JP5113722B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP5113722B2 JP5113722B2 JP2008281009A JP2008281009A JP5113722B2 JP 5113722 B2 JP5113722 B2 JP 5113722B2 JP 2008281009 A JP2008281009 A JP 2008281009A JP 2008281009 A JP2008281009 A JP 2008281009A JP 5113722 B2 JP5113722 B2 JP 5113722B2
- Authority
- JP
- Japan
- Prior art keywords
- differential pressure
- flow rate
- flow
- characteristic table
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 62
- 238000011144 upstream manufacturing Methods 0.000 claims description 50
- 238000005259 measurement Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
この発明は、管路内を流れる流体の流量を計測する流量計測装置に関するものである。 The present invention relates to a flow rate measuring device that measures the flow rate of a fluid flowing in a pipe line.
従来、配管路には流量計と弁の両者を配置し、流量計によって計測された流量に基づいて弁の開度を制御するようにしていた。しかし、このような方法では、流量計と弁の両者を配管しなければならず、コストもアップする。そこで、流量計測機能と弁開度の制御機能との両機能を具備した流量制御弁が望まれ、実用化されている(例えば、特許文献1参照)。 Conventionally, both a flow meter and a valve are arranged in the pipeline, and the opening degree of the valve is controlled based on the flow rate measured by the flow meter. However, in such a method, both the flow meter and the valve must be connected, which increases the cost. Therefore, a flow control valve having both a flow measurement function and a valve opening control function is desired and put into practical use (for example, see Patent Document 1).
この流量制御弁は、流体流路を形成する管路とこの管路内を流れる流体の流量を規制する弁体とを備えた弁本体と、この弁本体に取り付けられ弁体の開度を制御するアクチュエータとを備えている。弁本体には、弁体の上流側の流体圧力P1を検出する第1の圧力センサと、弁体の下流側の流体圧力P2を検出する第2の圧力センサと、弁体の開度(弁開度)θを検出する弁開度センサが設けられている。アクチュエータにはCPUやメモリが搭載されている。 This flow control valve controls a valve body provided with a pipe forming a fluid flow path and a valve body for regulating a flow rate of fluid flowing in the pipe, and an opening degree of the valve body attached to the valve main body. Actuator. The valve body includes a first pressure sensor for detecting a fluid pressure P1 upstream of the valve body, a second pressure sensor for detecting a fluid pressure P2 downstream of the valve body, and an opening degree of the valve body (valve A valve opening sensor for detecting (opening) θ is provided. A CPU and memory are mounted on the actuator.
アクチュエータのCPUは、第1の圧力センサからの流体圧力P1と第2の圧力センサからの流体圧力P2とから弁体の上下流間の差圧ΔPを求め、弁開度センサからの弁開度θに応じた流量係数Cvをメモリに格納されている特性テーブルから読み出し、この流量係数Cvと差圧ΔPから弁本体の管路内を流れる流体の流量Qを下記(1)式により算出する。そして、この算出した流量Qを計測流量Qpvとして設定流量Qspとを比較し、計測流量Qpvが設定流量Qspに一致するように弁開度θを制御する。 The CPU of the actuator obtains a differential pressure ΔP between the upstream and downstream of the valve body from the fluid pressure P1 from the first pressure sensor and the fluid pressure P2 from the second pressure sensor, and the valve opening from the valve opening sensor. A flow rate coefficient Cv corresponding to θ is read from a characteristic table stored in the memory, and a flow rate Q of the fluid flowing in the pipe body of the valve body is calculated from the flow rate coefficient Cv and the differential pressure ΔP by the following equation (1). Then, the calculated flow rate Q is compared with the set flow rate Qsp as the measured flow rate Qpv, and the valve opening degree θ is controlled so that the measured flow rate Qpv matches the set flow rate Qsp.
Q=A・Cv・(ΔP)1/2 ・・・・(1)
但し、Aは定数。
Q = A · Cv · (ΔP) 1/2 ··· (1)
However, A is a constant.
この流量制御弁において、弁開度θと流量係数Cvとの関係は、弁本体の口径や種類(ゲート弁、ディスク弁、ボール弁、バタフライ弁、スプール弁、フラッパ弁など)などによって異なる。このため、弁本体の口径や種類に合わせて適切な弁開度θと流量係数Cvとの関係を示す特性テーブルを求めておき、この特性テーブルを取り付けられる弁本体に合わせて出荷時にアクチュエータのメモリに書き込んでいる。図10にその特性テーブルの例を示す。 In this flow control valve, the relationship between the valve opening θ and the flow coefficient Cv differs depending on the diameter and type of the valve body (gate valve, disk valve, ball valve, butterfly valve, spool valve, flapper valve, etc.). For this reason, a characteristic table indicating the relationship between the appropriate valve opening θ and the flow coefficient Cv is obtained according to the diameter and type of the valve body, and the memory of the actuator is shipped at the time of shipment according to the valve body to which this characteristic table can be attached. Is writing. FIG. 10 shows an example of the characteristic table.
一般的には、弁体の上下流間の差圧に対してある基準差圧(例えば、0.1MPa)を決めておき、この基準差圧の下で弁体の弁開度θを所定値刻み(例えば、数パーセント刻み)で変えた場合の各開度に対する流量係数Cvを求め、この流量係数Cvを各開度θに対応させた特性テーブルを出荷時にアクチュエータのメモリに書き込んでいる。 In general, a reference differential pressure (for example, 0.1 MPa) is determined with respect to the differential pressure between the upstream and downstream of the valve body, and the valve opening θ of the valve body is set to a predetermined value under this reference differential pressure. A flow coefficient Cv corresponding to each opening when changing in increments (for example, every few percent) is obtained, and a characteristic table in which the flow coefficient Cv is associated with each opening θ is written in the memory of the actuator at the time of shipment.
そして、実際の流量の計測時には、メモリに書き込まれている特性テーブル上の現在の弁開度θの前後近似2点に対応する流量係数Cvを用いて補間計算し、現在の弁開度θに対応する流量係数Cvを算出し、上記(1)式に代入して流量Qを求めるようにしている。 At the time of actual flow rate measurement, interpolation calculation is performed using the flow rate coefficient Cv corresponding to two points before and after the current valve opening degree θ on the characteristic table written in the memory, and the current valve opening degree θ is calculated. The corresponding flow rate coefficient Cv is calculated and substituted into the above equation (1) to obtain the flow rate Q.
出願人は、差圧ΔPを様々に変え、その時の弁開度θに対応する流量係数Cvを求めてみた。この場合、基準差圧(例えば、0.1MPa)を境にして、それ以上の高差圧においては、同開度の基準差圧での流量係数Cvの偏差は5%程度に収まるのに対して、基準差圧よりも低い低差圧においては、十〜数十%の大きな偏差が生ずることが分かった。また、弁開度θがある開度より低開度(例えば、30%〜40%以下)になると、高差圧,低差圧に拘わらず、流量係数Cvの偏差が非常に大きくなることも分かった。図11にその結果を例示する。 The applicant changed the differential pressure ΔP variously, and obtained the flow coefficient Cv corresponding to the valve opening θ at that time. In this case, the deviation of the flow coefficient Cv at the reference differential pressure of the same opening is within about 5% at a high differential pressure beyond the reference differential pressure (for example, 0.1 MPa). Thus, it was found that a large deviation of 10 to several tens of percent occurs at a low differential pressure lower than the reference differential pressure. Further, when the valve opening θ is lower than a certain opening (for example, 30% to 40% or less), the deviation of the flow coefficient Cv may become very large regardless of the high differential pressure and the low differential pressure. I understood. FIG. 11 illustrates the result.
しかしながら、従来の流量制御弁では、弁開度θと流量係数Cvとの関係を示す特性テーブルとして、基準差圧における弁開度θと流量係数Cvとの関係を示す特性テーブルのみを使用しているたため、基準差圧より低い低差圧時や高差圧でも低開度時に求められる流量係数Cvに大きな誤差が生じ、計測流量値の信頼性が非常に低いという問題があった。 However, in the conventional flow control valve, only the characteristic table indicating the relationship between the valve opening θ and the flow coefficient Cv at the reference differential pressure is used as the characteristic table indicating the relationship between the valve opening θ and the flow coefficient Cv. Therefore, there is a problem that a large error occurs in the flow coefficient Cv required at the time of low opening even at a low differential pressure or a high differential pressure lower than the reference differential pressure, and the reliability of the measured flow rate value is very low.
なお、流量制御弁では流量計測を行わずに、流量制御弁に接続した流量測定装置において、流量制御弁の管路内を流れる流体の流量の計測を行うようにしたものもある(例えば、特許文献2参照)。この場合、流量測定装置では、流量制御弁からの流体圧力P1とP2とから弁体の上下流間の差圧ΔPを求め、流量制御弁からの弁開度θに応じた流量係数Cvをメモリに格納されている特性テーブルから読み出し、この流量係数Cvと差圧ΔPから流量制御弁の管路内を流れる流体の流量Qを計測する。このような場合にも、流量測定装置のメモリには基準差圧における弁開度θと流量係数Cvとの関係を示す特性テーブルしか書き込まれていないため、流量計測機能を有する流量制御弁と同様の問題が生じる。 Some flow control valves do not measure the flow rate, but some flow measurement devices connected to the flow control valve measure the flow rate of the fluid flowing in the pipe of the flow control valve (for example, patents) Reference 2). In this case, the flow measuring device obtains the differential pressure ΔP between the upstream and downstream of the valve body from the fluid pressures P1 and P2 from the flow control valve, and stores the flow coefficient Cv according to the valve opening θ from the flow control valve. The flow rate Q of the fluid flowing in the pipe of the flow control valve is measured from the flow coefficient Cv and the differential pressure ΔP. Even in such a case, since only the characteristic table showing the relationship between the valve opening θ at the reference differential pressure and the flow coefficient Cv is written in the memory of the flow measurement device, it is the same as that of the flow control valve having the flow measurement function. Problem arises.
本発明は、このような課題を解決するためになされたもので、その目的とするところは、計測流量値の信頼性を高めることができる流量計測装置を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a flow rate measuring device capable of improving the reliability of a measured flow rate value.
このような目的を達成するために、第1発明(請求項1に係る発明)は、メモリに、弁体の上下流間の差圧に対して予め定められた基準差圧における弁体の弁開度と流量係数との関係を示す基準の特性テーブルと、基準差圧よりも低い差圧における弁体の弁開度と流量係数との関係を示す低差圧時の特性テーブルとを少なくとも記憶させ、現在の差圧が基準差圧よりも低い場合、その差圧と現在の弁開度に応ずる流量係数を低差圧時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて管路内を流れる流体の流量を算出するようにしたものである。
この発明によれば、弁体の上下流間の差圧が基準差圧よりも低い場合、基準の特性テーブルではなく、低差圧時の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められる。これにより、基準差圧よりも低い低差圧時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。
In order to achieve such an object, a first invention (invention according to claim 1) is provided in a memory in which a valve of a valve body at a reference differential pressure that is predetermined with respect to a pressure difference between upstream and downstream of the valve body At least a reference characteristic table indicating the relationship between the opening and the flow coefficient, and a low differential pressure characteristic table indicating the relationship between the valve opening and the flow coefficient at a differential pressure lower than the reference differential pressure are stored. If the current differential pressure is lower than the reference differential pressure, the flow coefficient corresponding to the differential pressure and the current valve opening is obtained from the characteristic table at the time of low differential pressure, and the obtained flow coefficient and the current differential pressure Based on the above, the flow rate of the fluid flowing in the pipe is calculated.
According to the present invention, when the differential pressure between the upstream and downstream of the valve body is lower than the reference differential pressure, the current differential pressure and the current valve opening are determined from the characteristic table at the time of low differential pressure instead of the reference characteristic table. A corresponding flow coefficient is determined. As a result, even when the differential pressure is lower than the reference differential pressure, the flow coefficient is obtained with high accuracy, and as a result, accurate flow measurement can be performed.
第2発明(請求項1に係る発明)は、メモリに、弁体の上下流間の差圧に対して予め定められた基準差圧における弁体の弁開度と流量係数との関係を示す基準の特性テーブルと、基準差圧よりも低い差圧における弁体の弁開度と流量係数との関係を示す低差圧時の特性テーブルと、基準差圧よりも高い差圧における弁体の予め定められた低開度閾値以下の弁開度と流量係数との関係を示す高差圧低開度時の特性テーブルとを少なくとも記憶させ、現在の差圧が基準差圧よりも低い場合、その差圧と現在の弁開度に応ずる流量係数を低差圧時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて管路内を流れる流体の流量を算出し、現在の差圧が基準差圧よりも高く、かつ現在の弁開度が低開度閾値以下である場合、その差圧と弁開度に応ずる流量係数を高差圧低開度時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて管路内を流れる流体の流量を算出するようにしたものである。
この発明によれば、弁体の上下流間の差圧が基準差圧よりも低い場合、基準の特性テーブルではなく、低差圧時の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められる。また、弁体の上下流間の差圧が基準差圧よりも高く、かつ弁開度が低開度閾値以下である場合、基準の特性テーブルではなく、高差圧低開度時の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められる。これにより、基準差圧よりも低い低差圧時であっても、基準差圧よりも高い高差圧時の低開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。
In the second invention (the invention according to claim 1), the relationship between the valve opening degree and the flow coefficient of the valve body at a reference differential pressure predetermined with respect to the differential pressure between the upstream and downstream of the valve body is shown in the memory. A reference characteristic table, a characteristic table at the time of low differential pressure showing the relationship between the valve opening degree and the flow coefficient at a differential pressure lower than the reference differential pressure, and a valve characteristic at a differential pressure higher than the reference differential pressure When storing at least a characteristic table at the time of high differential pressure and low opening indicating the relationship between a valve opening and a flow coefficient equal to or lower than a predetermined low opening threshold, and the current differential pressure is lower than the reference differential pressure, The flow coefficient corresponding to the differential pressure and the current valve opening is obtained from the characteristic table at the time of low differential pressure, and the flow rate of the fluid flowing in the pipeline is calculated based on the obtained flow coefficient and the current differential pressure, If the current differential pressure is higher than the reference differential pressure and the current valve opening is below the low opening threshold, the difference And the flow coefficient corresponding to the valve opening is obtained from the characteristic table at the time of high differential pressure and low opening, and the flow rate of the fluid flowing in the pipe line is calculated based on the obtained flow coefficient and the current differential pressure. Is.
According to the present invention, when the differential pressure between the upstream and downstream of the valve body is lower than the reference differential pressure, the current differential pressure and the current valve opening are determined from the characteristic table at the time of low differential pressure instead of the reference characteristic table. A corresponding flow coefficient is determined. In addition, when the differential pressure between the upstream and downstream of the valve body is higher than the reference differential pressure and the valve opening is below the low opening threshold, not the reference characteristic table, but the characteristic table at the time of high differential pressure and low opening Thus, a flow coefficient corresponding to the current differential pressure and the current valve opening is obtained. As a result, the flow coefficient can be calculated with high accuracy even when the differential pressure is lower than the reference differential pressure or even when the opening is high and higher than the reference differential pressure. It is possible to measure the flow rate.
第3発明(請求項3に係る発明)は、第2発明において、現在の差圧が基準差圧よりも高く、現在の弁開度が低開度閾値よりも大きい場合、その差圧と弁開度に応ずる流量係数を基準の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて管路内を流れる流体の流量を算出するようにしたものである。
この発明によれば、弁体の上下流間の差圧が基準差圧よりも高く、かつ弁体の弁開度が低開度閾値よりも大きい場合、基準の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められる。この場合、基準の特性テーブルから求められる流量係数は実際の流量係数と比較してその偏差が小さいので、基準差圧よりも高い高差圧時の高開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。
また、第3発明では、高差圧高開度時には基準の特性テーブルから流量係数を求めるので、高差圧高開度時の特性テーブルを設けるようにした場合と比較し、メモリの記憶容量を小さくすることができる。
According to a third invention (invention according to claim 3), in the second invention, when the current differential pressure is higher than the reference differential pressure and the current valve opening is larger than the low opening threshold, the differential pressure and the valve A flow coefficient corresponding to the opening is obtained from a reference characteristic table, and the flow rate of the fluid flowing in the pipeline is calculated based on the obtained flow coefficient and the current differential pressure.
According to the present invention, when the differential pressure between the upstream and downstream of the valve body is higher than the reference differential pressure and the valve opening of the valve body is larger than the low opening threshold, the current differential pressure is calculated from the reference characteristic table. A flow coefficient corresponding to the current valve opening is obtained. In this case, since the deviation of the flow coefficient obtained from the reference characteristic table is small compared to the actual flow coefficient, the flow rate can be accurately adjusted even at a high opening with a high differential pressure higher than the reference differential pressure. As a result, a flow rate can be measured with high accuracy.
In the third invention, since the flow coefficient is obtained from the reference characteristic table at the time of high differential pressure and high opening, the storage capacity of the memory is reduced compared to the case where the characteristic table at the time of high differential pressure and high opening is provided. Can be small.
第1発明によれば、弁体の上下流間の差圧が基準差圧よりも低い場合、基準の特性テーブルではなく、低差圧時の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められるものとなり、基準差圧よりも低い低差圧時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。 According to the first invention, when the differential pressure between the upstream and downstream of the valve body is lower than the reference differential pressure, the current differential pressure and the current valve opening are not based on the characteristic table at the time of low differential pressure but the reference characteristic table. Therefore, even when the differential pressure is lower than the reference differential pressure, the flow coefficient can be obtained with high accuracy, and as a result, accurate flow measurement can be performed.
第2発明によれば、弁体の上下流間の差圧が基準差圧よりも低い場合、基準の特性テーブルではなく、低差圧時の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められ、弁体の上下流間の差圧が基準差圧よりも高く、かつ現在の弁開度が低開度閾値以下である場合、基準の特性テーブルではなく、高差圧低開度時の特性テーブルから求められ、これにより、基準差圧よりも低い低差圧時であっても、基準差圧よりも高い高差圧時の低開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。 According to the second invention, when the differential pressure between the upstream and downstream of the valve body is lower than the reference differential pressure, the current differential pressure and the current valve opening are not based on the characteristic table at the time of low differential pressure, but on the characteristic table at the time of low differential pressure. If the differential pressure between the upstream and downstream of the valve body is higher than the reference differential pressure and the current valve opening is below the low opening threshold, the difference between the upstream and downstream is not a reference characteristic table. It is obtained from the characteristic table at the time of the low pressure opening, so that even at a low differential pressure lower than the reference differential pressure, even at a low opening at a high differential pressure higher than the reference differential pressure, The flow coefficient is obtained with high accuracy, and as a result, accurate flow measurement is possible.
第3発明によれば、弁体の上下流間の差圧が基準差圧よりも高く、かつ弁体の弁開度が低開度閾値よりも大きい場合、基準の特性テーブルから現在の差圧と現在の弁開度に応ずる流量係数が求められ、基準差圧よりも高い高差圧時の高開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。また、この場合、高差圧高開度時には基準の特性テーブルから流量係数を求めるので、高差圧高開度時の特性テーブルを設けるようにした場合と比較し、メモリの記憶容量を小さくすることができるようになる。 According to the third invention, when the differential pressure between the upstream and downstream of the valve body is higher than the reference differential pressure and the valve opening degree of the valve body is larger than the low opening threshold value, the current differential pressure is calculated from the reference characteristic table. The flow coefficient corresponding to the current valve opening is calculated, and the flow coefficient is calculated accurately even at high opening when the differential pressure is higher than the reference differential pressure, resulting in accurate flow measurement. Is possible. In this case, since the flow coefficient is obtained from the reference characteristic table at the time of high differential pressure and high opening, the memory capacity of the memory is reduced compared with the case where the characteristic table at the time of high differential pressure and high opening is provided. Will be able to.
以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1:流量制御弁〕
図1は本発明に係る流量計測装置を内蔵した流量制御弁の一実施の形態の概略を示す図である。同図において、100は流量制御弁であり、弁本体1と、この弁本体1に取り付けられたアクチュエータ2とで構成されている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1: Flow control valve]
FIG. 1 is a diagram showing an outline of an embodiment of a flow rate control valve incorporating a flow rate measuring device according to the present invention. In the figure,
弁本体1は、流体流路を形成する管路1−1と、この管路1−1内を流れる流体の流量を規制する弁体1−2とを備えており、弁体1−2の上流側にはその管路内の流体圧力(上流側の流体圧力)P1を検出する第1の圧力センサS1が設けられ、弁体1−2の下流側にはその管路内の流体圧力(下流側の流体圧力)P2を検出する第2の圧力センサS2が設けられている。
The
アクチュエータ2は、CPU2−1と、メモリ2−2と、表示部2−3と、モータ2−4とを備えており、モータ2−4の駆動軸は弁体1−2に連結されている。モータ2−4の駆動軸と弁体1−2との連結部には、弁体1−2の弁開度θを検出する弁開度センサS3が設けられている。
The
アクチュエータ2のCPU2−1には、第1の圧力センサS1が検出する弁体1−2の上流側の流体圧力P1、第2の圧力センサS2が検出する弁体1−2の下流側の流体圧力P2、弁開度センサS3が検出する弁体1−2の弁開度θ、上位装置からの設定流量Qspが与えられる。
The CPU 2-1 of the
アクチュエータ2のメモリ2−2には、図2に示すように、基準差圧(この例では、0.1MPa)における弁体1−2の弁開度θと流量係数Cvとの関係を示す基準の特性テーブルTBと、基準差圧よりも低い差圧(この例では、0.02MPa、0.35MPa)における弁体1−2の弁開度θと流量係数Cvとの関係を示す低差圧時の特性テーブルTLと、基準差圧よりも高い差圧(この例では、0.15MPa、0.2MPa、0.25MPa、0.3MPa)における弁体1−2の予め定められた低開度閾値θth(この例では、32.63%)以下の開度θと流量係数Cvとの関係を示す高差圧低開度時の特性テーブルTHとが格納されている。なお、この実施の形態では、特性テーブルTBとTLとTCとを合わせたテーブルを特性テーブルTCvとする。
In the memory 2-2 of the
以下、図3に示すフローチャートを参照して、メモリ2−2に格納されているプログラムに従ってアクチュエータ2のCPU2−1が実行する本実施の形態特有の処理動作について説明する。
Hereinafter, with reference to the flowchart shown in FIG. 3, processing operations unique to the present embodiment executed by the CPU 2-1 of the
CPU2−1は、弁開度センサS3からの弁体1−2の弁開度θ(現在の弁開度θ)を読み込む(ステップS101)。また、第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1と第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2を読み込み(ステップS102)、この読み込んだ流体圧力P1とP2とから弁体1−2の上下流間の差圧ΔP(現在の差圧ΔP)を算出する(ステップS103)。 The CPU 2-1 reads the valve opening degree θ (current valve opening degree θ) of the valve body 1-2 from the valve opening degree sensor S3 (step S101). Also, the fluid pressure P1 upstream of the valve body 1-2 from the first pressure sensor S1 and the fluid pressure P2 downstream of the valve body 1-2 from the second pressure sensor S2 are read (step S102), A differential pressure ΔP (current differential pressure ΔP) between the upstream and downstream of the valve body 1-2 is calculated from the read fluid pressures P1 and P2 (step S103).
そして、ステップS101で読み込んだ弁体1−2の現在の弁開度θとステップS103で算出した弁体1−2の上下流間の現在の差圧ΔPに応ずる流量係数Cvを、メモリ2−2内の特性テーブルTCvから補間計算によって求める(ステップS104)。 Then, the flow coefficient Cv corresponding to the current valve opening θ of the valve body 1-2 read in step S101 and the current differential pressure ΔP between the upstream and downstream of the valve body 1-2 calculated in step S103 is stored in the memory 2- 2 is obtained by interpolation calculation from the characteristic table TCv in step 2 (step S104).
ここで、CPU2−1は、現在の差圧ΔPが基準差圧よりも低い場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを低差圧時の特性テーブルTLから求め、現在の差圧ΔPが基準差圧と等しい場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Here, when the current differential pressure ΔP is lower than the reference differential pressure, the CPU 2-1 obtains a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening θ from the characteristic table TL at the time of low differential pressure, When the current differential pressure ΔP is equal to the reference differential pressure, a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening degree θ is obtained from the reference characteristic table TB.
また、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θth以下である場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを高差圧低開度時の特性テーブルTHから求め、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θthよりも大きい場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Further, when the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening degree θ is equal to or less than the low opening threshold value θth, the flow coefficient Cv corresponding to the differential pressure ΔP and the valve opening degree θ is highly different. When the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening θ is larger than the low opening threshold θth, the pressure difference ΔP and the valve opening are obtained. A flow coefficient Cv corresponding to the degree θ is obtained from the reference characteristic table TB.
そして、CPU2−1は、ステップS104で求めた流量係数CvとステップS103で求めた現在の差圧ΔPとから弁本体1の管路1−1内を流れる流体の流量Q(Q=A・Cv・(ΔP)1/2)を算出し(ステップS105)、この算出した流量Qを計測流量Qpvとして表示部2−3に表示する(ステップS106)。
Then, the CPU 2-1 determines the flow rate Q (Q = A · Cv) of the fluid flowing in the pipe line 1-1 of the
そして、上位装置からの設定流量Qspを読み込み(ステップS107)、計測流量Qpvと設定流量Qspとを比較し、計測流量Qpvが設定流量Qspに一致するように、弁体1−2の弁開度θを制御する(ステップS108)。CPU2−1は、このステップS101〜S108の処理動作を定周期で繰り返す。 Then, the set flow rate Qsp from the host device is read (step S107), the measured flow rate Qpv is compared with the set flow rate Qsp, and the valve opening degree of the valve element 1-2 is adjusted so that the measured flow rate Qpv matches the set flow rate Qsp. θ is controlled (step S108). The CPU 2-1 repeats the processing operations in steps S <b> 101 to S <b> 108 at regular intervals.
図4にCPU2−1の処理動作として実現される流量計測部3の機能ブロック図を示す。この流量計測部3は、第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1および第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2を入力とし、弁体1−2の上下流間の差圧ΔP(現在の差圧ΔP)を算出する差圧算出部3Aと、この差圧算出部3Aからの差圧ΔPと弁開度センサS3からの弁体1−2の弁開度θ(現在の弁開度θ)を入力とし、メモリ2−2内の特性テーブルTCv(TB、TL、TC)から現在の差圧ΔPと現在の弁開度θに応じた流量係数Cvを求めるCv値演算部3Bと、差圧算出部3Aからの現在の差圧ΔPとCv値演算部3Bからの流量係数Cvとから弁本体1の管路1−1内を流れる流体の流量Qを算出する流量算出部3Cとから構成される。
FIG. 4 shows a functional block diagram of the flow
本実施の形態では、ステップS104での処理動作から分かるように、弁体1−2の上下流間の差圧ΔPが基準差圧よりも低い場合、基準の特性テーブルTBではなく、低差圧時の特性テーブルTLから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められる。また、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁開度θが低開度閾値θth以下である場合、基準の特性テーブルTBではなく、高差圧低開度時の特性テーブルTHから求められる。これにより、基準差圧よりも低い低差圧時であっても、基準差圧よりも高い高差圧時の低開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。 In the present embodiment, as can be seen from the processing operation in step S104, when the differential pressure ΔP between the upstream and downstream of the valve body 1-2 is lower than the reference differential pressure, not the reference characteristic table TB but the low differential pressure The flow rate coefficient Cv corresponding to the current differential pressure ΔP and the current valve opening θ is obtained from the current characteristic table TL. Further, when the differential pressure ΔP between the upstream and downstream of the valve body 1-2 is higher than the reference differential pressure and the valve opening θ is equal to or less than the low opening threshold θth, the high differential pressure is not the reference characteristic table TB. It is obtained from the characteristic table TH at the time of low opening. As a result, the flow coefficient can be calculated with high accuracy even when the differential pressure is lower than the reference differential pressure or even when the opening is high and higher than the reference differential pressure. It is possible to measure the flow rate.
また、本実施の形態では、ステップS104での処理動作から分かるように、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁体1−2の弁開度θが低開度閾値θthよりも大きい場合、基準の特性テーブルTBから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められる。この場合、基準の特性テーブルTBから求められる流量係数Cvは実際の流量係数と比較してその偏差が小さいので、基準差圧よりも高い高差圧時の高開度時であっても、精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。 Further, in the present embodiment, as can be seen from the processing operation in step S104, the differential pressure ΔP between the upstream and downstream of the valve body 1-2 is higher than the reference differential pressure, and the valve opening degree of the valve body 1-2. When θ is larger than the low opening threshold θth, the current differential pressure ΔP and the flow coefficient Cv corresponding to the current valve opening θ are obtained from the reference characteristic table TB. In this case, since the deviation of the flow coefficient Cv obtained from the reference characteristic table TB is smaller than the actual flow coefficient, the accuracy can be improved even at a high opening degree at a high differential pressure higher than the reference differential pressure. A flow coefficient is often obtained, and as a result, accurate flow measurement is possible.
また、本実施の形態では、高差圧高開度時には基準の特性テーブルTBから流量係数Cvを求めるようにしているので、高差圧高開度時の特性テーブルを設けるようにした場合と比較し、すなわち図2に斜線で示した部分に対応する特性テーブルを設けるようにした場合と比較し、メモリ2−2の記憶容量を小さくすることができる。 In this embodiment, since the flow coefficient Cv is obtained from the reference characteristic table TB at the time of high differential pressure and high opening, it is compared with the case where a characteristic table at the time of high differential pressure and high opening is provided. That is, the storage capacity of the memory 2-2 can be reduced as compared with the case where the characteristic table corresponding to the hatched portion in FIG. 2 is provided.
〔実施の形態2:流量測定装置〕
図5は本発明に係る流量計測装置を内蔵した流量測定装置を流量制御弁に接続したシステムの一実施の形態の概略を示す図である。同図において、図1と同一符号は図1を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Embodiment 2: Flow measurement device]
FIG. 5 is a diagram showing an outline of an embodiment of a system in which a flow rate measuring device incorporating a flow rate measuring device according to the present invention is connected to a flow rate control valve. 1, the same reference numerals as those in FIG. 1 denote the same or equivalent components as those described with reference to FIG. 1, and the description thereof will be omitted.
この実施の形態では、流量制御弁101に流量測定装置5を接続し、流量測定装置5で流量制御弁101の管路1−1内を流れる流体の流量Q(計測流量Qpv)を算出するようにしている。
In this embodiment, the flow
なお、この実施の形態において、流量制御弁101におけるアクチュエータ4は、CPU4−1と、メモリ4−2と、モータ4−3とを備えた構成とし、アクチュエータ4のCPU5には、弁開度センサS3が検出する弁体1−2の弁開度θ、流量測定装置5からの計測流量Qpv、上位装置からの設定流量Qspを与えるようにしている。
In this embodiment, the
流量測定装置5は、CPU5−1と、メモリ5−2と、表示部5−3と、インタフェース5−4とを備えている。流量測定装置5のCPU5−1には、インタフェース5−4を介して、第1の圧力センサS1が検出する弁体1−2の上流側の流体圧力P1、第2の圧力センサS2が検出する弁体1−2の下流側の流体圧力P2、弁開度センサS3が検出する弁体1−2の弁開度θが与えられる。
The flow
流量測定装置5のメモリ5−2には、実施の形態1と同様に、基準差圧における弁体1−2の弁開度θと流量係数Cvとの関係を示す基準の特性テーブルTBと、基準差圧よりも低い差圧における弁体1−2の弁開度θと流量係数Cvとの関係を示す低差圧時の特性テーブルTLと、基準差圧よりも高い差圧における弁体1−2の予め定められた低開度閾値θth以下の開度θと流量係数Cvとの関係を示す高差圧低開度時の特性テーブルTHとが格納されている。すなわち、図2に示した特性テーブルTCv(TL,TB,TH)が格納されている。
In the memory 5-2 of the flow
以下、図6に示すフローチャートを参照して、メモリ5−2に格納されているプログラムに従って流量測定装置5のCPU5−1が実行する処理動作について説明する。
Hereinafter, processing operations executed by the CPU 5-1 of the flow
CPU5−1は、弁開度センサS3からの弁体1−2の弁開度θ(現在の弁開度θ)を読み込む(ステップS201)。また、第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1と第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2を読み込み(ステップS202)、この読み込んだ流体圧力P1とP2とから弁体1−2の上下流間の差圧ΔP(現在の差圧ΔP)を算出する(ステップS203)。 The CPU 5-1 reads the valve opening degree θ (current valve opening degree θ) of the valve element 1-2 from the valve opening degree sensor S3 (step S201). Further, the fluid pressure P1 on the upstream side of the valve body 1-2 from the first pressure sensor S1 and the fluid pressure P2 on the downstream side of the valve body 1-2 from the second pressure sensor S2 are read (step S202), A differential pressure ΔP (current differential pressure ΔP) between the upstream and downstream of the valve body 1-2 is calculated from the read fluid pressures P1 and P2 (step S203).
そして、ステップS201で読み込んだ弁体1−2の現在の弁開度θとステップS203で算出した弁体1−2の上下流間の現在の差圧ΔPに応ずる流量係数Cvを、メモリ2−2内の特性テーブルTCvから補間計算によって求める(ステップS204)。 Then, the flow coefficient Cv corresponding to the current valve opening θ of the valve body 1-2 read in step S201 and the current differential pressure ΔP between the upstream and downstream of the valve body 1-2 calculated in step S203 is stored in the memory 2- 2 is obtained by interpolation calculation from the characteristic table TCv in step 2 (step S204).
ここで、CPU5−1は、現在の差圧ΔPが基準差圧よりも低い場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを低差圧時の特性テーブルTLから求め、現在の差圧ΔPが基準差圧と等しい場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Here, when the current differential pressure ΔP is lower than the reference differential pressure, the CPU 5-1 obtains a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening θ from the characteristic table TL at the time of low differential pressure, When the current differential pressure ΔP is equal to the reference differential pressure, a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening degree θ is obtained from the reference characteristic table TB.
また、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θth以下である場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを高差圧低開度時の特性テーブルTHから求め、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θthよりも大きい場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Further, when the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening degree θ is equal to or less than the low opening threshold value θth, the flow coefficient Cv corresponding to the differential pressure ΔP and the valve opening degree θ is highly different. When the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening θ is larger than the low opening threshold θth, the pressure difference ΔP and the valve opening are obtained. A flow coefficient Cv corresponding to the degree θ is obtained from the reference characteristic table TB.
そして、CPU5−1は、ステップS204で求めた流量係数CvとステップS203で求めた現在の差圧ΔPとから流量制御弁101の管路1−1内を流れる流体の流量Q(Q=A・Cv・(ΔP)1/2)を算出し(ステップS205)、この算出した流量Qを計測流量Qpvとして表示部2−3に表示するとともに(ステップS206)、インタフェース5−4を介して流量制御弁101のアクチュエータ4へ送る(ステップS207)。CPU5−1は、このステップS201〜S207の処理動作を定周期で繰り返す。
The CPU 5-1 then determines the flow rate Q (Q = A ·) of the fluid flowing in the pipe 1-1 of the flow
アクチュエータ4のCPU4−1は、流量測定装置5から計測流量Qpvが送られてくると、この送られてきた計測流量Qpvと設定流量Qspとを比較し、計測流量Qpvが設定流量Qspに一致するように、弁体1−2の弁開度θを制御する。この弁開度θの制御はメモリ4−2に格納されているプログラムに従って行われる。
When the measured flow rate Qpv is sent from the flow
図7にCPU5−1の処理動作として実現される流量計測部6の機能ブロック図を示す。この流量計測部6は、第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1および第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2を入力とし、弁体1−2の上下流間の差圧ΔP(現在の差圧ΔP)を算出する差圧算出部6Aと、この差圧算出部6Aからの差圧ΔPと弁開度センサS3からの弁体1−2の弁開度θ(現在の弁開度θ)を入力とし、メモリ5−2内の特性テーブルTCv(TB、TL、TC)から現在の差圧ΔPと現在の弁開度θに応じた流量係数Cvを求めるCv値演算部6Bと、差圧算出部6Aからの現在の差圧ΔPとCv値演算部6Bからの流量係数Cvとから弁本体1の管路1−1内を流れる流体の流量Qを算出する流量算出部6Cとから構成される。
FIG. 7 shows a functional block diagram of the flow
この実施の形態2においても、実施の形態1と同様に、弁体1−2の上下流間の差圧ΔPが基準差圧よりも低い場合、基準の特性テーブルTBではなく、低差圧時の特性テーブルTLから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められ、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁開度θが低開度閾値θth以下である場合、基準の特性テーブルTBではなく、高差圧低開度時の特性テーブルTHから求められ、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁体1−2の弁開度θが低開度閾値θthよりも大きい場合、基準の特性テーブルTBから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められる。これにより、低差圧,高差圧に拘わらず精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。また、メモリ5−2の記憶容量を小さくすることができる。 Also in the second embodiment, as in the first embodiment, when the differential pressure ΔP between the upstream and downstream of the valve body 1-2 is lower than the reference differential pressure, not the reference characteristic table TB but at the time of the low differential pressure. The flow rate coefficient Cv corresponding to the current differential pressure ΔP and the current valve opening θ is obtained from the characteristic table TL, the differential pressure ΔP between the upstream and downstream of the valve element 1-2 is higher than the reference differential pressure, and the valve is opened. When the degree θ is equal to or lower than the low opening threshold θth, the pressure difference ΔP between the upstream and downstream of the valve body 1-2 is obtained from the characteristic table TH at the time of high differential pressure and low opening instead of the reference characteristic table TB. When the valve opening degree θ is higher than the reference differential pressure and the valve element 1-2 is larger than the low opening threshold value θth, the flow rate corresponding to the current differential pressure ΔP and the current valve opening degree θ from the reference characteristic table TB. A coefficient Cv is obtained. As a result, regardless of the low differential pressure and the high differential pressure, the flow coefficient can be obtained with high accuracy, and as a result, accurate flow measurement can be performed. Further, the storage capacity of the memory 5-2 can be reduced.
〔実施の形態3:流量測定装置〕
図8は本発明に係る流量計測装置を内蔵した流量測定装置を流量制御弁に接続したシステムの他の実施の形態の概略を示す図である。同図において、図5と同一符号は図5を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Embodiment 3: Flow measurement device]
FIG. 8 is a diagram showing an outline of another embodiment of a system in which a flow rate measuring device incorporating a flow rate measuring device according to the present invention is connected to a flow rate control valve. 5, the same reference numerals as those in FIG. 5 denote the same or equivalent components as those described with reference to FIG. 5, and the description thereof will be omitted.
この実施の形態では、複数の流量制御弁101を流量測定装置7に接続し、流量測定装置7でこれら複数の流量制御弁101の管路1−1内を流れる流体の流量Qを算出するようにしている。この例では、複数の流量制御弁101を2つの流量制御弁101A,101Bとし、この流量制御弁101A,101Bの管路1−1,1−1内を流れる流体の流量QA,QB(計測流量QApv,QBpv)を算出するようにしている。
In this embodiment, a plurality of
流量測定装置7は、CPU7−1と、メモリ7−2と、表示部7−3と、インタフェース7−4とを備えている。流量測定装置7のCPU7−1には、インタフェース7−4を介して、流量制御弁101Aにおける第1の圧力センサS1が検出する弁体1−2の上流側の流体圧力P1A、第2の圧力センサS2が検出する弁体1−2の下流側の流体圧力P2A、弁開度センサS3が検出する弁体1−2の弁開度θA、流量制御弁101Bにおける第1の圧力センサS1が検出する弁体1−2の上流側の流体圧力P1B、第2の圧力センサS2が検出する弁体1−2の下流側の流体圧力P2B、弁開度センサS3が検出する弁体1−2の弁開度θBが与えられる。
The flow rate measuring device 7 includes a CPU 7-1, a memory 7-2, a display unit 7-3, and an interface 7-4. The fluid pressure P1A on the upstream side of the valve body 1-2 detected by the first pressure sensor S1 in the
流量測定装置7のメモリ7−2には、実施の形態1と同様に、基準差圧における弁体1−2の弁開度θと流量係数Cvとの関係を示す基準の特性テーブルTBと、基準差圧よりも低い差圧における弁体1−2の弁開度θと流量係数Cvとの関係を示す低差圧時の特性テーブルTLと、基準差圧よりも高い差圧における弁体1−2の予め定められた低開度閾値θth以下の開度θと流量係数Cvとの関係を示す高差圧低開度時の特性テーブルTHとが格納されている。すなわち、図2に示した特性テーブルTCv(TL,TB,TH)が格納されている。
In the memory 7-2 of the flow rate measuring device 7, as in the first embodiment, a reference characteristic table TB indicating the relationship between the valve opening degree θ of the valve body 1-2 and the flow coefficient Cv at the reference differential pressure, A characteristic table TL at the time of low differential pressure showing the relationship between the valve opening degree θ of the valve body 1-2 and the flow coefficient Cv at a differential pressure lower than the reference differential pressure, and the
以下、図9に示すフローチャートを参照して、メモリ7−2に格納されているプログラムに従って流量測定装置7のCPU7−1が実行する本実施の形態特有の処理動作について説明する。 Hereinafter, with reference to the flowchart shown in FIG. 9, the processing operation unique to the present embodiment executed by the CPU 7-1 of the flow rate measuring device 7 according to the program stored in the memory 7-2 will be described.
CPU7−1は、流量制御弁101Aの弁開度センサS3からの弁体1−2の弁開度θA(現在の弁開度θA)を読み込む(ステップS301)。また、流量制御弁101Aの第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1Aと第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2Aを読み込み(ステップS302)、この読み込んだ流体圧力P1AとP2Aとから流量制御弁101Aの弁体1−2の上下流間の差圧ΔPを算出する(ステップS303)。
The CPU 7-1 reads the valve opening degree θA (current valve opening degree θA) of the valve body 1-2 from the valve opening degree sensor S3 of the
そして、ステップS301で読み込んだ流量制御弁101Aの弁体1−2の現在の弁開度θAとステップS303で算出した流量制御弁101Aの弁体1−2の上下流間の現在の差圧ΔPに応ずる流量係数Cvを、メモリ7−2内の特性テーブルTCvから補間計算によって求める(ステップS304)。
The current differential pressure ΔP between the current valve opening θA of the valve body 1-2 of the
ここで、CPU7−1は、現在の差圧ΔPが基準差圧よりも低い場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを低差圧時の特性テーブルTLから求め、現在の差圧ΔPが基準差圧と等しい場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Here, when the current differential pressure ΔP is lower than the reference differential pressure, the CPU 7-1 obtains a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening θ from the characteristic table TL at the time of low differential pressure, When the current differential pressure ΔP is equal to the reference differential pressure, a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening degree θ is obtained from the reference characteristic table TB.
また、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θth以下である場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを高差圧低開度時の特性テーブルTHから求め、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θthよりも大きい場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Further, when the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening degree θ is equal to or less than the low opening threshold value θth, the flow coefficient Cv corresponding to the differential pressure ΔP and the valve opening degree θ is highly different. When the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening θ is larger than the low opening threshold θth, the pressure difference ΔP and the valve opening are obtained. A flow coefficient Cv corresponding to the degree θ is obtained from the reference characteristic table TB.
そして、CPU7−1は、ステップS304で求めた流量係数CvとステップS303で求めた現在の差圧ΔPとから流量制御弁101Aの管路1−1内を流れる流体の流量Q(Q=A・Cv・(ΔP)1/2)を算出し(ステップS305)、この算出した流量Qを計測流量QApvとして表示部7−3に表示するとともに(ステップS306)、インタフェース7−4を介して流量制御弁101Aのアクチュエータ4へ送る(ステップS307)。
Then, the CPU 7-1 determines the flow rate Q (Q = A ·) of the fluid flowing in the pipe 1-1 of the
流量制御弁101Aにおけるアクチュエータ4のCPU4−1は、流量測定装置7から計測流量QApvが送られてくると、この送られてきた計測流量QApvと設定流量QAspとを比較し、計測流量QApvが設定流量QAspに一致するように、弁体1−2の弁開度θAを制御する。
When the measured flow rate QApv is sent from the flow rate measuring device 7, the CPU 4-1 of the
次に、CPU7−1は、流量測定装置7に接続されている次の流量制御弁かあるか否かをチェックする(ステップS308)。この場合、流量測定装置7には次の流量制御弁として流量制御弁101Bが接続されているので、ステップS308のYESに応じてステップS301へ戻る。
Next, the CPU 7-1 checks whether there is a next flow control valve connected to the flow measuring device 7 (step S308). In this case, since the flow
CPU7−1は、ステップS301において、流量制御弁101Bの弁開度センサS3からの弁体1−2の弁開度θB(現在の弁開度θB)を読み込む。そして、流量制御弁101Bの第1の圧力センサS1からの弁体1−2の上流側の流体圧力P1と第2の圧力センサS2からの弁体1−2の下流側の流体圧力P2を読み込み(ステップS302)、この読み込んだ流体圧力P1BとP2Bとから流量制御弁101Bの弁体1−2の上下流間の差圧ΔPを算出する(ステップS303)。
In step S301, the CPU 7-1 reads the valve opening degree θB (current valve opening degree θB) of the valve body 1-2 from the valve opening degree sensor S3 of the
そして、ステップS301で読み込んだ流量制御弁101Bの弁体1−2の現在の弁開度θBとステップS103で算出した流量制御弁101Bの弁体1−2の上下流間の現在の差圧ΔPに応ずる流量係数Cvを、メモリ7−2内の特性テーブルTCvから補間計算によって求める(ステップS304)。
Then, the current differential pressure ΔP between the current valve opening θB of the valve body 1-2 of the
ここで、CPU7−1は、現在の差圧ΔPが基準差圧よりも低い場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを低差圧時の特性テーブルTLから求め、現在の差圧ΔPが基準差圧と等しい場合、その差圧ΔPと現在の弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Here, when the current differential pressure ΔP is lower than the reference differential pressure, the CPU 7-1 obtains a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening θ from the characteristic table TL at the time of low differential pressure, When the current differential pressure ΔP is equal to the reference differential pressure, a flow coefficient Cv corresponding to the differential pressure ΔP and the current valve opening degree θ is obtained from the reference characteristic table TB.
また、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θth以下である場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを高差圧低開度時の特性テーブルTHから求め、現在の差圧ΔPが基準差圧よりも高く、かつ現在の弁開度θが低開度閾値θthよりも大きい場合、その差圧ΔPと弁開度θに応ずる流量係数Cvを基準の特性テーブルTBから求める。 Further, when the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening degree θ is equal to or less than the low opening threshold value θth, the flow coefficient Cv corresponding to the differential pressure ΔP and the valve opening degree θ is highly different. When the current differential pressure ΔP is higher than the reference differential pressure and the current valve opening θ is larger than the low opening threshold θth, the pressure difference ΔP and the valve opening are obtained. A flow coefficient Cv corresponding to the degree θ is obtained from the reference characteristic table TB.
そして、CPU7−1は、ステップS304で求めた流量係数CvとステップS303で求めた現在の差圧ΔPとから流量制御弁101Bの管路1−1内を流れる流体の流量Q(Q=A・Cv・(ΔP)1/2)を算出し(ステップS305)、この算出した流量Qを計測流量QBpvとして表示部7−3に表示するとともに(ステップS306)、インタフェース7−4を介して流量制御弁101Bのアクチュエータ4へ送る(ステップS307)。
Then, the CPU 7-1 determines the flow rate Q (Q = A ·) of the fluid flowing in the pipe line 1-1 of the
流量制御弁101Bにおけるアクチュエータ4のCPU4−1は、流量測定装置7から計測流量QBpvが送られてくると、この送られてきた計測流量QBpvと設定流量QBspとを比較し、計測流量QBpvが設定流量QBspに一致するように、弁体1−2の弁開度θBを制御する。
When the measured flow QBpv is sent from the flow measuring device 7, the CPU 4-1 of the
次に、CPU7−1は、流量測定装置7に接続されている次の流量制御弁かあるか否かをチェックする(ステップS308)。この場合、流量測定装置7には次の流量制御弁は接続されていないので、ステップS308のNOに応じてステップS301〜S308の処理ループを脱する。CPU7−1は、この処理動作を定周期で繰り返す。 Next, the CPU 7-1 checks whether there is a next flow control valve connected to the flow measuring device 7 (step S308). In this case, since the next flow rate control valve is not connected to the flow rate measuring device 7, the processing loop of steps S301 to S308 is removed in accordance with NO in step S308. The CPU 7-1 repeats this processing operation at regular intervals.
この実施の形態3においても、実施の形態1と同様に、弁体1−2の上下流間の差圧ΔPが基準差圧よりも低い場合、基準の特性テーブルTBではなく、低差圧時の特性テーブルTLから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められ、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁開度θが低開度閾値θth以下である場合、基準の特性テーブルTBではなく、高差圧低開度時の特性テーブルTHから求められ、弁体1−2の上下流間の差圧ΔPが基準差圧よりも高く、かつ弁体1−2の弁開度θが低開度閾値θthよりも大きい場合、基準の特性テーブルTBから現在の差圧ΔPと現在の弁開度θに応ずる流量係数Cvが求められる。これにより、低差圧,高差圧に拘わらず精度よく流量係数が求められ、結果的に精度の良い流量計測が可能となる。また、メモリ7−2の記憶容量を小さくすることができる。 In the third embodiment, similarly to the first embodiment, when the differential pressure ΔP between the upstream and downstream of the valve body 1-2 is lower than the reference differential pressure, not the reference characteristic table TB but the low differential pressure. The flow rate coefficient Cv corresponding to the current differential pressure ΔP and the current valve opening θ is obtained from the characteristic table TL, the differential pressure ΔP between the upstream and downstream of the valve element 1-2 is higher than the reference differential pressure, and the valve is opened. When the degree θ is equal to or lower than the low opening threshold θth, the pressure difference ΔP between the upstream and downstream of the valve body 1-2 is obtained from the characteristic table TH at the time of high differential pressure and low opening instead of the reference characteristic table TB. When the valve opening degree θ is higher than the reference differential pressure and the valve element 1-2 is larger than the low opening threshold value θth, the flow rate corresponding to the current differential pressure ΔP and the current valve opening degree θ from the reference characteristic table TB. A coefficient Cv is obtained. As a result, regardless of the low differential pressure and the high differential pressure, the flow coefficient can be obtained with high accuracy, and as a result, accurate flow measurement can be performed. In addition, the storage capacity of the memory 7-2 can be reduced.
また、この実施の形態3では、複数の流量制御弁101における流量計測を1つの流量測定装置7で行うことができるので、実施の形態1のように流量制御弁101のアクチュエータ2に個々に流量計測機能を設けなくてもよく、また実施の形態2のように流量制御弁101に1つずつ流量制御装置5を接続しなくてもよく、システムの大幅なコストダウンが図られるものとなる。
Further, in the third embodiment, since the flow rate measurement in the plurality of
なお、実施の形態1では、メモリ2−2に高差圧低開度時の特性テーブルTHを設けるようにしたが、高差圧低開度時の特性テーブルTHをメモリ2−2には設けずに、高差圧高開度時と同様にして基準の特性テーブルTBを用いるようにしてもよい。また、メモリ2−2の記憶容量は大きくなるが、基準の特性テーブルTBと低差圧時の特性テーブルTLと高差圧低開度時の特性テーブルTHに加え、高差圧高開度時の特性テーブルを設けるようにしてもよい。実施の形態2や実施の形態3でも同様である。 In the first embodiment, the memory 2-2 is provided with the characteristic table TH at the time of high differential pressure and low opening. However, the memory 2-2 is provided with the characteristic table TH at the time of high differential pressure and low opening. Instead, the reference characteristic table TB may be used as in the case of the high differential pressure and high opening. Although the memory capacity of the memory 2-2 increases, in addition to the reference characteristic table TB, the characteristic table TL at the time of low differential pressure, and the characteristic table TH at the time of high differential pressure and low opening, at the time of high differential pressure and high opening. The characteristic table may be provided. The same applies to the second and third embodiments.
また、上述した実施の形態1では、アクチュエータ2において計測した流量Qpvと設定流量Qspとを一致させるように弁体1−2の弁開度θを制御するようにしたが、アクチュエータ2に設定開度θspを与えるようにし、この設定開度θspと弁開度センサS3が検出する弁開度θ(θpv)とを一致させるように弁体1−2の弁開度θを制御するようにしてもよい。この場合、アクチュエータ2で計測された流量Qpvは、表示されるのみとなる。
In the first embodiment described above, the valve opening degree θ of the valve element 1-2 is controlled so that the flow rate Qpv measured by the
また、実施の形態2でも同様に、流量制御弁101において設定開度θspと検出される弁開度θpvとを一致させるように、弁体1−2の弁開度θを制御してもよい。この場合、流量測定装置5から流量制御弁101に計測流量Qpvを送る必要はない。実施の形態3でも同様である。
Similarly, in the second embodiment, the valve opening degree θ of the valve body 1-2 may be controlled so that the set opening degree θsp and the detected valve opening degree θpv in the
1…弁本体、1−1…管路、1−1…弁体、2…アクチュエータ、2−1…CPU、2−2…メモリ、2−3…表示部、2−4…モータ、S1…第1の圧力センサ、S2…第2の圧力センサ、S3…弁開度センサ、3…流量計測部、3A…差圧算出部、3B…Cv値演算部、3C…流量算出部、4…アクチュエータ、4−1…CPU、4−2…メモリ、4−3…モータ、5…流量測定装置、5−1…CPU、5−2…メモリ、5−3…表示部、5−4…インタフェース、6…流量計測部、6A…差圧算出部、6B…Cv値演算部、6C…流量算出部、7…流量測定装置、7−1…CPU、7−2…メモリ、7−3…表示部、7−4…インタフェース、100,101,101A,101B…流量制御弁、TL…低差圧時の特性テーブル、TB…基準の特性テーブル、TH…高差圧低開度時の特性テーブル。
DESCRIPTION OF
Claims (3)
前記メモリは、
前記特性テーブルとして、前記弁体の上下流間の差圧に対して予め定められた基準差圧における前記弁体の弁開度と流量係数との関係を示す基準の特性テーブルと、前記基準差圧よりも低い差圧における前記弁体の弁開度と流量係数との関係を示す低差圧時の特性テーブルとを少なくとも記憶し、
前記流量算出手段は、
現在の差圧が前記基準差圧よりも低い場合、その差圧と現在の弁開度に応ずる流量係数を前記低差圧時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて前記管路内を流れる流体の流量を算出する
ことを特徴とする流量計測装置。 A memory for storing a characteristic table showing the relationship between the valve opening degree of the valve body that regulates the flow rate of the fluid flowing in the pipe line and the flow coefficient, and the current valve opening degree of the valve body from the characteristic table in this memory A flow rate measuring device comprising: a flow rate calculating unit that calculates a flow rate coefficient that corresponds, and calculates a flow rate of the fluid flowing in the pipe line based on the calculated flow rate coefficient and a current differential pressure between the upstream and downstream of the valve body In
The memory is
As the characteristic table, a reference characteristic table showing a relationship between a valve opening degree of the valve body and a flow coefficient at a reference differential pressure predetermined with respect to a differential pressure between the upstream and downstream of the valve body, and the reference difference Storing at least a characteristic table at the time of low differential pressure indicating a relationship between a valve opening degree of the valve body and a flow coefficient at a differential pressure lower than the pressure,
The flow rate calculation means includes
When the current differential pressure is lower than the reference differential pressure, a flow coefficient corresponding to the differential pressure and the current valve opening is obtained from the characteristic table at the time of the low differential pressure, and the obtained flow coefficient and the current differential pressure The flow rate of the fluid flowing in the pipe line is calculated based on the flow rate measuring device.
前記メモリは、
前記特性テーブルとして、前記弁体の上下流間の差圧に対して予め定められた基準差圧における前記弁体の弁開度と流量係数との関係を示す基準の特性テーブルと、前記基準差圧よりも低い差圧における前記弁体の弁開度と流量係数との関係を示す低差圧時の特性テーブルと、前記基準差圧よりも高い差圧における前記弁体の予め定められた低開度閾値以下の弁開度と流量係数との関係を示す高差圧低開度時の特性テーブルとを少なくとも記憶し、
前記流量算出手段は、
現在の差圧が前記基準差圧よりも低い場合、その差圧と現在の弁開度に応ずる流量係数を前記低差圧時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて前記管路内を流れる流体の流量を算出し、
現在の差圧が前記基準差圧よりも高く、かつ現在の弁開度が前記低開度閾値以下である場合、その差圧と弁開度に応ずる流量係数を前記高差圧低開度時の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて前記管路内を流れる流体の流量を算出する
ことを特徴とする流量計測装置。 A memory for storing a characteristic table showing the relationship between the valve opening degree of the valve body that regulates the flow rate of the fluid flowing in the pipe line and the flow coefficient, and the current valve opening degree of the valve body from the characteristic table in this memory A flow rate measuring device comprising: a flow rate calculating unit that calculates a flow rate coefficient that corresponds, and calculates a flow rate of the fluid flowing in the pipe line based on the calculated flow rate coefficient and a current differential pressure between the upstream and downstream of the valve body In
The memory is
As the characteristic table, a reference characteristic table showing a relationship between a valve opening degree of the valve body and a flow coefficient at a reference differential pressure predetermined with respect to a differential pressure between the upstream and downstream of the valve body, and the reference difference A characteristic table at the time of low differential pressure indicating the relationship between the valve opening degree and the flow coefficient of the valve body at a differential pressure lower than the pressure, and a predetermined low value of the valve body at a differential pressure higher than the reference differential pressure. Storing at least a characteristic table at the time of high differential pressure and low opening indicating a relationship between a valve opening less than an opening threshold and a flow coefficient;
The flow rate calculation means includes
When the current differential pressure is lower than the reference differential pressure, a flow coefficient corresponding to the differential pressure and the current valve opening is obtained from the characteristic table at the time of the low differential pressure, and the obtained flow coefficient and the current differential pressure And calculating the flow rate of the fluid flowing in the pipe line based on
When the current differential pressure is higher than the reference differential pressure and the current valve opening is less than or equal to the low opening threshold, the flow coefficient corresponding to the differential pressure and the valve opening is set at the high differential pressure and low opening. A flow rate measuring device characterized in that the flow rate of the fluid flowing in the pipe is calculated based on the flow rate coefficient and the current differential pressure.
前記流量算出手段は、
現在の差圧が前記基準差圧よりも高く、現在の弁開度が前記低開度閾値よりも大きい場合、その差圧と弁開度に応ずる流量係数を前記基準の特性テーブルから求め、この求めた流量係数と現在の差圧とに基づいて前記管路内を流れる流体の流量を算出する
ことを特徴とする流量計測装置。 In the flow rate measuring device according to claim 2,
The flow rate calculation means includes
When the current differential pressure is higher than the reference differential pressure and the current valve opening is larger than the low opening threshold, a flow coefficient corresponding to the differential pressure and the valve opening is obtained from the reference characteristic table. A flow rate measuring apparatus, wherein the flow rate of the fluid flowing in the pipe line is calculated based on the obtained flow rate coefficient and the current differential pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008281009A JP5113722B2 (en) | 2008-10-31 | 2008-10-31 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008281009A JP5113722B2 (en) | 2008-10-31 | 2008-10-31 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010107419A JP2010107419A (en) | 2010-05-13 |
JP5113722B2 true JP5113722B2 (en) | 2013-01-09 |
Family
ID=42296994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008281009A Active JP5113722B2 (en) | 2008-10-31 | 2008-10-31 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5113722B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014126425A (en) * | 2012-12-26 | 2014-07-07 | Azbil Corp | Flow rate calculation device and flow rate control device |
JP2015166720A (en) * | 2014-03-04 | 2015-09-24 | アズビル株式会社 | Flow measuring device and flow control valve |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102473355A (en) | 2010-05-07 | 2012-05-23 | 松下电器产业株式会社 | Awake state maintaining device and awake state maintaining method |
US20130240045A1 (en) * | 2012-03-15 | 2013-09-19 | Xiufeng Pang | Method for Determining a Fluid Flow Rate With a Fluid Control Valve |
KR101357618B1 (en) * | 2012-06-18 | 2014-02-03 | 한국항공우주연구원 | Flow rate measuring apparatus and method using differential pressure of variable control valve, and measurement method for inherent flow coefficient |
CN108425876A (en) * | 2018-05-17 | 2018-08-21 | 江苏大学 | A kind of butterfly valve apparatus and its control method suitable for pump pipeline system |
CN110567045A (en) * | 2019-09-12 | 2019-12-13 | 北京市京海换热设备制造有限责任公司 | Method for virtually calculating flow of heat supply system |
DE102020210922A1 (en) | 2020-08-28 | 2022-03-03 | Siemens Aktiengesellschaft | Process and arrangement for flow measurement |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6138517U (en) * | 1984-08-10 | 1986-03-11 | 株式会社 武藤電機 | flow measuring device |
JPS61136113A (en) * | 1984-12-06 | 1986-06-24 | Kurimoto Iron Works Ltd | Flow rate control valve having flow rate measuring function |
JPS6197721U (en) * | 1985-12-04 | 1986-06-23 | ||
JPH04133108A (en) * | 1990-09-26 | 1992-05-07 | Takenaka Komuten Co Ltd | Flow rate control valve and flow rate measuring instrument using this valve |
-
2008
- 2008-10-31 JP JP2008281009A patent/JP5113722B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014126425A (en) * | 2012-12-26 | 2014-07-07 | Azbil Corp | Flow rate calculation device and flow rate control device |
JP2015166720A (en) * | 2014-03-04 | 2015-09-24 | アズビル株式会社 | Flow measuring device and flow control valve |
Also Published As
Publication number | Publication date |
---|---|
JP2010107419A (en) | 2010-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113722B2 (en) | Flow measuring device | |
CN101839737B (en) | Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same | |
JP6795832B2 (en) | Flow control equipment, flow calibration method for flow control equipment, flow measurement equipment and flow measurement method using flow measurement equipment | |
CN109470324B (en) | Gas flow calibration method and device, control system and storage medium | |
KR101544648B1 (en) | Flow calculation apparatus and flow control apparatus | |
JP6929566B2 (en) | Flow rate measuring method and flow measuring device | |
CN101545666B (en) | Ventilating system and ventilating system control method | |
CN110431508A (en) | Pressure flow-rate controller and flow control methods | |
JP2007095042A (en) | Method of detecting abnormality in fluid supply system using flow rate control device having pressure sensor | |
JP2007256231A (en) | Connecting pipe clogging detector and connecting pipe clogging detection method | |
JP2008015581A (en) | Method for detecting abnormal operation of the valve on the downstream side of the throttle mechanism of the pressure type flow control device | |
JP6938036B2 (en) | Concentration detection method and pressure type flow control device | |
CN103727304A (en) | Cavitation evaluating device | |
JP3890916B2 (en) | Valve management system | |
CN109489741A (en) | Fluid flow areal survey device and method | |
JP5286032B2 (en) | Actuator and flow measurement device | |
JP2008506117A (en) | System and method for posture insensitive flow device | |
JP2020134243A (en) | Flow rate measuring system | |
CN102364305A (en) | Physical quantity sensor | |
JP7243140B2 (en) | Hydrogen fuel storage system | |
KR20210099116A (en) | Systems and methods for measuring mass flow, density, temperature or flow rate | |
CN114284532B (en) | Air flow calculation method, medium, terminal and system for fuel cell system | |
US12196597B2 (en) | Method for operating a flowmeter and flowmeter | |
JP4804798B2 (en) | Pressure detector and clogging diagnosis method for pressure detector | |
JP5005404B2 (en) | Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121009 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5113722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |