above-mentioned tube lengths, first and second thermometers for measuring temperatures of the vacuum chamber and the diaphragm vacuum gauge, respectively, measurement results of the diaphragm vacuum gauges, and the first and second thermometers A pressure measurement device to which the measurement result is input, and the pressure measurement device includes the measurement result of the diaphragm vacuum gauge, the temperature of the vacuum chamber, the temperature of the diaphragm vacuum gauge, and the vacuum chamber. The relationship between the internal pressure and the internal pressure is stored, and the calculation device is configured to calculate the internal pressure of the vacuum chamber from the measurement result input to the calculation device, and the pressure measurement device includes the branch pipe When the ratio L / D of the tube length L to the inner diameter D is greater than the reference value Wherein a relationship between a vacuum processing apparatus in which the relationship is stored separately in smaller.
Further, in the present invention, when the reference value is 10 and the ratio value L / D of the tube length L and the inner diameter D is larger than 10, the relationship between the following expressions (1) and (2) is satisfied. This is a vacuum processing apparatus to be used.
本発明は上記のように構成されており、熱遷移効果の評価にモンテカルロ法を用いることができるが、希薄気体流れのシミュレーションに用いるモンテカルロ法は、一般にDirect Simulation Monte Carlo Method(DSMC法)(若しくはモンテカルロ直接法)と呼ばれており、その手順を下記に説明する。 The present invention is constructed as described above, can be used a Monte Carlo method for the evaluation of thermal transpiration effects, Monte Carlo method using the simulated lean gas stream is generally D irect S imulation M onte C arlo Method (DSMC Method) (or Monte Carlo direct method), and the procedure will be described below.
[手順1] 解析領域の設定
測定子、枝管および真空容器の一部を解析領域とする。真空容器のどの部分までを解析領域に含めるかについては任意性がある。本実施例では、高さが枝管直径と、半径が測定子の半径と一致するように選んだ。
[Procedure 1] Setting the analysis area Set the probe, branch pipe, and part of the vacuum vessel as the analysis area. It is arbitrary about which part of the vacuum vessel is included in the analysis region. In this embodiment, the height is selected so as to match the branch pipe diameter and the radius matches the radius of the measuring element.
[手順2]境界条件の設定
解析領域を囲む境界に温度分布と粒子の反射則に関する境界条件を与える。本実施例では、全ての境界に対して完全拡散反射則を適用した。測定子境界には一様な温度300K、真空容器境界には一様な温度600K、枝管境界には枝管中央で300Kから600Kに階段状に変化する温度分布を与えた。
[Procedure 2] Setting of boundary conditions Boundary conditions related to temperature distribution and particle reflection law are given to the boundary surrounding the analysis region. In this embodiment, the perfect diffuse reflection law is applied to all the boundaries. A uniform temperature of 300K was given to the probe boundary, a uniform temperature of 600K to the vacuum vessel boundary, and a temperature distribution that changed stepwise from 300K to 600K at the center of the branch pipe was given to the branch pipe boundary.
[手順3]粒子の初期条件
解析領域にNS個のサンプル粒子を配置し、ガスの初期温度T0に相当する速度を与える。本実施例では、解析領域に105個程度のサンプル粒子を一様に配置した。また、ガスの初期温度として測定子の壁温度に等しい300Kを選んだ。
[Procedure 3] Initial Conditions of Particles N S sample particles are arranged in the analysis region, and a velocity corresponding to the initial gas temperature T 0 is given. In this example, about 10 5 sample particles were uniformly arranged in the analysis region. In addition, 300K, which is equal to the wall temperature of the probe, was selected as the initial gas temperature.
[手順4]サンプル粒子の質量、直径、重みの決定
サンプル粒子の質量mはガス分子のモル質量Mから、下記式(A)、
[Procedure 4] Determination of Mass, Diameter, and Weight of Sample Particles The mass m of the sample particles is calculated from the molar mass M of the gas molecules from the following formula (A),
により決める。N0はアボガドロ数である。
サンプル粒子の直径dは、ガスの粘性係数η(既知とする)を用いて下記式(B)より求める。
Decide by. N 0 is the Avogadro number.
The diameter d of the sample particles is obtained from the following formula (B) using the gas viscosity coefficient η (assumed to be known).
ここで、
k:ボルツマン定数(J/K)
T:ガス温度(K)
d:分子モデルを剛体球モデルとした場合の分子直径(m)
とする。本実施例ではガス温度Tとして、初期温度T0を選び、その温度における粘性係数を用いた。その他に、ガス温度として低温部と高温部の平均温度を用い、その温度における粘性係数を用いても良い。
1個のサンプル粒子は、多数個の実在粒子を代表する。その重複度を重みWと呼称し、
here,
k: Boltzmann constant (J / K)
T: Gas temperature (K)
d: Molecular diameter when the molecular model is a hard sphere model (m)
And In this embodiment, the initial temperature T 0 is selected as the gas temperature T, and the viscosity coefficient at that temperature is used. In addition, the average temperature of the low temperature part and the high temperature part may be used as the gas temperature, and the viscosity coefficient at that temperature may be used.
One sample particle represents a large number of real particles. The degree of overlap is called weight W,
と定義する。ここで、
P0:初期圧力(Pa)
V:解析領域の体積(m3)
とする。
It is defined as here,
P 0 : Initial pressure (Pa)
V: Volume of analysis area (m 3 )
And
[手順5]粒子運動の追跡
DSMC法を用いて、サンプル粒子の並進・衝突運動を追跡する。
DSMC法における粒子運動の追跡手順について説明する。解析領域の形状が軸対称性を有することから、軸対称系のDSMC法を用いた。
[Procedure 5] Tracking particle motion
DSMC method is used to track the translation and collision motion of sample particles.
The procedure for tracking particle motion in the DSMC method will be described. Since the shape of the analysis region has axial symmetry, the DSMC method of axial symmetry system was used.
<1>〜<6>に示す。
<1>
解析領域をセルに分割する。
<2>
時刻における粒子の位置と速度を使って、時刻t+Δtにおける粒子の位置を下記式より求める。
r(t+Δt)=r(t)+v(t)Δt
ここで、Δtはタイムステップ、r(t)およびv(t)は、それぞれ時刻tにおける粒子の位置と速度である。
<3>
r(t+Δt)を用いて、粒子が<1>で用意したセルのどれに所属するか調べる。以下、このセルのことを所属セルと称する。
<4>
1:所属セルが見つかった粒子は、粒子の位置をr(t+Δt)に更新し、時刻t+Δtにおける粒子速度v(t+Δt)をv(t)と等しいと置いて更新する。
<1> to <6>.
<1>
Divide the analysis area into cells.
<2>
Using the position and velocity of the particle at the time, the position of the particle at the time t + Δt is obtained from the following equation.
r (t + Δt) = r (t) + v (t) Δt
Here, Δt is a time step, and r (t) and v (t) are the position and velocity of the particle at time t, respectively.
<3>
Using r (t + Δt), it is checked which of the cells prepared in <1> the particle belongs to. Hereinafter, this cell is referred to as a belonging cell.
<4>
1: The particle in which the belonging cell is found is updated by updating the particle position to r (t + Δt) and setting the particle velocity v (t + Δt) at time t + Δt equal to v (t).
2:所属セルが見つからなかった粒子は、解析領域を囲む境界壁と交差した後、解析領域外へ出たことになる。今回の問題では、全ての境界壁を反射壁としているので、粒子が解析領域へ出ることは許されない。以下の手順により、境界壁を交差した時点で、粒子を反射させる。まず境界壁までの飛行時間Δt’を用いて境界壁と交差する位置
r(t+Δt’)=r(t)+v(t)Δt’
と、残り時間
Δt”=Δt−Δt’
を求める。交差位置における境界壁の温度や拡散反射率の条件から、粒子の壁面での反射後の速度v(t+Δt’)を求める。反射後の位置
r(t+Δt)=r(t+Δt’)+v(t+Δt’)Δt”
を求め、位置を更新する。この位置を用いて所属セルを調べる。
時刻t+Δtにおける粒子速度v(t+Δt)をv(t+Δt’)と等しいと置いて更新する。
2: Particles for which no affiliation cell was found crossed the boundary wall surrounding the analysis region and then moved out of the analysis region. In this problem, since all the boundary walls are reflective walls, particles are not allowed to enter the analysis area. The particles are reflected when the boundary wall is crossed by the following procedure. First, using the flight time Δt ′ to the boundary wall, a position that intersects the boundary wall r (t + Δt ′) = r (t) + v (t) Δt ′
And the remaining time
Δt ″ = Δt−Δt ′
Ask for. The velocity v (t + Δt ′) after reflection on the wall surface of the particle is obtained from the conditions of the boundary wall temperature and the diffuse reflectance at the intersection position. Position after reflection r (t + Δt) = r (t + Δt ′) + v (t + Δt ′) Δt ″
To update the position. The belonging cell is examined using this position.
The particle velocity v (t + Δt) at time t + Δt is updated to be equal to v (t + Δt ′).
<5>
上記の手順により、全ての粒子の所属セルが決まった。各々のセルにおいて以下の作業を行う。確率法則に従って選び出す粒子のペア数Nを決める。選び出したN個の粒子ペアのそれぞれに対して、衝突の有無を確率法則に基づいて判断する。衝突する粒子に関しては、粒子速度を衝突後の速度に更新する。
<6>
更新された粒子の位置と速度を用いて、<2>から<5>の作業を繰返し、Δtごとの粒子の並進・衝突運動を追跡していく。
<5>
According to the above procedure, the affiliation cell of all particles was determined. The following operations are performed in each cell. The number N of particle pairs to be selected is determined according to the probability law. For each of the selected N particle pairs, the presence or absence of collision is determined based on the probability law. For colliding particles, the particle velocity is updated to the velocity after the collision.
<6>
Using the updated position and velocity of the particle, the operations from <2> to <5> are repeated, and the translational / collision motion of the particle for each Δt is tracked.
[手順6]圧力のサンプリング
時刻tからt+Δtの間に、解析領域の下端(z = 0:測定子のダイアフラム面)と上端(z = H:真空槽内の解析領域の端部)のそれぞれの面に入反射するサンプル粒子の数をNG、NV、入反射する個々のサンプル粒子iの運動量の、入射面に対して垂直な成分の変化を|Δ(mvz)i|とする。それぞれの入射面の面積をSG、SVとする。時刻tにおけるそれぞれの面での圧力を
[Procedure 6] Pressure sampling From time t to t + Δt, the lower end of the analysis region (z = 0: diaphragm surface of the probe) and the upper end (z = H: end of the analysis region in the vacuum chamber) It is assumed that the number of sample particles entering and reflecting on the surface is N G and N V , and the change in the component perpendicular to the incident surface of the momentum of each sample particle i entering and reflecting is | Δ (mv z ) i |. The areas of the respective incident surfaces are S G and S V. The pressure on each surface at time t
と定義する。
[手順7]熱遷移係数を求める。
PGおよびPVの定常状態における圧力をそれぞれ
It is defined as
[Procedure 7] The thermal transition coefficient is obtained.
The pressure in the steady state of P G and P V respectively
と記し、クヌッセン数 And Knudsen number
および熱遷移係数 And thermal transition coefficient
を求める。ここで、 Ask for. here,
である。Dは枝管の直径。
[手順8]データセットの作成
離散的に初期圧力を与えて、上記手順によりデータセット(Knk,γk)を作成する。kはデータセットの番号であり、Knk<Knk+1となるようにkを与える。本実施例では、中真空程度の真空計を想定し、P0は、1×10-3〜1.5×102Paの間において、13点を選んだ。
It is. D is the diameter of the branch pipe.
[Procedure 8] Creation of Data Set The initial pressure is applied discretely and a data set (Kn k , γ k ) is created by the above procedure. k is a data set number, and k is given so that Kn k <Kn k + 1 . In this example, assuming a vacuum gauge of medium vacuum, 13 points were selected for P 0 between 1 × 10 −3 and 1.5 × 10 2 Pa.
[手順9]熱遷移係数の補間
式(G)で計算された値とダイアフラム真空計の指示値(定常状態のPG)を式(E) の
[Procedure 9] Interpolation of thermal transition coefficient The value calculated by the equation (G) and the indication value of the diaphragm vacuum gauge (steady state P G )
に代入して、 Is assigned to
を求める。手順8で得られたデータセットを補間して Ask for. Interpolate the data set obtained in step 8
を求める。たとえば、補間方法として Ask for. For example, as an interpolation method
となる That Do and
に対して線形補間を用いて To using a linear interpolation for
と求める。その他に I ask. Other
近傍の多数点を用いて高次の補間を行い、 High-order interpolation is performed using many neighboring points,
を求めても良い。
[手順10]真空計指示値の較正
既知の、
You may ask for.
[Procedure 10] Calibration of vacuum gauge reading
、TG、TVおよび手順9で求めた It was determined by T G, T V and Step 9
を式(F)に代入して、真空容器の圧力の推定値 Substituting into equation (F), the estimated value of the vacuum vessel pressure
を求める。 Ask for.
熱遷移によって、真空プロセス装置の真空槽と隔膜真空計との間に圧力差を生じる場合も、本発明を用いれば、真空槽の圧力を正しく求めることができるので、真空プロセスの制御性・再現性を向上させることが可能である。 Even when there is a pressure difference between the vacuum chamber of the vacuum process device and the diaphragm vacuum gauge due to thermal transition, the pressure of the vacuum chamber can be correctly obtained by using the present invention, so that the controllability / reproduction of the vacuum process is possible. It is possible to improve the property.
図1の符号10は、本発明の真空処理装置を示しており、真空槽11を有している。真空槽11には真空排気系19が接続されており、真空槽11の内部を真空排気系19によって真空排気しながら、CVD法やスパッタリング法による成膜、RIE法によるエッチング等の真空処理を行なえるようになっている。
真空槽11の外部には、圧力測定装置20と恒温槽12が配置されている。
恒温槽12の内部には隔膜真空計13が配置されており、隔膜真空計13は一定温度が維持されるようになっている。隔膜真空計13は枝管14によって真空槽11と接続されており、隔膜真空計13は枝管14を介して真空槽11の内部雰囲気と接触するように構成されている。
A
A
隔膜真空計13の内部構造の一例を図2に示す。
隔膜真空計13は、筺体35の内部が金属箔(あるいは、セラミックダイヤフラムと電極)から成る隔膜30によって測定室33と高真空室34に仕切られている。
測定室33は枝管14によって真空槽11に接続されており、真空槽11の内部圧は枝管14によって測定室33に伝達され、測定室33の内部圧力に応じて隔膜30が高真空室34側に膨らむ。
An example of the internal structure of the
The
The
高真空室34内には電極が配置されている。ここでは、第一、第二の電極31、32がそれぞれ隔膜30と向かい合って配置されており、第一、第二の電極31、32の間には、第一の電極31と隔膜30とで構成されるコンデンサと、隔膜30と第二の電極32との間で構成されるコンデンサが直列接続された状態になっている。隔膜30の膨らみ度合いによって第一、第二の電極31、32間のコンデンサの容量が変化する。
圧力測定装置20は、真空計制御装置16と算出装置25と表示装置28を有している。
An electrode is disposed in the
The
第一、第二の電極31、32は真空計制御装置16に接続されており、第一、第二の電極31、32間の容量値は真空計制御装置16によって検出され、圧力を示す信号に変換されて算出装置25に出力される。
The first and
真空槽11の内部壁面には、第一の温度計21が取り付けられ、隔膜真空計13の外部表面には第二の温度計22が取り付けられており、真空槽11と隔膜真空計13の温度はそれぞれ第一、第二の温度計21、22によって測定され、測定結果は算出装置25に出力されている。
真空槽11の内部圧力に対する隔膜真空計13の測定値は、真空槽11の温度と、隔膜真空計13の温度と、枝管14の形状に影響を受ける。
A
The measured value of the
本発明では、枝管14には断面円形の直管が用いられており、枝管14の内径(内周直径)Dと管長Lが、L/D>10の場合には、下記(1)式が成立することが知られている。
In the present invention, a straight pipe having a circular cross section is used as the
但しXは、 Where X is
である。
A、B、Cの値として求められた実験値を下記表1に示す(先行技術として上述した非特許文献に記載された値)。
It is.
Experimental values obtained as values of A, B, and C are shown in Table 1 below (values described in the above-mentioned non-patent literature).
枝管14の管長Lが枝管14の内径Dに比べて短く、L/D>10が成立しない場合は、上記(1)、(2)式を用いると誤差が大きくなるので、予め数値計算(たとえば、Direct Simulation Monte Carlo Method;DSMC法)や実験により、隔膜真空計13の温度TGと、真空槽11の温度TVと、真空槽11の内部圧力PVと、隔膜真空計13の指示圧力PGの関係が予め求められている。
If the pipe length L of the
図4は、L/D≦10の場合(計算は、D=10mmのオリフィスで300Kと600Kに保持されたφ50の円筒空間を連結した条件で行なった(L=0))のXとγの関係を示すグラフであり、符号S1はDSMC法によって求めたXとγの関係を表わした曲線、符号S2は、(1)、(2)式を同じ図に記載した曲線である。 FIG. 4 shows the case of L and D ≦ 10 (calculation was performed under the condition that a cylindrical space of φ50 held at 300K and 600K is connected by an orifice of D = 10 mm (L = 0)). It is a graph showing the relationship, the symbol S 1 is a curve representing the relationship between X and γ determined by the DSMC method, and the symbol S 2 is a curve describing the equations (1) and (2) in the same figure.
L/D≦10の場合、DSMC法で求めた曲線と(1)、(2)式から求めた曲線は一致していない。DSMC法で求めた曲線S1の方が実験値との一致性が高いことが分かっているため、L/D≦10の範囲では、(1)、(2)式を用いるよりもDSMC法で求めた関係を用いることが望ましい。
なお、図5は、L/D>10の場合であり、符号S3はDSMC法、符号S4は(1)、(2)式から求めた曲線である。
In the case of L / D ≦ 10, the curve obtained by the DSMC method and the curve obtained from the equations (1) and (2) do not match. Since it is known that the curve S 1 obtained by the DSMC method is more consistent with the experimental value, the DSMC method is used in the range of L / D ≦ 10 rather than using the equations (1) and (2). It is desirable to use the determined relationship.
FIG. 5 shows a case where L / D> 10. Reference numeral S 3 is a DSMC method, and reference numeral S 4 is a curve obtained from equations (1) and (2).
L/D>10の場合はDSMC法で求めた曲線と(1)、(2)式から求めた曲線はほぼ一致しているため、どちらを用いてもよいことになる。
この算出装置25には、上記(1)、(2)式と、DSMC法で求められた関係式の両方が記憶されている。
For L / D> 10 and the curve obtained by DSMC method (1), because it matches substantially the curve obtained from the equation (2), so that both can have use of.
The
真空槽11の温度TVと隔膜真空計13の温度TGとは第一、第二の温度計21、22により、指示圧力PGは隔膜真空計13により、それぞれ一定時間間隔で測定されており、測定された値は直ちに算出装置25に入力されている。
Temperature T V and the
内径Dは既知であり、定数A、B、Cと内径Dは予め入力されており、算出装置25に記憶されたガス種を選択すると、L/D>10の場合は、算出装置25は、第一、第二の温度計21、22と隔膜真空計13から入力された値を(1)、(2)式に代入し、X、γを求め、内部圧力PVを算出し、表示装置28によって表示する。
The inner diameter D is known, the constants A, B, C and the inner diameter D are input in advance. When the gas type stored in the
L/D≦10の場合は、第一、第二の温度計21、22と隔膜真空計13から入力された値と記憶されている関係から内部圧力PVを算出し、同様に、表示装置28によって表示する。
これにより、真の値に近い測定値が表示される。
In the case of L / D ≦ 10, the internal pressure P V is calculated from the relationship stored with the values input from the first and
Thereby, the measured value close to the true value is displayed.
上記実施例では、算出装置25に(1)、(2)式と、DSMC法で求めた関係式の両方が記憶されていたが、用いる枝管14のL/Dの値が決まっており、L/D>10が成立する場合は(1)、(2)式だけを記憶し、L/D≦10が成立する場合はDSMC法で求めた関係式だけを記憶するようにしてもよい。
In the above embodiment, both the expressions (1) and (2) and the relational expression obtained by the DSMC method are stored in the
また、DSMC法では、隔膜真空計13の温度TGと真空槽11の温度TVと、真空槽11の内部圧力PVと、隔膜真空計13の指示圧力PGの関係式を求めるのではなく、求めた数値をデータベースとして記憶し、隔膜真空計13の温度TGと真空槽11の温度TVと、隔膜真空計13の指示圧力PGの測定値をデータベースに照合し、真空槽11の内部圧力PVを求めるようにしてもよい。
(1)、(2)式やDSMC法による関係を記憶した算出装置25は、真空槽11内のプロセスを制御する制御装置を用いることができる。
Further, the DSMC method, and the temperature T V of the temperature T G and the
As the
上記実施例では、隔膜真空計13は第一、第二の電極31、32間の容量値を測定するものであったが、単一の電極と隔膜間の容量値を測定する隔膜真空計であってもよい。要するに、本発明に用いることができる隔膜真空計は、枝管(長さゼロの場合を含む。)で接続された真空槽の内部圧力によって、影響を受ける隔膜の膨らみを容量値で検出できるものであればよい。
In the said Example, although the
<A,B,Cの求め方>
上記表1では、A,B,Cの値として既知の実験値を示したが、実験によって係数が求められていない気体に対しては、次の手順によってA,B,Cの値を求めることができる。
先ず、常温のガスの粘性係数ηが既知とする。これらの温度と粘性係数ηを下記(3)式に代入して分子直径dを求める。
<How to find A, B, C>
In Table 1 above, known experimental values are shown as the values of A, B, and C. For gases whose coefficients have not been determined by experiments, the values of A, B, and C are determined by the following procedure. Can do.
First, it is assumed that the viscosity coefficient η of a normal temperature gas is known. By substituting these temperatures and viscosity coefficient η into the following equation (3), the molecular diameter d is obtained.
次に、分子直径dを下記(4)式に代入して係数A,B,Cを求める。 Next, the coefficients A, B, and C are obtained by substituting the molecular diameter d into the following equation (4).
<短管長の場合の修正係数>
図4に示したように、短管長の場合(L/D≦10の場合)は(1)、(2)式は実験結果と誤差があるため、(1)式又は(2)式を修正すれば、DSMC法によって関係式を求めなくてもよい。
(1)、(2)式の修正方法を説明する。
実験若しくは数値実験によって、隔膜真空計13の温度TGと真空槽11の温度TVと真空槽11の内部圧力PVと隔膜真空計13の指示圧力PGとを、複数の異なる圧力や温度で測定し、各測定値を下記(11)、(12)式、
<Correction factor for short pipe length>
As shown in Fig. 4, in the case of short pipe length (when L / D≤10), (1) and (2) are in error with the experimental results. If so, the relational expression need not be obtained by the DSMC method.
A method for correcting equations (1) and (2) will be described.
Experiments or numerical experiments, the indicated pressure P G in the internal pressure P V and
に代入し、複数の(X,γ)を求めておく。
(X,γ)の組がN個あるものとし、k番目の組を、(Xk,γk)で表わすと、下記(13)式、
To obtain a plurality of (X, γ).
If there are N pairs of (X, γ), and the k-th group is represented by (X k , γ k ), the following equation (13):
で算出されるS2の最小値を与える修正係数αを求め、下記修正(1)式、 The correction coefficient α that gives the minimum value of S2 calculated in step (1) is calculated, and the following correction (1) equation:
と上記(2)式を、隔膜真空計13の温度TGと、真空槽11の温度TVと、真空槽11の内部圧力PVと、隔膜真空計13の指示圧力PGのL/D≦10の場合の関係として算出装置25に記憶し、測定値から真空槽11の内部圧力PVを求めるようにすることができる。修正係数αの値は0.5以上1.2以下である。
And the above equation (2), L / D of the temperature T G of the
Arガスに対する熱遷移係数γをDSMC法による数値実験から求めた。計算条件は、L=10mm、D=10mmであり、真空槽11は600K、隔膜真空計は300Kの一様温度にし、枝管中央で階段状に変化する温度分布に設定した。
The thermal transition coefficient γ to pair the Ar gas was determined from the numerical experiment by DSMC method. The calculation conditions were L = 10 mm, D = 10 mm, a uniform temperature of 600 K for the
数値実験結果を図6のグラフにプロットする。
点線は、α=0.73とした修正(1)式と(2)式による曲線であり、実線は(1)、(2)式による曲線である。点線の曲線はプロットとの高い一致を示している。
The numerical experiment results are plotted in the graph of FIG.
The dotted line is a curve according to the modified equations (1) and (2) with α = 0.73, and the solid line is a curve according to equations (1) and (2). The dotted curve shows a high agreement with the plot.
枝管の管長は利用可能な範囲が予め決まっており、上限値と下限値の間で、複数個の管長に対して修正係数αを求めておき、実際に用いられる枝管の管長の修正係数αが求められていない場合は、求められている修正係数αを線形補間、高次補間、又は関数近似し、用いる管長の修正係数αを求める。 The usable range of the length of the branch pipe is determined in advance, and a correction coefficient α is obtained for a plurality of pipe lengths between the upper limit value and the lower limit value, and the correction coefficient of the actually used branch pipe length is calculated. When α is not obtained, the obtained correction coefficient α is subjected to linear interpolation, high-order interpolation, or function approximation to obtain the correction coefficient α of the pipe length to be used.
先ず、D=10mm、L=0,10,50,100,200mmで修正係数α0、α10、α50、α100、α200を求めた。その結果を図7のグラフにプロットする。
実線は、下記(21)式、
First, correction coefficients α 0 , α 10 , α 50 , α 100 , and α 200 were determined at D = 10 mm, L = 0 , 10 , 50 , 100 , and 200 mm. The results are plotted on the graph of FIG.
The solid line is the following equation (21),
で表わされる曲線であり、κ1=α0であり係数κ2はL/Dの漸近線の値からα0を差し引いた値であり、係数κ3は、L/D=0,1,5,10,20のときの曲線α(L/D)の値と、α0、α10、α50、α100、α200の値との差の二乗の和が最小となるように選んだ。
L=30mmの場合は、上記(21)式により、α=0.853となる。
Κ 1 = α 0 , the coefficient κ 2 is a value obtained by subtracting α 0 from the asymptotic value of L / D, and the coefficient κ 3 is L / D = 0, 1, 5 , 10, and 20 are selected so that the sum of the squares of the differences between the values of the curve α (L / D) and the values of α 0 , α 10 , α 50 , α 100 , and α 200 is minimized.
In the case of L = 30 mm, α = 0.683 according to the above equation (21).
10……真空処理装置
11……真空槽
13……隔膜真空計
20……圧力測定装置
21……第一の温度計
22……第二の温度計
γ……熱遷移度
TV……真空槽の温度(K)
PV……真空槽の内部圧力(Pa)
TG……隔膜真空計の温度(K)
PG……隔膜真空計の容量値から求めた圧力(Pa)
A,B,C……ガス種に依存する定数
D……枝管内径(mm)
L……枝管管長(mm)
α……修正係数
10 ......
P V ...... Internal pressure of vacuum chamber (Pa)
T G …… Temperature of diaphragm vacuum gauge (K)
P G …… Pressure (Pa) obtained from the capacitance value of the diaphragm vacuum gauge
A, B, C ... Constant depending on gas type D ... Branch pipe inner diameter (mm)
L: Branch pipe length (mm)
α …… Correction factor
Claims (2)
圧力を容量値として測定する隔膜真空計と、
前記真空槽の内部雰囲気と前記隔膜真空計とを接続するゼロ以上の管長を有する枝管と、
前記真空槽と前記隔膜真空計の温度をそれぞれ測定する第一、第二の温度計と、
前記隔膜真空計の測定結果と前記第一、第二の温度計の測定結果が入力される圧力測定装置とを有し、
前記圧力測定装置には、前記隔膜真空計の測定結果と、前記真空槽の温度と、前記隔膜真空計の温度と、前記真空槽の内部圧力との間の関係が記憶され、算出装置は、該算出装置に入力される測定結果から、前記真空槽の内部圧力を算出するように構成され、
前記圧力測定装置には、前記枝管の管長Lと内径Dの比の値L/Dが基準値よりも大きい場合の前記関係と、小さい場合の前記関係が別々に記憶された真空処理装置。 A vacuum chamber that can be evacuated;
A diaphragm gauge for measuring pressure as a capacitance value;
A branch pipe having zero or more pipe lengths connecting the internal atmosphere of the vacuum chamber and the diaphragm vacuum gauge;
A first thermometer and a second thermometer for measuring the temperature of the vacuum chamber and the diaphragm vacuum gauge, respectively;
A pressure measuring device to which the measurement result of the diaphragm vacuum gauge and the measurement result of the first and second thermometers are input;
In the pressure measuring device, the relationship between the measurement result of the diaphragm vacuum gauge, the temperature of the vacuum chamber, the temperature of the diaphragm vacuum gauge, and the internal pressure of the vacuum chamber is stored. The internal pressure of the vacuum chamber is calculated from the measurement result input to the calculation device ,
The pressure measurement device is a vacuum processing device in which the relationship when the ratio L / D of the length L and the inner diameter D of the branch pipe is larger than a reference value and the relationship when the ratio is small are stored separately .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055442A JP5114251B2 (en) | 2008-03-05 | 2008-03-05 | Vacuum processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055442A JP5114251B2 (en) | 2008-03-05 | 2008-03-05 | Vacuum processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009210482A JP2009210482A (en) | 2009-09-17 |
JP5114251B2 true JP5114251B2 (en) | 2013-01-09 |
Family
ID=41183781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008055442A Active JP5114251B2 (en) | 2008-03-05 | 2008-03-05 | Vacuum processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5114251B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009244149A (en) * | 2008-03-31 | 2009-10-22 | Yamatake Corp | Pressure sensor |
JP2015129684A (en) | 2014-01-08 | 2015-07-16 | 株式会社アルバック | Metal ceramic joint, diaphragm vacuum gage, joining method of metal to ceramic, and manufacturing method of diaphragm vacuum gage |
JP6908138B2 (en) | 2018-02-06 | 2021-07-21 | 株式会社島津製作所 | Ionizer and mass spectrometer |
JP7534198B2 (en) | 2020-11-27 | 2024-08-14 | アズビル株式会社 | Diaphragm Vacuum Gauge |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE182005T1 (en) * | 1992-08-10 | 1999-07-15 | Dow Deutschland Inc | ADAPTER FOR ATTACHING A PRESSURE TRANSDUCER TO THE HOUSING OF A GAS TURBINE |
JPH06201501A (en) * | 1992-12-28 | 1994-07-19 | Sony Corp | Pressure measuring device |
JP4712220B2 (en) * | 2001-05-02 | 2011-06-29 | 大亜真空株式会社 | Pressure measuring device |
-
2008
- 2008-03-05 JP JP2008055442A patent/JP5114251B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009210482A (en) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Poulter et al. | Thermal transpiration correction in capacitance manometers | |
Spinelli et al. | Experimental evidence of non-ideal compressible effects in expanding flow of a high molecular complexity vapor | |
JP2010216807A (en) | Mass flow meter, mass flow controller, mass flow meter system including these, and mass flow controller system | |
JP5114251B2 (en) | Vacuum processing equipment | |
US20030110853A1 (en) | Critical gas flow measurement apparatus and method | |
RU2680159C1 (en) | Method for determining volumes of closed cavities | |
Becker et al. | Realization, characterization and measurements of standard leak artefacts | |
CN109668813A (en) | Intelligent unsaturated soil soil water characteristic curve and infiltration coefficient detection system and method | |
RU2721900C2 (en) | Method and instrument for determining gas properties by correlation | |
CN106525180B (en) | Method of Calculating Compressibility Factors of Natural Gas | |
Schakel et al. | Establish traceability for liquefied hydrogen flow measurements | |
Cignolo et al. | A primary standard piston prover for measurement of very small gas flows: an update | |
Poulter | Vacuum gauge calibration by the orifice flow method in the pressure range 10− 4-10 pa | |
CN114184648B (en) | Moisture content calibration method for resistance-capacitance humidity sensor | |
WO2016054210A1 (en) | Capillary sensor tube flow meters and controllers | |
CN112098457B (en) | Polynomial regression calibration method of thermal conductivity measuring instrument | |
CN104296817B (en) | A method of thermal mass flow meter measurement accuracy is improved by dynamic temp compensation | |
CN108959683B (en) | CFD-based digital boiler construction method | |
CN114061691A (en) | Method and system for measuring gas consumption of aerospace gas supply system | |
Yanhua et al. | Development of vacuum metrology in National Institute of Metrology | |
RU2682540C1 (en) | Method of adjusting measuring channel for flow rate with narrowing device | |
Catak et al. | Self-Calibration of Ultrasonic Water Flow Meter | |
CN115326276B (en) | Temperature compensation of Pirani vacuum gauge, calculation method and device of ambient vacuum | |
Teplukh et al. | Design of linear capillary measuring transducers for low gas flow rates | |
Khan et al. | The KRISS primary vacuum gauge calibration standards: A review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120628 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5114251 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |