[go: up one dir, main page]

JP5112621B2 - Purification method and production method of 5-substituted oxazole compounds - Google Patents

Purification method and production method of 5-substituted oxazole compounds Download PDF

Info

Publication number
JP5112621B2
JP5112621B2 JP2005162456A JP2005162456A JP5112621B2 JP 5112621 B2 JP5112621 B2 JP 5112621B2 JP 2005162456 A JP2005162456 A JP 2005162456A JP 2005162456 A JP2005162456 A JP 2005162456A JP 5112621 B2 JP5112621 B2 JP 5112621B2
Authority
JP
Japan
Prior art keywords
compound
solvent
formula
solvents
oxazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005162456A
Other languages
Japanese (ja)
Other versions
JP2006335685A (en
Inventor
宏 酒井
安春 木村
秀和 宮崎
敦 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2005162456A priority Critical patent/JP5112621B2/en
Publication of JP2006335685A publication Critical patent/JP2006335685A/en
Application granted granted Critical
Publication of JP5112621B2 publication Critical patent/JP5112621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

本発明は、農薬・医薬・機能材料等の製造中間体等として有用な5−置換オキサゾール化合物の精製方法及び製造方法に関する。   The present invention relates to a purification method and a production method of a 5-substituted oxazole compound useful as an intermediate for production of agricultural chemicals, medicines, functional materials and the like.

5−(4’−ニトロフェニル)オキサゾール化合物等の5−置換オキサゾール化合物は、農薬・医薬・機能材料、又はこれらの製造中間体として有用である。
従来、この5−置換オキサゾール化合物の製造方法としては、アルデヒドとp−トリルスルホニルメチルイソシアニド(以下、「TosMIC」と略記する。)とを反応させる方法が知られている(特許文献1等)。また、この方法においては、反応混合物から、メタノール−水の混合溶媒を晶析溶媒として用いて、目的とする5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールを単離している。
5-Substituted oxazole compounds such as 5- (4′-nitrophenyl) oxazole compounds are useful as agricultural chemicals, pharmaceuticals, functional materials, or production intermediates thereof.
Conventionally, as a method for producing this 5-substituted oxazole compound, a method of reacting an aldehyde with p-tolylsulfonylmethyl isocyanide (hereinafter abbreviated as “TosMIC”) is known (Patent Document 1, etc.). In this method, the desired 5- (2′-methoxy-4′-nitrophenyl) oxazole is isolated from the reaction mixture using a methanol-water mixed solvent as a crystallization solvent.

WO02/076958号公報WO02 / 076958

上記特許文献1に記載された製造方法によれば、目的とする5−置換オキサゾール化合物を収率よく得ることができる。
しかしながら、上記特許文献1に記載の方法には、得られた5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールを、水素化触媒の存在下に該化合物のニトロ基を水素還元して、5−(2’−メトキシ−4’−アミノフェニル)オキサゾールを得る反応を行う場合に、目的物が効率よく得られない場合があるという問題があった。
According to the production method described in Patent Document 1, the intended 5-substituted oxazole compound can be obtained in good yield.
However, in the method described in Patent Document 1, the obtained 5- (2′-methoxy-4′-nitrophenyl) oxazole is obtained by reducing the nitro group of the compound with hydrogen in the presence of a hydrogenation catalyst. , 5- (2′-methoxy-4′-aminophenyl) oxazole has a problem in that the target product may not be obtained efficiently.

本発明者らは、この問題を解決すべく鋭意研究した。その結果、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの水素還元反応が完全に進行せず、目的物が効率よく得られない理由は、上記特許文献1に記載の方法で得られた5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールに、水素化反応を阻害する不純物が存在するためであると考えられた。   The present inventors have intensively studied to solve this problem. As a result, the reason why the hydrogen reduction reaction of 5- (2′-methoxy-4′-nitrophenyl) oxazole does not proceed completely and the target product cannot be obtained efficiently is obtained by the method described in Patent Document 1. The resulting 5- (2′-methoxy-4′-nitrophenyl) oxazole was considered to be due to the presence of impurities that inhibit the hydrogenation reaction.

そこで、本発明は、不純物のない高純度な5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールなどの5−置換オキサゾールを効率よく単離することができる5−置換オキサゾール化合物の精製方法、及び5−置換オキサゾール化合物の製造方法を提供することを課題とする。   Therefore, the present invention provides a method for purifying a 5-substituted oxazole compound that can efficiently isolate a 5-substituted oxazole such as high-purity 5- (2′-methoxy-4′-nitrophenyl) oxazole free of impurities. And a method for producing a 5-substituted oxazole compound.

本発明者らは、更に鋭意研究した結果、上記特許文献1に記載の方法で得られた5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールを含む反応混合物から、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールを晶析させるに際して用いる晶析溶媒として、メチルイソブチルケトンと水との混合溶媒を使用すると、極めて高純度な5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールを効率よく単離することができることを見出し、この知見を一般化して、本発明を完成するに至った。   As a result of further intensive studies, the inventors of the present invention obtained 5- (2 ′ ′) from a reaction mixture containing 5- (2′-methoxy-4′-nitrophenyl) oxazole obtained by the method described in Patent Document 1. When a mixed solvent of methyl isobutyl ketone and water is used as a crystallization solvent for crystallization of -methoxy-4'-nitrophenyl) oxazole, extremely high purity 5- (2'-methoxy-4'-nitro The inventors have found that phenyl) oxazole can be efficiently isolated, and generalized this knowledge to complete the present invention.

かくして本発明の第1によれば、(1)〜(7)の精製方法が提供される。
(1)式(I)
Thus, according to the first aspect of the present invention, the purification methods (1) to (7) are provided.
(1) Formula (I)

Figure 0005112621
Figure 0005112621

(式中、Rは、水素原子又はC1−5アルキル基を表し、Rは、ハロゲン原子、C1−5アルキル基又はC1−5アルコキシ基を表し、nは、0、1又は2を示す。nが2のとき、Rは同一であっても、相異なっていてもよい。)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒を晶析溶媒として用いることを特徴とする前記式(I)で表される化合物の精製方法。
(2)式(I)
(Wherein, R 1 represents a hydrogen atom or a C 1-5 alkyl group, R 2 represents a halogen atom, a C 1-5 alkyl group or a C 1-5 alkoxy group, and n is 0, 1 or when .n showing a 2 is 2, R 2 is also the same, the solubility at 15 ℃ of the compound represented by the phase may be different.) is less than 4.0 wt%, and water A method for purifying a compound represented by the formula (I), wherein an organic solvent for phase separation is used as a crystallization solvent.
(2) Formula (I)

Figure 0005112621
(式中、Rは、水素原子又はC1−5アルキル基を表し、Rは、ハロゲン原子、C1−5アルキル基又はC1−5アルコキシ基を表し、nは、0、1又は2を示す。nが2のとき、Rは同一であっても、相異なっていてもよい。)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒と水との混合溶媒を晶析溶媒として用いることを特徴とする式(I)で表される化合物の精製方法。
(3)前記式(I)で表される化合物が、式(I−1)
Figure 0005112621
(Wherein, R 1 represents a hydrogen atom or a C 1-5 alkyl group, R 2 represents a halogen atom, a C 1-5 alkyl group or a C 1-5 alkoxy group, and n is 0, 1 or when .n showing a 2 is 2, R 2 is also the same, the solubility at 15 ℃ of the compound represented by the phase may be different.) is less than 4.0 wt%, and water A method for purifying a compound represented by formula (I), wherein a mixed solvent of an organic solvent and water for phase separation is used as a crystallization solvent.
(3) The compound represented by the formula (I) is represented by the formula (I-1)

Figure 0005112621
Figure 0005112621

(式中、R及びnは、前記と同じ意味を表す。)で表される化合物であることを特徴とする(1)または(2)に記載の精製方法。
(4)前記有機溶媒として、メチルイソブチルケトン、アニソール、酢酸n−ブチル、シクロヘキサノン、及びモノクロロベンゼンからなる群から選ばれる一種を用いることを特徴とする(1)〜(3)のいずれかに記載の精製方法。
(5)前記有機溶媒として、メチルイソブチルケトンを用いることを特徴とする(1)〜(3)のいずれかに記載の精製方法。
(6)前記式(I)で表される化合物が、式(I−2)
(Wherein R 2 and n represent the same meaning as described above), and the purification method according to (1) or (2).
(4) The organic solvent is one selected from the group consisting of methyl isobutyl ketone, anisole, n-butyl acetate, cyclohexanone, and monochlorobenzene, according to any one of (1) to (3) Purification method.
(5) The purification method according to any one of (1) to (3), wherein methyl isobutyl ketone is used as the organic solvent.
(6) The compound represented by the formula (I) is represented by the formula (I-2)

Figure 0005112621
で表される化合物であることを特徴とする(1)または(2)に記載の精製方法。
(7)前記式(I)で表される化合物が、式(II)
Figure 0005112621
The purification method according to (1) or (2), wherein the compound is represented by the formula:
(7) The compound represented by the formula (I) is represented by the formula (II)

Figure 0005112621
Figure 0005112621

(式中、R及びnは、前記と同じ意味を表す。)で表される化合物と、式(III) (Wherein R 2 and n represent the same meaning as described above), and the formula (III)

Figure 0005112621
Figure 0005112621

(式中、Rは前記と同じ意味を表す。)で表される化合物とを反応させて得られる化合物であることを特徴とする(1)〜(6)のいずれかに記載の精製方法。 (Wherein R 1 represents the same meaning as described above) and is a compound obtained by reacting with the compound represented by (1) to (6), .

本発明の第2によれば、下記(8)および(9)の製造方法が提供される。
(8)式(I)
According to the second aspect of the present invention, the following production methods (8) and (9) are provided.
(8) Formula (I)

Figure 0005112621
Figure 0005112621

(式中、Rは、水素原子又はC1−5アルキル基を表し、Rは、ハロゲン原子、C1−5アルキル基又はC1−5アルコキシ基を表し、nは、0、1又は2を示す。但し、nが2のとき、Rは同一であっても、相異なっていてもよい。)で表される化合物の製造方法であって、式(II) (Wherein, R 1 represents a hydrogen atom or a C 1-5 alkyl group, R 2 represents a halogen atom, a C 1-5 alkyl group or a C 1-5 alkoxy group, and n is 0, 1 or Wherein R 2 may be the same or different when n is 2, and is a method for producing a compound represented by formula (II):

Figure 0005112621
Figure 0005112621

(式中、R及びnは、前記と同じ意味を表す。)で表される化合物と、式(III) (Wherein R 2 and n represent the same meaning as described above), and the formula (III)

Figure 0005112621
Figure 0005112621

(式中、Rは前記と同じ意味を表す。)で表される化合物とを反応させる工程と、前記式(I)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒と水との混合溶媒を使用して、前記式(I)で表される化合物を晶析させる工程とを有することを特徴とする前記式(I)で表される化合物の製造方法。
(9)前記有機溶媒として、メチルイソブチルケトンを用いることを特徴とする(8)に記載の製造方法。
(Wherein R 1 represents the same meaning as described above) and the compound represented by the formula (I) has a solubility at 15 ° C. of less than 4.0% by weight. And having a step of crystallizing the compound represented by the formula (I) using a mixed solvent of an organic solvent and water that is phase-separated from water, and the formula (I), A method for producing the represented compound.
(9) The production method according to (8), wherein methyl isobutyl ketone is used as the organic solvent.

本発明の精製方法によれば、前記式(I)で表されるオキサゾール化合物を、高純度で、かつ効率よく単離することができる。
本発明の製造方法によれば、前記式(I)で表されるオキサゾール化合物を、高純度で、かつ効率よく製造することができる。
本発明の精製方法および製造方法により得られる前記式(I)で表されるオキサゾール化合物を用いることにより、最終目的物である農薬・医薬・機能材料等を効率よく得ることができる。
According to the purification method of the present invention, the oxazole compound represented by the formula (I) can be isolated with high purity and efficiency.
According to the production method of the present invention, the oxazole compound represented by the formula (I) can be produced with high purity and efficiency.
By using the oxazole compound represented by the formula (I) obtained by the purification method and the production method of the present invention, it is possible to efficiently obtain agricultural chemicals, pharmaceuticals, functional materials, and the like, which are final target products.

以下、本発明を、1)前記式(I)で表される化合物の精製方法、および2)前記式(I)で表される化合物の製造方法に項分けして詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing into 1) a method for purifying the compound represented by the formula (I) and 2) a method for producing the compound represented by the formula (I).

1)前記式(I)で表される化合物の精製方法
本発明の精製方法は、前記式(I)で表される化合物の精製方法であって、前記式(I)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒を晶析溶媒として用いることを特徴とする。
1) Purification method of the compound represented by the formula (I) The purification method of the present invention is a purification method of the compound represented by the formula (I), wherein the compound represented by the formula (I) is purified. An organic solvent having a solubility at 15 ° C. of less than 4.0% by weight and phase-separating with water is used as a crystallization solvent.

(1)式(I)で表される化合物
本発明は、前記式(I)で表される化合物(以下、「化合物(I)」ということがある。)を精製する方法である。
前記式(I)中、Rは、水素原子又はC1−5アルキル基を表す。
1−5アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。
(1) Compound Represented by Formula (I) The present invention is a method for purifying a compound represented by the formula (I) (hereinafter sometimes referred to as “compound (I)”).
In the formula (I), R 1 represents a hydrogen atom or a C 1-5 alkyl group.
Examples of the C 1-5 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group.

は、ハロゲン原子、C1−5アルキル基又はC1−5アルコキシ基を表す。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 C1−5アルキル基としては、前記RのC1−5アルキル基として列挙したものと同様のものが挙げられる。
1−5アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、sec−ブトキシ基、イソブトキシ基、t−ブトキシ基等が挙げられる。
nは、0、1又は2を示す。nが2のとき、Rは同一であっても、相異なっていてもよい。
R 2 represents a halogen atom, a C 1-5 alkyl group or a C 1-5 alkoxy group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The C 1-5 alkyl group, include the same ones listed as the C 1-5 alkyl groups of said R 1.
Examples of the C 1-5 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a sec-butoxy group, an isobutoxy group, and a t-butoxy group.
n represents 0, 1 or 2. When n is 2, R 2 may be the same or different.

これらの中でも、本発明においては、化合物(I)が前記式(I−1)で表される化合物であるのが好ましく、前記式(I−2)で表される化合物であるのがより好ましい。
前記式(I−1)中、R及びnは、前記と同じ意味を表わす。
Among these, in the present invention, the compound (I) is preferably a compound represented by the formula (I-1), and more preferably a compound represented by the formula (I-2). .
In the formula (I-1), R 2 and n represent the same meaning as described above.

(2)有機溶媒
本発明の晶析方法は、晶析溶媒として、化合物(I)の15℃における溶解度が4.0重量%未満、好ましくは1.5重量%〜4.0重量%であり、かつ水と相分離する有機溶媒を用いる。
ここで、化合物(I)の15℃における溶解度とは、化合物(I)が15℃の有機溶媒に溶解する最大量をいい、4.0重量%とは、化合物(I)の有機溶媒溶液全体に対する含有量が4.0重量%であることを意味する。
また、水と相分離する有機溶媒とは、水と混合した場合に均一とはならず、2相に分離する有機溶媒をいう。
(2) Organic solvent In the crystallization method of the present invention, the solubility of the compound (I) at 15 ° C. is less than 4.0 wt%, preferably 1.5 wt% to 4.0 wt% as the crystallization solvent. And an organic solvent that is phase-separated from water.
Here, the solubility of compound (I) at 15 ° C. means the maximum amount of compound (I) dissolved in an organic solvent at 15 ° C., and 4.0% by weight means the whole organic solvent solution of compound (I). It means that the content with respect to is 4.0% by weight.
Moreover, the organic solvent which phase-separates with water means the organic solvent which does not become uniform when mixed with water but separates into two phases.

本発明に用いる有機溶媒としては、化合物(I)の種類にもよるが、一般的には、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒;ジブチルエーテル、アニソール、エトキシベンゼン等のエーテル系溶媒;酢酸n−ブチル等のエステル系溶媒;モノクロロベンゼン等のハロゲン化炭化水素系溶媒;等が挙げられる。これらの有機溶媒は一種単独で、あるいは二種以上を混合して用いることができる。
これらの中でも、化合物(I)が前記式(I−1)で表される化合物である場合には、メチルイソブチルケトン、アニソール、酢酸n−ブチル、シクロヘキサノン、及びモノクロロベンゼンからなる群から選ばれる一種が好ましく、メチルイソブチルケトンがより好ましい。
Although the organic solvent used in the present invention depends on the type of compound (I), generally, it is a ketone solvent such as diethyl ketone, methyl isobutyl ketone or cyclohexanone; an ether solvent such as dibutyl ether, anisole or ethoxybenzene. Solvents; ester solvents such as n-butyl acetate; halogenated hydrocarbon solvents such as monochlorobenzene; These organic solvents can be used individually by 1 type or in mixture of 2 or more types.
Among these, when the compound (I) is a compound represented by the formula (I-1), a kind selected from the group consisting of methyl isobutyl ketone, anisole, n-butyl acetate, cyclohexanone, and monochlorobenzene. Is preferred, and methyl isobutyl ketone is more preferred.

本発明においては、晶析溶媒として、前記有機溶媒の一種又は二種以上と水との混合溶媒を用いるのがさらに好ましい。なかでも、化合物(I)が前記式(I−2)で表される化合物である場合には、メチルイソブチルケトンと水との混合溶媒の使用が特に好ましい。   In the present invention, it is more preferable to use a mixed solvent of one or more organic solvents and water as a crystallization solvent. Especially, when compound (I) is a compound represented by said Formula (I-2), use of the mixed solvent of methyl isobutyl ketone and water is especially preferable.

有機溶媒と水との混合割合は、特に限定されず、目的物の純度及び回収率等を考慮して、適宜定めることができる。例えば、化合物(I)が、4−(2’−メトキシ−4’−ニトロフェニル)オキサゾールである場合には、水と有機溶媒との混合割合は、重量比で、通常、水:有機溶媒=5:1〜1:5、好ましくは3:1〜1:3の範囲である。   The mixing ratio of the organic solvent and water is not particularly limited, and can be appropriately determined in consideration of the purity and recovery rate of the target product. For example, when the compound (I) is 4- (2′-methoxy-4′-nitrophenyl) oxazole, the mixing ratio of water and the organic solvent is usually a water: organic solvent = weight ratio. The range is 5: 1 to 1: 5, preferably 3: 1 to 1: 3.

本発明の精製方法においては、精製の対象となる化合物(I)が、前記式(II)で表される化合物(以下、「化合物(II)」ということがある。)と、式(III)で表される化合物(以下、「化合物(III)ということがある。」とを反応させて得られる化合物であることが好ましい。   In the purification method of the present invention, the compound (I) to be purified is a compound represented by the above formula (II) (hereinafter sometimes referred to as “compound (II)”) and the formula (III). It is preferable that it is a compound obtained by making it react with the compound (henceforth "compound (III)") represented by these.

前記式(II)中、R及びnは、前記と同じ意味を表す。
化合物(II)の具体例としては、4−ニトロベンズアルデヒド、2−メトキシ−4−ニトロベンズアルデヒド、2−エトキシ−4−ニトロベンズアルデヒド、3−メトキシ−4−ニトロベンズアルデヒド、2−クロロ−4−ニトロベンズアルデヒド、2−メチル−4−ニトロベンズアルデヒド、3−ニトロベンズアルデヒド、4−メチル−3−ニトロベンズアルデヒド、4−クロロ−3−ニトロベンズアルデヒド、4−メトキシ−3−ニトロベンズアルデヒド、4−メトキシ−2−ニトロベンズアルデヒド、4−メチル−2−ニトロベンズアルデヒド、5−メトキシ−2−ニトロベンズアルデヒド等が挙げられるが、これらに限定されるものではない。
In the formula (II), R 2 and n represent the same meaning as described above.
Specific examples of compound (II) include 4-nitrobenzaldehyde, 2-methoxy-4-nitrobenzaldehyde, 2-ethoxy-4-nitrobenzaldehyde, 3-methoxy-4-nitrobenzaldehyde, 2-chloro-4-nitrobenzaldehyde. 2-methyl-4-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-methyl-3-nitrobenzaldehyde, 4-chloro-3-nitrobenzaldehyde, 4-methoxy-3-nitrobenzaldehyde, 4-methoxy-2-nitrobenzaldehyde , 4-methyl-2-nitrobenzaldehyde, 5-methoxy-2-nitrobenzaldehyde and the like, but are not limited thereto.

化合物(III)は、一般的にイソニトリルと称される化合物である。
式(III)中、Rは前記と同じ意味を表す。
本発明においては、化合物(III)の中でも、Rが水素原子である化合物(TosMIC)の使用が、入手が容易であることや、化合物(I)を収率よく得られることなどの理由から特に好ましい。
Compound (III) is a compound generally called isonitrile.
In formula (III), R 1 represents the same meaning as described above.
In the present invention, among the compounds (III), the use of the compound (TosMIC) in which R 1 is a hydrogen atom is easy to obtain, and the compound (I) can be obtained in high yield. Particularly preferred.

TosMICは、例えば、N−(p−トリルスルホニルメチル)ホルムアミド(TosMFA)を、1,2−ジメトキシエタン(DME)中、オキシ塩化リンを用いる方法(Organic Synthesis,Vol.57,102−106、Synthesis,400−402(1985年)、Tetrahedron Lett.,2367(1972年)などに記載される方法や、ホスゲン、ジホスゲンを用いる方法(Angew.Chem.Int.Ed.Engl.16、259頁、(1977年)、Angew.Chem.77,492頁、(1965年)、DE4032925等)などにより、製造し、入手することができる。   For example, TosMIC is a method in which N- (p-tolylsulfonylmethyl) formamide (TosMFA) is used in 1,2-dimethoxyethane (DME) with phosphorus oxychloride (Organic Synthesis, Vol. 57, 102-106, Synthesis). , 400-402 (1985), Tetrahedron Lett., 2367 (1972) and the like, and methods using phosgene and diphosgene (Angew. Chem. Int. Ed. Engl. 16, 259, (1977). Year), Angew.Chem.77, p.492, (1965), DE 4032925, etc.) and the like.

化合物(II)と化合物(III)とを反応させるに際し、両者の使用割合は、化合物(II)1モルに対して、化合物(III)が、通常1〜3倍モルとなる量である。   When the compound (II) and the compound (III) are reacted, the use ratio of both is an amount such that the compound (III) is usually 1 to 3 moles per 1 mole of the compound (II).

化合物(II)と化合物(III)との反応は、適当な溶媒中で行うことができる。
用いる溶媒としては、反応に不活性な溶媒であれば特に制限されない。例えば、水;塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、ベンゾニトリル、ベンゾトリフルオライド、クロロベンゼン等の芳香族系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;などが挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。
The reaction of compound (II) and compound (III) can be carried out in a suitable solvent.
The solvent to be used is not particularly limited as long as it is an inert solvent for the reaction. For example, water; halogen solvents such as methylene chloride, chloroform and dichloroethane; aromatic solvents such as benzene, toluene, xylene, benzonitrile, benzotrifluoride and chlorobenzene; ester solvents such as methyl acetate, ethyl acetate and isopropyl acetate Ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone; ether solvents such as diethyl ether and tetrahydrofuran (THF); nitrile solvents such as acetonitrile; These solvents can be used alone or in combination of two or more.

これらの中でも、化合物(III)の合成または後処理後の抽出に使用できる溶媒、例えば塩化メチレン等のハロゲン系溶媒;トルエン、キシレン、クロロベンゼン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;メチルイソブチルケトン等のケトン系溶媒;THF;アセトニトリル;水と上記例示した有機溶媒との混合溶媒が好ましい。   Among these, solvents that can be used for the synthesis of compound (III) or extraction after post-treatment, for example, halogen solvents such as methylene chloride; aromatic solvents such as toluene, xylene, chlorobenzene; ester solvents such as ethyl acetate; A ketone solvent such as methyl isobutyl ketone; THF; acetonitrile; a mixed solvent of water and the organic solvent exemplified above is preferable.

溶媒の使用量は、特に制限されないが、化合物(II)または化合物(I)1重量部に対し、1〜1000重量部、好ましくは5〜100重量部の範囲である。   Although the usage-amount of a solvent is not specifically limited, It is 1-1000 weight part with respect to 1 weight part of compound (II) or compound (I), Preferably it is the range of 5-100 weight part.

化合物(II)と化合物(III)との反応は、より具体的には、以下に示す製造方法1〜3により行うことができる。   More specifically, the reaction between compound (II) and compound (III) can be carried out by the production methods 1 to 3 shown below.

(製造方法1)化合物(III)の溶液と化合物(II)とを、非プロトン性溶媒とプロトン性溶媒との混合溶媒中、塩基存在下反応させる方法。 (Production Method 1) A method in which a solution of compound (III) and compound (II) are reacted in the presence of a base in a mixed solvent of an aprotic solvent and a protic solvent.

用いる塩基としては、有機塩基、無機塩基いずれをも使用することができる。有機塩基としては、ジシクロヘキシルアミン、ジイソプロピルアミン、ジエチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン等のアルキルアミン;N,N−ジメチルアニリン等のアルキルアニリン;ピペリジン、ピロリジン、2,2,6,6−テトラメチルピペリジン、モルホリン、ピペラジン、イミダゾール、1−エチルピペリジン、4−メチルモルホリン、1−メチルピロリジン、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン等の複素環状アミン;ベンジルトリエチルアンモニウムクロリド、メチルトリオクチルアンモニウムクロリド等の4級アンモニウム塩もしくはN,N,N’,N’−テトラメチルエチレンジアミン等のジアミン類;等を例示することができる。また無機塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられる。   As the base to be used, either an organic base or an inorganic base can be used. Examples of organic bases include alkylamines such as dicyclohexylamine, diisopropylamine, diethylamine, triethylamine, tributylamine and diisopropylethylamine; alkylanilines such as N, N-dimethylaniline; piperidine, pyrrolidine, 2,2,6,6-tetramethyl Piperidine, morpholine, piperazine, imidazole, 1-ethylpiperidine, 4-methylmorpholine, 1-methylpyrrolidine, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0]- Heterocyclic amines such as 7-undecene; quaternary ammonium salts such as benzyltriethylammonium chloride and methyltrioctylammonium chloride or diamines such as N, N, N ′, N′-tetramethylethylenediamine; It can be exemplified. Examples of the inorganic base include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like.

非プロトン性溶媒としては、化合物(III)の合成もしくは抽出に使用できる溶媒が好ましい。例えば、塩化メチレン、クロロホルム、ジクロロエタン、塩化メチレン等のハロゲン系溶媒;ベンゼン、クロロベンゼン、トルエン、キシレン、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;等が挙げられる。またこれらを混合して用いてもよい。   The aprotic solvent is preferably a solvent that can be used for the synthesis or extraction of compound (III). For example, halogen solvents such as methylene chloride, chloroform, dichloroethane, methylene chloride; aromatic solvents such as benzene, chlorobenzene, toluene, xylene, nitrobenzene, benzonitrile; ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate; Examples thereof include ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether and tetrahydrofuran; nitrile solvents such as acetonitrile; and the like. Moreover, you may mix and use these.

プロトン性溶媒としては、水、C1〜C10アルコール、モノまたはポリアルキレングリコールからなる群から選ばれる少なくとも1種以上であるのが好ましい。具体的には、水、メタノール、エタノール、プロパノール等のアルコール類;エチレングリコール、ジエチレングリコール、エチレングリコールモノメチルエーテル等のグリコール類;が挙げられる。これらの中でも、メタノール、エチレングリコール、2−メトキシエタノールの使用が好ましい。   The protic solvent is preferably at least one selected from the group consisting of water, C1-C10 alcohols, mono- or polyalkylene glycols. Specific examples include alcohols such as water, methanol, ethanol, and propanol; glycols such as ethylene glycol, diethylene glycol, and ethylene glycol monomethyl ether. Among these, use of methanol, ethylene glycol, and 2-methoxyethanol is preferable.

反応は、化合物(II)1モルに対して、塩基を、2.0モル以上、好ましくは2.0〜2.5モル、さらに好ましくは2.0〜2.2モルの範囲で用いて行われる。   The reaction is carried out using a base in an amount of 2.0 mol or more, preferably 2.0 to 2.5 mol, more preferably 2.0 to 2.2 mol, relative to 1 mol of compound (II). Is called.

化合物(III)の使用量は、特に制限されないが、化合物(II)1モルに対して、0.8〜1.5モルの範囲が好ましく、0.9〜1.2モルの範囲がより好ましい。   The amount of compound (III) used is not particularly limited, but is preferably in the range of 0.8 to 1.5 mol, more preferably in the range of 0.9 to 1.2 mol, relative to 1 mol of compound (II). .

用いる非プロトン性溶媒の量は特に制限されず、化合物(III)は溶解する量であればよく、また、非プロトン性溶媒とプロトン性溶媒の混合比も特に制限されず、任意の値を設定できる。   The amount of the aprotic solvent to be used is not particularly limited, and the compound (III) may be an amount capable of dissolving, and the mixing ratio of the aprotic solvent and the protic solvent is not particularly limited, and an arbitrary value is set. it can.

また、用いるプロトン性溶媒の量は、塩基がある程度溶解する量であれば特に制限されないが、化合物(II)1モルに対して、1リットル以上であるのが好ましい。   The amount of the protic solvent to be used is not particularly limited as long as the base can be dissolved to some extent, but it is preferably 1 liter or more with respect to 1 mol of the compound (II).

反応は、例えば、化合物(II)と化合物(III)の溶液及びプロトン性溶媒に、溶解若しくは懸濁下塩基を混合し、0℃から溶媒の沸点、好ましくは20〜60℃の温度範囲で反応させる。反応は、窒素気流下、又は窒素雰囲気下で行うのが好ましい。   The reaction is carried out, for example, by mixing a solution of compound (II) and compound (III) and a protic solvent with a base dissolved or suspended and reacting at a temperature ranging from 0 ° C. to the boiling point of the solvent, preferably 20 to 60 ° C. Let The reaction is preferably performed under a nitrogen stream or under a nitrogen atmosphere.

反応時間は、反応させる化合物、条件によって異なるが、通常数分から48時間程度である。
反応終了後は、必要に応じて反応液を冷却し、通常の後処理操作により目的物を得ることができる。
While the reaction time varies depending on the compound to be reacted and the conditions, it is usually about several minutes to 48 hours.
After completion of the reaction, the reaction solution can be cooled as necessary, and the desired product can be obtained by ordinary post-treatment operations.

(製造方法2)化合物(II)と化合物(III)とを相間移動触媒及び無機塩基の存在下に反応させる方法。
用いる相間移動触媒としては、4級アンモニウム塩、4級ホスホニウム塩等のオニウム塩類;クラウン化合物;有機塩基などが挙げられる。
(Production Method 2) A method in which compound (II) and compound (III) are reacted in the presence of a phase transfer catalyst and an inorganic base.
Examples of the phase transfer catalyst used include onium salts such as quaternary ammonium salts and quaternary phosphonium salts; crown compounds; organic bases and the like.

4級アンモニウム塩としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化トリメチルベンジルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム、臭化トリエチルベンジルアンモニウム、臭化トリメチルフェニルアンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、塩化トリメチルフェニルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム、塩化N−ラウリルピリジニウム、塩化N−ベンジルピコリニウム、塩化トリカプリルメチルアンモニウム、沃化テトラメチルアンモニウム、沃化テトラブチルアンモニウム、テトラブチルアンモニウムサルフェート等が挙げられる。   The quaternary ammonium salts include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, tetramethylammonium bromide, tetraethylammonium bromide, tetrabutylammonium bromide, triethyl bromide. Benzylammonium, trimethylphenylammonium bromide, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, triethylbenzylammonium chloride, trimethylphenylammonium chloride, trioctylmethylammonium chloride, tributylbenzylammonium chloride, trimethylbenzylammonium chloride, chloride N-laurylpyridinium, N-benzylpicolinium chloride, tricap Methyl ammonium iodide, tetramethylammonium iodide tetrabutyl ammonium, tetrabutyl ammonium sulfate and the like.

4級ホスホニウム塩としては、塩化テトラエチルホスホニウム、臭化テトラエチルホスホニウム、沃化テトラエチルホスホニウム、臭化テトラブチルホスホニウム、臭化テトラフェニルホスホニウム、臭化トリフェニルベンジルホスホニウム等が挙げられる。
クラウン化合物としては、15−クラウン−5,18−クラウン−6等のクラウンエーテル類;クリプタンド類;等が挙げられる。
Examples of the quaternary phosphonium salt include tetraethylphosphonium chloride, tetraethylphosphonium bromide, tetraethylphosphonium iodide, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, triphenylbenzylphosphonium bromide and the like.
Examples of the crown compound include crown ethers such as 15-crown-5,18-crown-6; cryptands; and the like.

有機塩基としては、1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン、1,5−ジアザビシクロ[4.3.0]ノン−5−エン、6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン、トリエチレンジアミン、N,N−ジメチルアミノピリジン等が挙げられる。   Examples of the organic base include 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 6-dibutylamino-1,8- And diazabicyclo [5.4.0] undec-7-ene, triethylenediamine, N, N-dimethylaminopyridine and the like.

相間移動触媒の使用量は、特に制限されないが、用いる化合物(II)1モルに対して、通常、0.0001〜5当量モル、好ましくは0.01〜0.5当量モルである。   The amount of the phase transfer catalyst used is not particularly limited, but is usually 0.0001 to 5 equivalent moles, preferably 0.01 to 0.5 equivalent moles with respect to 1 mole of the compound (II) used.

用いる無機塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等が挙げられる。
無機塩基の使用量は、特に制限されないが、化合物(II)1モルに対して、好ましくは0.5〜10モル、より好ましくは1.0〜3モルである。
Examples of the inorganic base used include sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate and the like.
Although the usage-amount of an inorganic base is not restrict | limited in particular, Preferably it is 0.5-10 mol with respect to 1 mol of compound (II), More preferably, it is 1.0-3 mol.

反応に用いる溶媒として、具体的には、水、塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、ベンゾニトリル、ベンゾトリフルオライドあるいはクロロベンゼン等の芳香族系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル、THF等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;などが挙げられる。   Specific examples of the solvent used in the reaction include halogen solvents such as water, methylene chloride, chloroform and dichloroethane; aromatic solvents such as benzene, toluene, xylene, benzonitrile, benzotrifluoride and chlorobenzene; methyl acetate and acetic acid. Examples include ester solvents such as ethyl and isopropyl acetate; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone; ether solvents such as diethyl ether and THF; nitrile solvents such as acetonitrile; and the like.

これらの中でも、化合物(III)の合成または後処理後の抽出に使用できる溶媒、例えば塩化メチレン等のハロゲン系溶媒、トルエン、キシレン、クロロベンゼン等の芳香族系溶媒、酢酸エチル等のエステル系溶媒、メチルイソブチルケトン等のケトン系溶媒、THF、アセトニトリル等が好ましく、またこれらを混合して用いてもよい。中でも、水と上記例示した水以外の混合系が好ましい。   Among these, solvents that can be used for the synthesis of compound (III) or extraction after post-treatment, for example, halogen solvents such as methylene chloride, aromatic solvents such as toluene, xylene, chlorobenzene, ester solvents such as ethyl acetate, A ketone solvent such as methyl isobutyl ketone, THF, acetonitrile and the like are preferable, and these may be used in combination. Among them, a mixed system other than water and the water exemplified above is preferable.

溶媒の使用量は、特に制限されないが、化合物(II)1重量部に対し、通常、1〜1000重量部、好ましくは5〜100重量部の範囲である。   Although the usage-amount of a solvent is not restrict | limited in particular, Usually, it is 1-1000 weight part with respect to 1 weight part of compound (II), Preferably it is the range of 5-100 weight part.

化合物(II)と化合物(III)とを相間移動触媒及び無機塩基の存在下に反応させる方法としては、例えば、化合物(II)と化合物(III)又はその溶液とを適当な溶媒に混合し、水に溶解した無機塩基及ぴ相間移動触媒を加え、0℃から溶媒の沸点までの温度範囲、好ましくは20〜60℃の温度範囲で反応を行う方法が挙げられる。   As a method of reacting compound (II) and compound (III) in the presence of a phase transfer catalyst and an inorganic base, for example, compound (II) and compound (III) or a solution thereof are mixed in an appropriate solvent, Examples thereof include a method in which an inorganic base and a phase transfer catalyst dissolved in water are added, and the reaction is carried out in a temperature range from 0 ° C. to the boiling point of the solvent, preferably 20 to 60 ° C.

化合物(III)の使用量は特に制限されないが、化合物(II)1モルに対して、通常0.8〜2.0モル、好ましくは、1.0〜1.5モルの範囲である。   Although the usage-amount of compound (III) is not restrict | limited in particular, It is 0.8-2.0 mol normally with respect to 1 mol of compound (II), Preferably, it is the range of 1.0-1.5 mol.

反応は、窒素気流下もしくは窒素雰囲気下で行うのが好ましい。
反応時間は反応させる化合物、条件によって異なるが、通常数分から48時間である。 反応終了後は、必要に応じて反応液を冷却し、通常の後処理操作により目的物を得ることができる。
The reaction is preferably performed in a nitrogen stream or a nitrogen atmosphere.
While the reaction time varies depending on the compound to be reacted and the conditions, it is usually from several minutes to 48 hours. After completion of the reaction, the reaction solution can be cooled as necessary, and the desired product can be obtained by ordinary post-treatment operations.

(製造方法3)化合物(II)と化合物(III)とを、有機塩基存在下に反応させる方法。
この方法に用いる有機塩基としては、pKaが12以上のものが好ましく、具体的には、1・8−ジアザビシクロ[5.4.0]ウンデク−7−エン(DBU)、1,5−ジアザビシクロ[4.3.0]ノン−5−エン、6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン、トリエチレンジアミン、4−ジメチルアミノピリジン(AP)、N,N,N’,N’−テトラメチルエチレンジアミン等を例示することができる。これらは、1種単独でまたは2種以上を混合して使用することができる。
これらの中でも、DBUまたはAPの使用が好ましい。
(Production Method 3) A method in which compound (II) and compound (III) are reacted in the presence of an organic base.
As the organic base used in this method, those having a pKa of 12 or more are preferable. Specifically, 1 · 8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [ 4.3.0] non-5-ene, 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene, triethylenediamine, 4-dimethylaminopyridine (AP), N, N , N ′, N′-tetramethylethylenediamine and the like. These can be used individually by 1 type or in mixture of 2 or more types.
Among these, use of DBU or AP is preferable.

有機塩基の総使用量は、化合物(II)1モルに対して、通常0.9〜10モル、好ましくは1.0〜3.0モルである。   The total amount of the organic base to be used is generally 0.9 to 10 mol, preferably 1.0 to 3.0 mol, per 1 mol of compound (II).

化合物(II)と化合物(III)とを、有機塩基存在下に反応させる方法としては、、例えば、化合物(II)、化合物(III)、及び有機塩基を適当な溶媒に溶解・混合し、−20℃から溶媒の沸点までの温度範囲、好ましくは10〜60℃で反応させる方法が挙げられる。   As a method of reacting compound (II) and compound (III) in the presence of an organic base, for example, compound (II), compound (III), and organic base are dissolved and mixed in an appropriate solvent,- A method of reacting in a temperature range from 20 ° C. to the boiling point of the solvent, preferably 10 to 60 ° C. can be mentioned.

化合物(III)の使用量は特に制限されないが、化合物(II)1モルに対して、好ましくは0.8〜1.5モル、さらに好ましくは0.9〜1.2モルである。   Although the usage-amount of compound (III) is not restrict | limited in particular, Preferably it is 0.8-1.5 mol with respect to 1 mol of compound (II), More preferably, it is 0.9-1.2 mol.

また、用いる溶媒としては、塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、ベンゾニトリル、ベンゾトリフルオライドあるいはクロロベンゼン等の芳香族系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒;などが挙げられる。   As the solvent to be used, halogen solvents such as methylene chloride, chloroform, dichloroethane; aromatic solvents such as benzene, toluene, xylene, benzonitrile, benzotrifluoride or chlorobenzene; methyl acetate, ethyl acetate, isopropyl acetate, etc. Ester solvents; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone; ether solvents such as diethyl ether and tetrahydrofuran; nitrile solvents such as acetonitrile; and the like.

これらの中でも、化合物(III)の合成または後処理後の抽出に使用できる溶媒、例えば塩化メチレン等のハロゲン系溶媒;トルエン、キシレン、クロロベンゼン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;メチルイソブチルケトン等のケトン系溶媒;THF、アセトニトリル等が好ましく、またこれらを混合して用いてもよい。   Among these, solvents that can be used for the synthesis of compound (III) or extraction after post-treatment, for example, halogen solvents such as methylene chloride; aromatic solvents such as toluene, xylene, chlorobenzene; ester solvents such as ethyl acetate; Ketone solvents such as methyl isobutyl ketone; THF, acetonitrile and the like are preferable, and these may be used in combination.

溶媒の使用量は、化合物(II)1重量部に対し、通常、1〜1000重量部、好ましくは5〜100重量部である。   The amount of the solvent to be used is generally 1-1000 parts by weight, preferably 5-100 parts by weight, per 1 part by weight of compound (II).

反応は、窒素気流下もしくは窒素雰囲気下で行うのが好ましい。反応時間は反応させる化合物、条件によって異なるが、通常数分から48時間である。反応終了後は、必要に応じて反応液を冷却し、通常の後処理操作により目的物を得ることができる。   The reaction is preferably performed in a nitrogen stream or a nitrogen atmosphere. While the reaction time varies depending on the compound to be reacted and the conditions, it is usually from several minutes to 48 hours. After completion of the reaction, the reaction solution can be cooled as necessary, and the desired product can be obtained by ordinary post-treatment operations.

化合物(I)を晶析する方法としては、特に限定されず、通常の晶析方法が採用される。例えば、化合物(I)を晶析溶媒に加熱溶解させた後に、冷却する方法が挙げられる。   The method for crystallizing Compound (I) is not particularly limited, and a normal crystallization method is employed. For example, the method of cooling after melt | dissolving compound (I) in a crystallization solvent is mentioned.

また、化合物(I)として、化合物(II)と化合物(III)とを反応させて得られた反応生成物を用いる場合には、化合物(II)と化合物(III)との反応混合物から、反応溶媒を除去して得られる混合物を晶析溶媒に加熱溶解させた後に、冷却すればよい。この場合、必要に応じて、反応溶液を水で洗浄することにより無機塩類を除去する操作などを行うこともできる。   Moreover, when using the reaction product obtained by making compound (II) and compound (III) react as compound (I), it reacts from the reaction mixture of compound (II) and compound (III). What is necessary is just to cool, after making the mixture obtained by removing a solvent heat-dissolve in a crystallization solvent. In this case, if necessary, an operation of removing the inorganic salts by washing the reaction solution with water can be performed.

以上のようにして、化合物(I)を高純度で、かつ効率よく単離することができる。
従って、例えば、化合物(I)をパラジウム−炭素(Pd−C)触媒の存在下に接触水素還元を行う場合であっても、水素還元反応を短時間で完全に進行させることができる。
As described above, compound (I) can be isolated with high purity and efficiency.
Therefore, for example, even when the catalytic hydrogen reduction of compound (I) is carried out in the presence of a palladium-carbon (Pd—C) catalyst, the hydrogen reduction reaction can be completely advanced in a short time.

2)式(I)で表される化合物の製造方法
本発明の製造方法は、前記式(I)で表される化合物の製造方法であって、化合物(II)と化合物(III)とを反応させる工程と、反応混合物から、前記式(I)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒と水との混合溶媒を使用して、前記式(I)で表される化合物を晶析させる工程とを有する。
2) Method for Producing Compound Represented by Formula (I) The production method of the present invention is a method for producing a compound represented by formula (I), wherein compound (II) and compound (III) are reacted. And using a mixed solvent of water and an organic solvent that has a solubility of the compound represented by the formula (I) at 15 ° C. of less than 4.0% by weight and phase-separates with water from the reaction mixture. And crystallization of the compound represented by the formula (I).

化合物(II)と化合物(III)とを反応させる工程は、具体的には、前記製造方法1〜3の項で説明したのと同様にして行うことができる。
また、得られた反応混合物から、前記式(I)で表される化合物の15℃における溶解度が4.0重量%未満であり、かつ水と相分離する有機溶媒と水との混合溶媒を使用して、前記式(I)で表される化合物を晶析させる工程も、前記本発明の精製方法で説明したのと同様にして行うことができる。
Specifically, the step of reacting compound (II) and compound (III) can be carried out in the same manner as described in the above-mentioned production methods 1 to 3.
Moreover, from the obtained reaction mixture, the solubility of the compound represented by the formula (I) at 15 ° C. is less than 4.0% by weight, and a mixed solvent of an organic solvent and water that is phase-separated from water is used. And the process of crystallizing the compound represented by the said formula (I) can also be performed similarly to having demonstrated with the purification method of the said this invention.

本発明の製造方法によれば、化合物(I)を、高純度で、かつ効率よく製造することができる。
本発明の精製方法および製造方法により得られる化合物(I)を用いることにより、最終目的物である農薬・医薬・機能材料等を効率よく得ることができる。
According to the production method of the present invention, compound (I) can be produced with high purity and efficiency.
By using the compound (I) obtained by the purification method and the production method of the present invention, it is possible to efficiently obtain end products such as agricultural chemicals, pharmaceuticals and functional materials.

以下本発明を実施例でさらに詳細に説明する。但し、本発明は実施例になんら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

(参考例1)
水酸化カリウム14.0gを含むエチレングリコール100mlに、2−メトキシ−4−ニトロベンズアルデヒド19.5gを室温にて加えた。この混合物にTosMIC20.5gを含む塩化メチレン溶液342.5gを滴下した。全容を室温で攪拌し、高速液体クロマトグラフィー(HPLC)で原料が消失するまで反応を続けた。反応終了後、反応液を水洗した後、有機層を分取して、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾール20.6gを含む塩化メチレン溶液420gを得た。
(Reference Example 1)
To 100 ml of ethylene glycol containing 14.0 g of potassium hydroxide, 19.5 g of 2-methoxy-4-nitrobenzaldehyde was added at room temperature. To this mixture, 342.5 g of a methylene chloride solution containing 20.5 g of TosMIC was dropped. The whole volume was stirred at room temperature, and the reaction was continued until the raw material disappeared by high performance liquid chromatography (HPLC). After completion of the reaction, the reaction solution was washed with water, and the organic layer was separated to obtain 420 g of a methylene chloride solution containing 20.6 g of 5- (2′-methoxy-4′-nitrophenyl) oxazole.

実施例1
(晶析工程)
5−(2’−メトキシ−4’−ニトロフェニル)オキサゾール20.6gを含む塩化メチレン溶液420g中に水100mlを添加した後、全容を加熱して塩化メチレンを完全に留去した。残留物にメチルイソブチルケトン100mlを添加して、80℃まで加熱することにより、5−(2−メトキシ−4−ニトロフェニル)オキサゾールをメチルイソブチルケトンに溶解させた。その後、冷却を行い結晶を析出させ、ろ過、乾燥を行い目的物19.2g(回収率93%)を得た。
Example 1
(Crystallization process)
After adding 100 ml of water to 420 g of methylene chloride solution containing 20.6 g of 5- (2′-methoxy-4′-nitrophenyl) oxazole, the whole volume was heated and methylene chloride was completely distilled off. To the residue, 100 ml of methyl isobutyl ketone was added and heated to 80 ° C. to dissolve 5- (2-methoxy-4-nitrophenyl) oxazole in methyl isobutyl ketone. Thereafter, cooling was performed to precipitate crystals, followed by filtration and drying to obtain 19.2 g of the desired product (recovery rate: 93%).

(還元工程)
上記で得た5−(2’−メトキシ−4’−ニトロフェニル)オキサゾール2.0gを酢酸イソプロピルエステル20mlに溶解し、ガラス耐圧容器に仕込んだ。ここに5%Pd−C 120mgを仕込んだ後、40psiまで水素を吹き込み、全容を室温で4時間攪拌した。反応液からセライトろ過によりPd−Cを除去し、このろ液のHPLC分析を行い原料が消失し、目的物のみが得られたことを確認した。
(Reduction process)
2.0 g of 5- (2′-methoxy-4′-nitrophenyl) oxazole obtained above was dissolved in 20 ml of acetic acid isopropyl ester and charged into a glass pressure vessel. After charging 120 mg of 5% Pd—C, hydrogen was blown to 40 psi and the whole volume was stirred at room temperature for 4 hours. Pd—C was removed from the reaction solution by Celite filtration, and HPLC analysis of the filtrate was performed to confirm that the raw materials disappeared and only the target product was obtained.

晶析溶媒の種類、晶析溶媒に用いた有機溶媒に対する、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの15℃における溶解度(重量%、表中、「溶解度」)、晶析工程における5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの回収率(%)、及び還元工程における還元率(%)を、第1表にまとめた。   Type of crystallization solvent, solubility of 5- (2′-methoxy-4′-nitrophenyl) oxazole at 15 ° C. in the organic solvent used for the crystallization solvent (% by weight, “solubility” in the table), crystallization The recovery rate (%) of 5- (2′-methoxy-4′-nitrophenyl) oxazole in the step and the reduction rate (%) in the reduction step are summarized in Table 1.

実施例2〜5
実施例1と同様にして、第1表に示す溶媒を晶析工程に用いて晶析を行った。
晶析溶媒の種類、晶析溶媒に用いた有機溶媒に対する、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの15℃における溶解度(重量%、表中、「溶解度」)、晶析工程における5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの回収率(%)、及び還元工程における還元率(%)を、第1表にまとめた。
Examples 2-5
In the same manner as in Example 1, crystallization was performed using the solvents shown in Table 1 in the crystallization step.
Type of crystallization solvent, solubility of 5- (2′-methoxy-4′-nitrophenyl) oxazole at 15 ° C. in the organic solvent used for the crystallization solvent (% by weight, “solubility” in the table), crystallization The recovery rate (%) of 5- (2′-methoxy-4′-nitrophenyl) oxazole in the step and the reduction rate (%) in the reduction step are summarized in Table 1.

比較例1〜3
実施例1と同様にして、第1表に示す溶媒を晶析工程に用いて晶析を行った。
晶析溶媒の種類、晶析溶媒に用いた有機溶媒に対する、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの15℃における溶解度(重量%、表中、「溶解度」)、晶析工程における5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの回収率(%)、及び還元工程における還元率(%)を、第1表にまとめた。
Comparative Examples 1-3
In the same manner as in Example 1, crystallization was performed using the solvents shown in Table 1 in the crystallization step.
Type of crystallization solvent, solubility of 5- (2′-methoxy-4′-nitrophenyl) oxazole at 15 ° C. in the organic solvent used for the crystallization solvent (% by weight, “solubility” in the table), crystallization The recovery rate (%) of 5- (2′-methoxy-4′-nitrophenyl) oxazole in the step and the reduction rate (%) in the reduction step are summarized in Table 1.

Figure 0005112621
Figure 0005112621

第1表より、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの、15℃における溶解度が4.0重量%未満である有機溶媒と水とからなる晶析溶媒を使用した場合(実施例1〜5)は、還元工程での還元率は高く、晶析により、高純度の5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールが得られたことがわかる。また、晶析工程での回収率も高いものであった。   From Table 1, when a crystallization solvent composed of an organic solvent having water solubility at 15 ° C. of less than 4.0% by weight of 5- (2′-methoxy-4′-nitrophenyl) oxazole and water is used ( In Examples 1 to 5), the reduction rate in the reduction step was high, and it was found that high-purity 5- (2′-methoxy-4′-nitrophenyl) oxazole was obtained by crystallization. Moreover, the recovery rate in the crystallization process was also high.

一方、5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの、15℃における溶解度が4.0重量%以上であり、かつ水と相分離する有機溶媒と水とからなる晶析溶媒を使用した場合(比較例1、2)では、晶析工程での回収率は高いものの、還元工程における還元率が低く、晶析により、不純物を含む5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールが得られたことが示唆される。
また、晶析溶媒として水のみを用した場合(比較例3)においては、晶析工程での回収率は高いものの、還元工程は進行せず、晶析により、不純物を含む5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールが得られたことが示唆される。
On the other hand, a crystallization solvent comprising 5- (2′-methoxy-4′-nitrophenyl) oxazole having a solubility at 15 ° C. of 4.0% by weight or more and an organic solvent that is phase-separated from water and water. When used (Comparative Examples 1 and 2), although the recovery rate in the crystallization step is high, the reduction rate in the reduction step is low and crystallization causes 5- (2′-methoxy-4′-nitro). This suggests that phenyl) oxazole was obtained.
Further, in the case where only water is used as the crystallization solvent (Comparative Example 3), although the recovery rate in the crystallization process is high, the reduction process does not proceed, and crystallization includes 5- (2 ′ It is suggested that -methoxy-4'-nitrophenyl) oxazole was obtained.

比較例4
5−(2’−メトキシ−4’−ニトロフェニル)オキサゾールの塩化メチレン溶液を濃縮、乾燥して得られた結晶を、実施例1に示す還元評価をしたところ、還元はほとんど進行していなかった。
Comparative Example 4
When the crystals obtained by concentrating and drying the methylene chloride solution of 5- (2′-methoxy-4′-nitrophenyl) oxazole were subjected to the reduction evaluation shown in Example 1, the reduction hardly proceeded. .

Claims (3)

式(I)
Figure 0005112621
(式中、Rは、水素原子又はC1−5アルキル基を表し、Rは、ハロゲン原子、C1−5アルキル基又はC1−5アルコキシ基を表し、nは、0、1又は2を示す。但し、nが2のとき、Rは同一であっても、相異なっていてもよい。)で表される化合物の製造方法であって、不活性溶媒中、式(II)
Figure 0005112621
(式中、R及びnは、前記と同じ意味を表す。)で表される化合物と、式(III)
Figure 0005112621
(式中、Rは前記と同じ意味を表す。)で表される化合物とを反応させる工程と、
反応液から前記不活性溶媒を除去して得られた反応混合物から、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジブチルエーテル、アニソール、エトキシベンゼン、酢酸n−ブチル、及びモノクロロベンゼンからなる群から選ばれる有機溶媒の一種又は二種以上と水との混合溶媒を使用して、前記式(I)で表される化合物を晶析させる工程と
を有することを特徴とする前記式(I)で表される化合物の製造方法。
Formula (I)
Figure 0005112621
(Wherein, R 1 represents a hydrogen atom or a C 1-5 alkyl group, R 2 represents a halogen atom, a C 1-5 alkyl group or a C 1-5 alkoxy group, and n is 0, 1 or Wherein, when n is 2, R 2 may be the same or different from each other), in a inert solvent, the compound of formula (II)
Figure 0005112621
(Wherein R 2 and n represent the same meaning as described above), and the formula (III)
Figure 0005112621
(Wherein R 1 represents the same meaning as described above), and a step of reacting with the compound represented by:
From the reaction mixture obtained by removing the inert solvent from the reaction solution, an organic compound selected from the group consisting of diethyl ketone, methyl isobutyl ketone, cyclohexanone, dibutyl ether, anisole, ethoxybenzene, n-butyl acetate, and monochlorobenzene And a step of crystallizing the compound represented by the formula (I) by using a mixed solvent of one or more of the solvents and water, and represented by the formula (I) Compound production method.
前記有機溶媒として、メチルイソブチルケトン、アニソール、酢酸n−ブチル、シクロヘキサノン、及びモノクロロベンゼンからなる群から選ばれる溶媒を用いることを特徴とする請求項1に記載の製造方法。   The production method according to claim 1, wherein a solvent selected from the group consisting of methyl isobutyl ketone, anisole, n-butyl acetate, cyclohexanone, and monochlorobenzene is used as the organic solvent. 前記有機溶媒として、メチルイソブチルケトンを用いることを特徴とする請求項1に記載の製造方法。   The method according to claim 1, wherein methyl isobutyl ketone is used as the organic solvent.
JP2005162456A 2005-06-02 2005-06-02 Purification method and production method of 5-substituted oxazole compounds Expired - Fee Related JP5112621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162456A JP5112621B2 (en) 2005-06-02 2005-06-02 Purification method and production method of 5-substituted oxazole compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162456A JP5112621B2 (en) 2005-06-02 2005-06-02 Purification method and production method of 5-substituted oxazole compounds

Publications (2)

Publication Number Publication Date
JP2006335685A JP2006335685A (en) 2006-12-14
JP5112621B2 true JP5112621B2 (en) 2013-01-09

Family

ID=37556541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162456A Expired - Fee Related JP5112621B2 (en) 2005-06-02 2005-06-02 Purification method and production method of 5-substituted oxazole compounds

Country Status (1)

Country Link
JP (1) JP5112621B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807876A (en) * 1996-04-23 1998-09-15 Vertex Pharmaceuticals Incorporated Inhibitors of IMPDH enzyme
JP4229345B2 (en) * 1998-09-22 2009-02-25 日本曹達株式会社 Molecular compounds containing phenylsulfone derivatives as component compounds
AU5553801A (en) * 2000-04-24 2001-11-07 Bristol Myers Squibb Co Heterocycles that are inhibitors of impdh enzyme
ATE332295T1 (en) * 2001-03-23 2006-07-15 Nippon Soda Co METHOD FOR PRODUCING 5-SUBSTITUTED OXAZOLE COMPOUNDS AND 1,5-DISUBSTITUTED IMIDAZOLE COMPOUNDS

Also Published As

Publication number Publication date
JP2006335685A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP2008056615A (en) Vinylethynylaryl carboxylic acid, method for producing the same, and method for producing heat cross-linking compound by using the same
JP5112621B2 (en) Purification method and production method of 5-substituted oxazole compounds
JP5209426B2 (en) Method for producing 1,2,4-oxadiazole derivative
US20070027324A1 (en) Process for producing 5-substituted oxazole compounds and 5-substituted imidazole compounds
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
KR20230117260A (en) Process for the preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanone and derivatives thereof
CN117794567A (en) Method for producing pure 2-nitro-4-methylsulfonylbenzoic acid
JP6257340B2 (en) Process for producing 9,9'-spirobifluorenes
JP4693261B2 (en) Method for producing 5-substituted oxazole compound
JP7453365B2 (en) High purity N-(5-methoxy-2-phenoxyphenyl)methanesulfonamide and its production method
US11976082B2 (en) Continuous process for manufacturing alkyl 7-amino-5-methyl-[1,2,5]oxadiazolo[3,4-b]pyridine-carboxylate
JP7257985B2 (en) Method for producing benzonitrile derivative
JP2012162464A (en) Method for producing n-[4-(6,7-difluoro-2,4-dioxo-1,4-dihydro-2h-quinazoline-3-yl)-phenyl]-acetamide
WO2017209035A1 (en) Method for producing biphenyl benzimidazole derivative
JPWO2017195619A1 (en) Method for producing a nitrobenzene compound
JP4531610B2 (en) Method for producing croconic acid or a salt thereof
JP4517337B2 (en) Preparation of 4-substituted quinazoline compounds
JP4356917B2 (en) Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof
JPH11269148A (en) Production of 3,4-dihydrocarbostyrils
JP2009091294A (en) Method for producing n-(hydroxyalkyl)pyrrole compound
JPH10330342A (en) Production of n,n-disubstituted hydroxylamine compounds
JPH04290840A (en) Production of bis(aryloxymethyl) ether
JP2004196704A (en) Method for manufacturing 5-nitro-1-tetralone
JPS6155504B2 (en)
JP2005154329A (en) Method for producing methylene norcamphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees