JP5112261B2 - Phased array probe and method for determining its specifications - Google Patents
Phased array probe and method for determining its specifications Download PDFInfo
- Publication number
- JP5112261B2 JP5112261B2 JP2008289822A JP2008289822A JP5112261B2 JP 5112261 B2 JP5112261 B2 JP 5112261B2 JP 2008289822 A JP2008289822 A JP 2008289822A JP 2008289822 A JP2008289822 A JP 2008289822A JP 5112261 B2 JP5112261 B2 JP 5112261B2
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- phased array
- value
- array probe
- factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
本発明は、多数の微小な圧電素子を配列させ、該圧電素子で送受信する超音波により被検査体の欠陥を検出するフェイズドアレイ探触子において、特に単一材料からなり欠陥のの深さ位置が不明な被検査体の欠陥検出に用いられるフェイズドアレイ探触子の仕様決定方法に関する。 The present invention relates to a phased array probe in which a large number of minute piezoelectric elements are arranged and a defect of an object to be inspected is detected by ultrasonic waves transmitted and received by the piezoelectric element. The present invention relates to a method for determining the specifications of a phased array probe used for detecting a defect of an object to be inspected.
フェイズドアレイ探触子は、前述のように、多数の微小な圧電素子を配列させ、該圧電素子で送受信を行ない、超音波断層像を得ることにより被検査体の欠陥を検出するものである。その原理を図9により説明する。
図9において、フェイズドアレイ探触子100は、多数の圧電素子102が微小間隔を有して配列され、各圧電素子102から超音波を発生させる。各圧電素子102から発信された超音波Xは、合成波面XOを形成して矢印a方向に進行する。そして、欠陥部分で反射して戻ってきた反射波を受信し解析して断層像を得、欠陥部分を検出する。
As described above, the phased array probe detects a defect in the inspection object by arranging a large number of minute piezoelectric elements, performing transmission / reception with the piezoelectric elements, and obtaining an ultrasonic tomographic image. The principle will be described with reference to FIG.
In FIG. 9, a
図9(b)に示すように、各圧電素子102の励起時間に差を設けることにより、超音波の進行方向を角度θ(探傷屈折角)だけ変えることができる。例えば、金属部材の内部に発生した応力腐食割れ(SCC)の割れ方向に対して超音波の入射方向aを直角方向に入射させることによって、SCCの検出能力を向上できる。
また、各圧電素子102の励起時間を図9(c)に示すように設定することによって、合成波面XOの集束位置bを適宜に設定することができる。欠陥部分に集束位置bを合わせることにより、欠陥部分に照射される超音波の強度を高め、欠陥検出能を向上できる。
As shown in FIG. 9B, by providing a difference in the excitation time of each
Further, by setting the excitation time of each of the
図10は、蒸気タービンにおいて、翼根部104が挿入される翼植込み溝部106にSCC108が発生した状態を模式的に示している。翼植込み溝部106の外周面に超音波探触子100を当ててSCC108を探傷する場合に、SCC108の基部c1は超音波が良く反射されるので、測定が可能である。しかし、SCC108は複雑に割れが発生しており、その方向は様々であるので、測定は容易ではない。
FIG. 10 schematically shows a state where the
特に、SCC108の先端部c2の深さ位置h及び方向が不明確であるので、合成波面XOを先端部c2に集束させようとしても、正確に当てることは困難である。
従来は、被検査体が厚肉のときは、経験上から、音圧を上げるか又は周波数を下げ、あるいは探触子のサイズを大きくし、逆に、被検査体が薄肉のときは、音圧を下げるか又は周波数を上げることにより、検出精度を向上させようとしていた。
In particular, since the depth position h and direction of the distal end portion c2 of SCC108 is unclear, even if an attempt to focus the combined wavefront X O in tip c2, it is difficult to apply accurately.
Conventionally, when the object to be inspected is thick, from experience, the sound pressure is increased or the frequency is decreased, or the probe size is increased. Conversely, when the object to be inspected is thin, The detection accuracy was improved by decreasing the pressure or increasing the frequency.
しかし、これでは大幅な検出精度の向上は望めず、根本的な解決にはならない。また、S/N比(雑音に対する信号の比)を上げても、ノイズと反射エコーとの差を識別するのは容易ではなかった。
また、フェイズドアレイ探触子の仕様も、経験的に、被検査体の材質、探傷深さ範囲(ビーム路程)、対象欠陥の程度、必要な検出精度などから決定していた。
However, this cannot be expected to greatly improve the detection accuracy, and is not a fundamental solution. Even if the S / N ratio (ratio of signal to noise) is increased, it is not easy to distinguish the difference between noise and reflected echo.
The specifications of the phased array probe have also been determined empirically from the material of the object to be inspected, the flaw detection depth range (beam path length), the degree of the target defect, and the required detection accuracy.
特許文献1(特開2007−151561号公報)には、フェイズドアレイ探触子を生体の体腔内に挿入し、体腔内から超音波の送受信を行ない、超音波断層像を得る超音波探触子が開示されている。
特許文献1では、圧電素子102の比誘電率を2500以上とすると共に、図11に示すように、圧電素子102の横幅wと厚みtの比率w/tを0.6以下とし、かつ隣接する圧電素子間の間隔を超音波の波長以下とするものであり、これによって、電気機械変換率が高く、工程難易度を低下させ、信頼性を向上させた超音波探触子を提案している。
Japanese Patent Laid-Open No. 2007-151561 discloses an ultrasonic probe in which a phased array probe is inserted into a body cavity of a living body, ultrasonic waves are transmitted and received from the body cavity, and an ultrasonic tomographic image is obtained. Is disclosed.
In
特許文献1では、生体の各臓器や脂肪層等で誘電率が異なるため、圧電素子の誘電率をある範囲に特定することにより、探傷精度を安定させている。しかし、蒸気タービン翼根部のように、単一の材料からなる被検査体の場合には、特許文献1とは適用分野が異なり、有効ではない。
しかも、特許文献1に開示された超音波探触子は、応力腐食割れのように、割れ方向が線状に連なりかつ複雑で、欠陥の深さ位置が不明なものに対して検出精度を向上できるものではない。
In
Moreover, the ultrasonic probe disclosed in
本発明は、かかる従来技術の課題に鑑み、応力腐食割れのように、複雑な形態の欠陥部を有し、かつ深さ位置が不明な欠陥の検出精度を向上できるフェイズドアレイ探触子を実現することを目的とする。 In view of the problems of the prior art, the present invention realizes a phased array probe capable of improving the detection accuracy of a defect having a complicated shape and having an unknown depth position, such as stress corrosion cracking. The purpose is to do.
前記目的を達成するため、本発明のフェイズドアレイ探触子の仕様決定方法は、
多数の圧電素子が配列されて探傷部を形成し、単一材料からなり欠陥の深さ位置が不明な被検査体の欠陥検出に用いられるフェイズドアレイ探触子の仕様決定方法において、
評価因子が超音波の集束度を表す超音波の集束径であり、制御因子が前記探触子の全長及び幅と、圧電素子の数と、探傷部の被検査体に接触する面の曲率とであり、誤差因子が探傷深さ位置及び探傷屈折角であり、
実験計画法により、誤差因子の変動見込み幅の範囲内で該誤差因子及び前記制御因子の値を異ならせた複数の設計値を設定し、該設計値から算出された該集束径を計算し、該計算結果を用いて該集束径の平均から求められる感度が小さくかつ該集束径のばらつき度を表すSN比が大きい設計値を推定し、確認計算された設計値に基づいて前記制御因子の値を決定するようにしたものである。
In order to achieve the above object, the method for determining the specifications of the phased array probe of the present invention includes:
In a method for determining the specifications of a phased array probe that is used to detect a defect of an object to be inspected that is made of a single material and has an unknown depth position, in which a large number of piezoelectric elements are arranged to form a flaw detection part.
The evaluation factor is the ultrasonic focusing diameter representing the ultrasonic focusing degree, and the control factor is the total length and width of the probe, the number of piezoelectric elements, and the curvature of the surface of the flaw detection portion that contacts the object to be inspected. The error factors are the flaw detection depth position and the flaw detection refraction angle.
By designing an experiment, setting a plurality of design values with different values of the error factor and the control factor within the range of the expected fluctuation range of the error factor, calculating the convergence diameter calculated from the design value, Using the calculation result, a design value having a small sensitivity obtained from the average of the focusing diameter and a large SN ratio representing the variation degree of the focusing diameter is estimated, and the value of the control factor is determined based on the confirmation calculated design value. Is to be determined.
本発明方法では、実験計画法により、制御因子として前記4因子を選択し、誤差因子である探傷深さ位置及び探傷屈折角の変動範囲内で、算出された超音波の集束径の平均から求められる感度が小さくかつ該集束径のばらつき度を表すSN比が大きい設計値を選択し、この設計値に基づいて制御因子の値を決定するものである。
これによって、探傷深さ位置及び探傷屈折角に変動に対して、超音波の集束径が小さく合成波面XOの集束度が良好な探触子の設計値を効率良く得ることができ、検出精度が良く、かつ探傷深さ位置及び探傷屈折角に変動に対してロバストな設計が可能となる。
In the method of the present invention, the above four factors are selected as control factors by the experimental design method, and are obtained from the average of the calculated focal diameters of ultrasonic waves within the fluctuation range of the flaw detection depth position and the flaw detection refraction angle which are error factors. A design value with a small sensitivity and a large S / N ratio representing the variation degree of the focusing diameter is selected, and the value of the control factor is determined based on the design value.
Thus, with respect to variations in the testing depth position and inspection refractive angle, it can be focused degree of the ultrasound focusing size is small combined wavefront X O of efficiently obtaining a design value of a good probe, the detection accuracy Therefore, a design that is robust against fluctuations in the flaw detection depth position and the flaw detection refraction angle becomes possible.
なお、「実験計画法」とは、そもそもイギリスのR.A.Fisher氏によって農場実験の合理化のために開発された手法であり、技術研究の世界では、田口玄一氏によって「直交表」の利用法、SN比の導入、種々の実験への適応例が広く紹介されたため、一般に普及したもので、海外でも“TAGUCHI METHOD”(田口法)として知られている。 “Experimental design” is a method originally developed by Mr. RAFisher in the United Kingdom for rationalizing farm experiments. In the world of technical research, Mr. Genichi Taguchi uses “orthogonal tables” The introduction of the signal-to-noise ratio and examples of application to various experiments have been widely introduced, so it has become popular, and is also known overseas as the “TAGUCHI METHOD” (Taguchi method).
田口法は、「直交表」を用いた実験と、「SN比」と呼ばれるばらつき(誤差)による評価法とを特長としている。ここで「直交表」とは、試験するパラメータの組み合わせを表す表であり、試験者は試験するパラメータを選定しそのパラメータに応じて予め用意されている「直交表」を選択しさえすれば、実験回数と試験条件が決まり、それに従って実験を進めれば良いようになっている。 The Taguchi method is characterized by an experiment using an “orthogonal table” and an evaluation method based on variation (error) called an “SN ratio”. Here, the "orthogonal table" is a table that represents a combination of parameters to be tested, and the tester only needs to select the parameters to be tested and select the "orthogonal table" prepared in advance according to the parameters. The number of experiments and test conditions are determined, and the experiment can be carried out accordingly.
また、その結果得られたデータに「分散分析」と呼ばれる統計解析処理を施すことで、各パラメータの効果の大きさを数値として評価することができる。さらに、この手法は、最適化したい特性値の推定値を求めることもできる。
本発明方法では、パラメータとして前記4制御因子を選択し、田口法を使って、誤差因子である探傷深さ及び探傷屈折角の変動に対してロバスト性のある制御因子の値を選択できるようにしたものである。
In addition, by applying a statistical analysis process called “variance analysis” to the data obtained as a result, the magnitude of the effect of each parameter can be evaluated as a numerical value. Furthermore, this method can also obtain an estimated value of a characteristic value to be optimized.
In the method of the present invention, the four control factors are selected as parameters, and the Taguchi method can be used to select a control factor value that is robust to variations in flaw detection depth and flaw detection refraction angle, which are error factors. It is a thing.
本発明方法において、設定された設計値から算出された前記集束径の平均値μと該集束径の標準偏差σとからなる算式(μ±σ)の差分(変動幅)が最小となる設計値を選択し、選択された設計値に基づいて前記制御因子の値を決定するようにするとよい。
これによって、前記算式(μ±σ)の差分から一義的に、検出精度が良くかつ探傷深さ位置及び探傷屈折角に対するロバスト性のある仕様を決定することができる。
In the method of the present invention, the design value that minimizes the difference (variation width) of the formula (μ ± σ) composed of the average value μ of the focusing diameter calculated from the set design value and the standard deviation σ of the focusing diameter And the value of the control factor may be determined based on the selected design value.
As a result, it is possible to determine a specification with a high detection accuracy and robustness with respect to the flaw detection depth position and the flaw detection refraction angle, based on the difference of the formula (μ ± σ).
従って、検査対象となる欠陥が複雑な形態をもち探傷深さが不明な応力腐食割れであっても、良好な検出精度で検出できる。 Therefore, even if a defect to be inspected has a complicated form and a stress corrosion crack whose flaw detection depth is unknown, it can be detected with good detection accuracy.
また、本発明のフェイズドアレイ探触子は、前記本発明方法により仕様が決定されたものである。従って、応力腐食割れのように、亀裂の方向が定まらない複雑な欠陥でも検出精度を維持でき、また探傷深さや探傷屈折角が変動しても検出精度が低下しないロバスト性を有する。 Moreover, the specifications of the phased array probe of the present invention are determined by the method of the present invention. Therefore, the detection accuracy can be maintained even for complicated defects such as stress corrosion cracks in which the direction of the crack is not determined, and the detection accuracy does not decrease even if the flaw detection depth or flaw detection refraction angle varies.
本発明方法によれば、多数の圧電素子が配列されて探傷部を形成し、単一材料からなり欠陥の深さ位置が不明な被検査体の欠陥検出に用いられるフェイズドアレイ探触子の仕様決定方法において、評価因子が超音波の集束度を表す超音波の集束径であり、制御因子が前記探傷部の全長及び幅と、圧電素子の数と、探傷部の被検査体に接触する面の曲率とであり、誤差因子が探傷深さ位置及び探傷屈折角であり、実験計画法により、誤差因子の変動見込み幅の範囲内で該誤差因子及び前記制御因子の値を異ならせた複数の設計値を設定し、該設計値から算出された該集束径の平均から求められる感度が小さくかつ該集束径のばらつき度を表すSN比が大きい設計値を選択し、選択された設計値に基づいて前記制御因子の値を決定するようにしたことにより、応力腐食割れのように探傷深さが不明で複雑な形態をもつ欠陥であっても、探傷深さの変動に係わり無く、高い検出精度を維持できる。 According to the method of the present invention, a specification of a phased array probe used for detecting a defect of an object to be inspected, which is formed of a single material and has an unknown depth position, in which a large number of piezoelectric elements are arranged to form a flaw detection portion. In the determination method, the evaluation factor is an ultrasonic focusing diameter representing the ultrasonic focusing degree, and the control factor is the total length and width of the flaw detection unit, the number of piezoelectric elements, and the surface of the flaw detection unit that contacts the object to be inspected The error factor is the flaw detection depth position and the flaw detection refraction angle, and a plurality of error factors and control factors having different values within the range of the expected fluctuation range of the error factor according to the experimental design method. A design value is set, a design value having a low sensitivity obtained from the average of the focusing diameters calculated from the design value and a large SN ratio representing the variation degree of the focusing diameter is selected, and based on the selected design value To determine the value of the control factor And, even in the defect inspection depth with an unknown complex form as stress corrosion cracking, regardless the variations in flaw depth, can maintain a high detection accuracy.
また、前記本発明方法により仕様が決定された本発明のフェイズドアレイ探触子は、応力腐食割れのように探傷深さが不明で複雑な形態をもつ欠陥であっても、探傷深さの変動に係わり無く、高い検出精度が可能となる。 In addition, the phased array probe of the present invention whose specifications have been determined by the method of the present invention can be used to detect fluctuating flaw depth even if the flaw detection depth is unknown and the defect has a complicated shape. Regardless of, high detection accuracy is possible.
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明をそれのみに限定する趣旨ではない。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the present invention to that only, unless otherwise specified.
本発明を蒸気タービンの翼植込み溝部に発生する応力腐食割れ等の欠陥検出に適用した一実施形態を図1〜図8に基づいて説明する。図1に本実施形態の手順を示す。まず、ステップ1で、材質、探傷深さ範囲(ビーム路程)及び対象欠陥等、被検査体の仕様に関する情報と必要な検出精度を設定する。
An embodiment in which the present invention is applied to detection of defects such as stress corrosion cracks occurring in a blade implantation groove of a steam turbine will be described with reference to FIGS. FIG. 1 shows the procedure of this embodiment. First, in
次に、フェイズドアレイ探触子の探触子10の制御因子(設計パラメータ)を選択する。図2に示すように、探傷部のプローブ全長L、探傷部のプローブ幅l、圧電素子12の数及び被検査体に対する圧電素子12の接触面の曲率rの4因子を制御因子として選択する。
次に、フェイズドアレイ探触子の基本設計値を決定する(ステップ2)。
Next, a control factor (design parameter) of the
Next, the basic design value of the phased array probe is determined (step 2).
基本設計値の決定手法は、例えば、図11に示すプローブ(探傷部)全長Lは、次の算式(1)から求める。
L=d・Dmax/e・f (1)
ここで、dは超音波モード(縦波又は横波)の音速、Dmaxは最大フォーカシング距離(最大路程)、eはビームサイズ(ビームスポット)、fは周波数である。
As a basic design value determination method, for example, the probe (flaw detection part) total length L shown in FIG. 11 is obtained from the following equation (1).
L = d · D max / e · f (1)
Here, d is the speed of sound in the ultrasonic mode (longitudinal wave or transverse wave), D max is the maximum focusing distance (maximum path length), e is the beam size (beam spot), and f is the frequency.
また、圧電素子の素子長wは次の算式(2)から求める。
ここで、Dminは必要最小フォーカシング距離(最小路程)、Dmaxは必要最大フォーカシング距離(最大路程)である。
Further, the element length w of the piezoelectric element is obtained from the following equation (2).
Here, D min is a necessary minimum focusing distance (minimum path), and D max is a necessary maximum focusing distance (maximum path).
このようにして、探傷部10の基本仕様を決定した後、次に、選択した前記4制御因子による直交表を作成する(ステップ3)。図3は、4制御因子の値として、3つの水準1〜3を設定したものである。
図4は、誤差因子として探傷屈折角θと探傷深さ位置hとを設定し、これらの値として3つの水準1〜3を設定したものである。なお、探傷屈折角θはSCCの向きに直角方向に合わせるように調整されるものであり、探傷深さ位置hはSCCの深さに合わせるように調整されるものである。
After determining the basic specifications of the
In FIG. 4, the flaw detection refraction angle θ and the flaw detection depth position h are set as error factors, and three
図5は、前記4制御因子の水準1〜3の値と前記2誤差因子の水準1〜3の値を18通りに割り振ったときの超音波ビーム径の算出結果を示す直交表である。該直交表中、感度Sは試験No.1〜18の夫々のビーム径の平均値を用いて次の算式(3)より求めたものであり、SN比ηは、次の算式(4)から求めたものである。
感度S=10logm2(dB) (3)
SN比η=10log(m/σ)2(db) (4)
ここで、mはビーム径の平均であり、σはビーム径の標準偏差である。
FIG. 5 is an orthogonal table showing the calculation results of the ultrasonic beam diameter when the values of
Sensitivity S = 10 logm 2 (dB) (3)
SN ratio η = 10 log (m / σ) 2 (db) (4)
Here, m is an average of the beam diameters, and σ is a standard deviation of the beam diameters.
ビーム径は、各設計パラメータの設計値に基づいて音場シミュレーションにより求めることができる(ステップ4)。図6は、音場シミュレーションによりビーム径を求める際の画面表示を示すものであり、超音波の強さを濃淡で示している。
超音波の強さ(dB)は、次の算式(5)で求められる。
dB=20log10A/A0 (5)
ここで、Aはエコー高さ、A0は基準エコー高さを示す。
The beam diameter can be obtained by sound field simulation based on the design value of each design parameter (step 4). FIG. 6 shows a screen display when the beam diameter is obtained by sound field simulation, and the intensity of the ultrasonic wave is shown by shading.
The intensity (dB) of the ultrasonic wave is obtained by the following formula (5).
dB = 20 log 10 A / A 0 (5)
Here, A indicates the echo height, and A 0 indicates the reference echo height.
図5に示したビーム径は、図6で得られたシミュレーション上で、式(6)に示すように、ビーム強度が最も高いピーク位置に対して、ビーム強度が半減するビーム範囲としている。即ち、音場シミュレーションでは、超音波の強さを、ピーク値から半減するまでの[ピーク値〜−6dB]間のビーム範囲を有効ビーム範囲とし、有効ビーム範囲に対応するビーム径を求めるようにする。
20log10A/AO=20log101/2=−6dB (6)
The beam diameter shown in FIG. 5 is a beam range in which the beam intensity is halved with respect to the peak position where the beam intensity is the highest as shown in Expression (6) in the simulation obtained in FIG. That is, in the sound field simulation, the beam range corresponding to the effective beam range is obtained with the beam range between [peak value to −6 dB] until the intensity of the ultrasonic wave is halved from the peak value. To do.
20log 10 A / A O = 20log 10 1/2 = -6dB (6)
フェイズドアレイ探触子では、複数の圧電素子を用いてビームを集束する効果があるため、探触子の寸法や、各圧電素子に与える時間差によって、集束位置でのビーム径が異なるため、一般的な理論式によりビーム径を求めるのは困難である。
図6において、(a)は、被検査体内部の浅い位置に超音波が集束した時のビーム径g1を示し、(b)は、被検査体内部の深い位置に超音波が集束した時のビーム径g2を示す。なお、図中、右側の数値は超音波の強度(dB)を示す。
Phased array probes have the effect of focusing beams using multiple piezoelectric elements, so the beam diameter at the focusing position varies depending on the probe dimensions and the time difference applied to each piezoelectric element. It is difficult to obtain the beam diameter by a simple theoretical formula.
In FIG. 6, (a) shows the beam diameter g 1 when the ultrasonic wave is focused at a shallow position of the test subject portion, (b), when the ultrasonic wave is focused at a deep position of the test subject portion It shows the beam diameter g 2 of. In the drawing, the numerical value on the right side indicates the ultrasonic intensity (dB).
次に、図5に示す直交表から、SN比η及び感度Sに関する要因効果図を作成する。図7にその要因効果図を示す。図7の要因効果図から、特に接触面の曲率rがSN比η及び感度Sの出力変動に大きな影響を与えることがわかる。 Next, a factor effect diagram regarding the SN ratio η and sensitivity S is created from the orthogonal table shown in FIG. FIG. 7 shows the factor effect diagram. From the factor effect diagram of FIG. 7, it can be seen that the curvature r of the contact surface has a great influence on the output fluctuations of the SN ratio η and sensitivity S.
次に、確認計算により前記4設計パラメータの値を決定する(ステップ6)。図8に、ビーム径について、田口法を用いた推定計算値と確認計算値を示す。図中、上段の因子の行に記入された数字は、図3の制御因子の水準1〜3の数字を示す。例えば、現行条件の列では、4制御因子とも水準2の数値を用いたものであり、改善1の列では、プローブ全長Lが水準3の数値を用い、プローブ幅lは水準1の数値を用い、圧電素子数n及び接触面の曲率rは水準2の数値を用いたことを示す。
Next, the values of the four design parameters are determined by confirmation calculation (step 6). FIG. 8 shows estimated calculation values and confirmation calculation values using the Taguchi method for the beam diameter. In the figure, the numbers entered in the upper factor rows indicate the numbers of the control factors of
図8の仕様決定表中の推定計算値は、各制御因子が同じ水準の場合でのSN比η及び感度Sの平均値を使って求めている。一方、確認計算値は、設定した各制御因子の水準に合わせて、探触子の音場シミュレーションを行い(図5の誤差因子のケース分実施)を行なう。これらの結果(図7の要因効果図等)や図8の最大化/最小化の条件を元にして、改善1〜5の項目において各制御因子を設定し、目標のSN比η及び感度Sになるような推定計算を行い、確認計算を行なう。
The estimated calculation values in the specification determination table of FIG. 8 are obtained by using the S / N ratio η and the average value of the sensitivity S when the control factors are at the same level. On the other hand, for the confirmation calculation value, the sound field simulation of the probe is performed according to the set level of each control factor (implemented for the error factor case in FIG. 5). Based on these results (such as the factor effect diagram of FIG. 7) and the maximization / minimization conditions of FIG. 8, each control factor is set in the items of
この結果が確認計算値であり、これらの結果を見ながら、より改善される条件を考えて、改善1〜5で探触子の仕様を最適設計に近づける。
図8では、感度Sが最小のものは改善4であるが、改善4はSN比ηが小さいので、感度Sが2番目に小さくかつSN比ηが大きい改善5を選択する。
This result is a confirmation calculation value, and considering the conditions to be improved while observing these results, the specifications of the probe are brought closer to the optimum design with
In FIG. 8, the sensitivity S having the smallest sensitivity is the
そして、改善5の制御因子を基準とし、これらの値を適宜調節することにより、誤差因子である探傷屈折角θ及び探傷深さhの変動に対して、その影響を受けない良好なロバスト性と、良好な検出精度を維持できる仕様を決定することができる。
Then, with the control factor of
即ち、田口法によって最適設計に近づけられた設計値である改善5を求めて、図8に示した利得について、(7)利得(SN比)が、1.81と向上しており、(8)利得(感度)が−1.83と減少している。
このように、図5の18ケースに比べてより良い条件、即ち、ビーム径が小さく、探傷深さh及び探傷屈折角θに対するばらつきが少ない条件を見出せたことで、ロバスト性が向上したと言うことができる。更に、改善5に対して、設計パラメータで水準を設定し、繰り返してタグチ法を行うことで、より最適設計に近づけることができる。
That is,
Thus, robustness has been improved by finding a better condition than the 18 cases of FIG. 5, that is, a condition in which the beam diameter is small and there is little variation with respect to the flaw detection depth h and the flaw detection refraction angle θ. be able to. Furthermore, for
このように、本実施形態によれば、田口法を採用して、4つの制御因子(プローブ全長L、プローブ幅l、圧電素子数n及び圧電素子の被検査体への接触面の曲率r)を選択すると共に、探傷屈折角θ及び探傷深さ位置hを誤差因子とし、これら誤差因子の変動に検出精度が影響を受けない制御因子の値を決定するようにしたので、応力腐食割れのように、深さ位置及び割れ方向が定まらない複雑な形態をなす欠陥に対しても、高い検出精度を得ることができる。 As described above, according to the present embodiment, the Taguchi method is adopted, and the four control factors (the probe total length L, the probe width l, the number of piezoelectric elements n, and the curvature r of the contact surface of the piezoelectric elements with the object to be inspected). Is selected, and the flaw detection refraction angle θ and the flaw detection depth position h are used as error factors, and the control factor value is determined so that the detection accuracy is not affected by fluctuations in these error factors. In addition, it is possible to obtain high detection accuracy even for a defect having a complicated shape whose depth position and crack direction are not determined.
なお、前記実施形態において、SN比η及び感度Sの値に基づいて設計仕様を決定したが、代わりに、出力(μ±σ)の差分(変動幅)が最小のものを選択するようにしてもよい。図9において、出力(μ±σ)の差分が最小となるものは改善5であり、SN比η及び感度Sから選択した場合と同様の結果を得ることができる。
出力(μ±σ)の差分を用いる場合には、1個の変数を指標として制御因子を選択するので、選択が容易になり、誤りがなくなる。
In the above embodiment, the design specification is determined based on the values of the SN ratio η and the sensitivity S. Instead, the one having the smallest difference (variation width) of the output (μ ± σ) is selected. Also good. In FIG. 9, the output (μ ± σ) having the smallest difference is the
When using the difference in output (μ ± σ), the control factor is selected using one variable as an index. Therefore, the selection becomes easy and no error occurs.
本発明によれば、田口法を用いて、ロバスト性があり検出精度が高いフェイズドアレイ探触子の最適仕様を効率良く求めることができる。 According to the present invention, the Taguchi method can be used to efficiently obtain an optimum specification of a phased array probe that is robust and has high detection accuracy.
10 フェイズドアレイ探傷部
12、102 圧電素子
100 フェイズドアレイ探触子
106 蒸気タービン翼植込み溝部(被検査体)
108 応力腐食割れ
L プローブ全長
XO 合成波面
a 合成波面進行方向
b 合成波面の集束位置
h 探傷深さ
l プローブ幅
r 接触面曲率
t 圧電素子厚さ
w 圧電素子長
θ 探傷屈折角
DESCRIPTION OF
108 Stress corrosion cracking L Probe total length X O Synthetic wavefront a Synthetic wavefront traveling direction b Focusing position of synthetic wavefront h Defect depth l Probe width r Contact surface curvature t Piezoelectric element thickness w Piezoelectric element length θ Deflection angle
Claims (4)
評価因子が超音波の集束度を表す超音波の集束径であり、制御因子が前記探傷部の全長及び幅と、圧電素子の数と、探傷部の被検査体に接触する面の曲率とであり、誤差因子が探傷深さ位置及び探傷屈折角であり、
実験計画法により、誤差因子の変動見込み幅の範囲内で該誤差因子及び前記制御因子の値を異ならせた複数の設計値を設定し、該設計値から算出された該集束径の平均から求められる感度が小さくかつ該集束径のばらつき度を表すSN比が大きい設計値を推定し、確認計算により選択された設計値に基づいて前記制御因子の値を決定するようにしたことを特徴とするフェイズドアレイ探触子の仕様決定方法。 In a method for determining the specifications of a phased array probe that is used to detect a defect of an object to be inspected that is made of a single material and has an unknown depth position, in which a large number of piezoelectric elements are arranged to form a flaw detection part.
The evaluation factor is the ultrasonic focusing diameter representing the ultrasonic focusing degree, and the control factor is the total length and width of the flaw detection part, the number of piezoelectric elements, and the curvature of the surface of the flaw detection part in contact with the object to be inspected. Yes, the error factors are flaw detection depth position and flaw detection refraction angle,
A plurality of design values with different values of the error factor and the control factor are set within the range of the expected fluctuation range of the error factor by the experimental design method, and obtained from the average of the focused diameters calculated from the design value. A design value having a small sensitivity and a large S / N ratio representing the variation degree of the focusing diameter is estimated, and the value of the control factor is determined based on the design value selected by the confirmation calculation. Specification method for phased array probe.
選択された設計値に基づいて前記制御因子の値を決定することを特徴とする請求項1に記載のフェイズドアレイ探触子の仕様決定方法。 Select the design value that minimizes the difference in the formula (μ ± σ) consisting of the average value μ of the focusing diameter calculated from the set design value and the standard deviation σ of the focusing diameter,
The method for determining the specification of a phased array probe according to claim 1, wherein the value of the control factor is determined based on the selected design value.
A phased array probe characterized in that the control factor is manufactured by the specification determining method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289822A JP5112261B2 (en) | 2008-11-12 | 2008-11-12 | Phased array probe and method for determining its specifications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289822A JP5112261B2 (en) | 2008-11-12 | 2008-11-12 | Phased array probe and method for determining its specifications |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010117215A JP2010117215A (en) | 2010-05-27 |
JP5112261B2 true JP5112261B2 (en) | 2013-01-09 |
Family
ID=42304979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008289822A Active JP5112261B2 (en) | 2008-11-12 | 2008-11-12 | Phased array probe and method for determining its specifications |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5112261B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102608209B (en) * | 2012-02-28 | 2014-08-20 | 上海斌瑞检测技术服务有限公司 | Ultrasonic detecting device and detecting method for interface corrugation of explosive welding composite material |
JP6395498B2 (en) * | 2014-08-12 | 2018-09-26 | 三菱重工コンプレッサ株式会社 | Ultrasonic flaw detection method and apparatus for blade grooves of turbine rotor disk |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935205Y2 (en) * | 1977-05-31 | 1984-09-29 | 株式会社島津製作所 | ultrasonic transducer |
JP2002259464A (en) * | 2001-02-28 | 2002-09-13 | Toshiba Corp | Device and method for supporting experimental design, and program therefor |
US7412890B1 (en) * | 2003-12-31 | 2008-08-19 | General Electric Company | Methods and apparatus for detecting cracks in welds |
JP4528237B2 (en) * | 2005-05-12 | 2010-08-18 | 株式会社日立製作所 | Product design parameter decision support system |
JP4910770B2 (en) * | 2007-02-28 | 2012-04-04 | Jfeスチール株式会社 | Tubular ultrasonic inspection apparatus and ultrasonic inspection method |
-
2008
- 2008-11-12 JP JP2008289822A patent/JP5112261B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010117215A (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Felice et al. | Accurate depth measurement of small surface-breaking cracks using an ultrasonic array post-processing technique | |
Camacho et al. | Ultrasonic crack evaluation by phase coherence processing and TFM and its application to online monitoring in fatigue tests | |
EP3596456B1 (en) | Method for testing a spot-weld using a phased array probe | |
KR101163549B1 (en) | Calibration block for phased-array ultrasonic inspection | |
KR101833467B1 (en) | Method for detecting and characterizing defects in a heterogeneous material via ultrasound | |
CN107941907B (en) | A method for extracting the average grain size of polycrystalline materials based on effective ultrasonic backscattering signals | |
Zhang et al. | Effect of roughness on imaging and sizing rough crack-like defects using ultrasonic arrays | |
Wilcox et al. | Fusion of multi-view ultrasonic data for increased detection performance in non-destructive evaluation | |
WO2008105111A1 (en) | Tubular object ultrasonic test device and ultrasonic test method | |
CN113075297B (en) | Titanium alloy phased array linear array ultrasonic detection sound field model construction method | |
JP5192939B2 (en) | Defect height estimation method by ultrasonic flaw detection | |
US20200049670A1 (en) | Ultrasonic inspection configuration with beam overlap verification | |
KR20100124242A (en) | Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection | |
US20100250151A1 (en) | Method and system for automatic wedge identification for an ultrasonic inspection system | |
Safari et al. | Assessment methodology for defect characterisation using ultrasonic arrays | |
JP5112261B2 (en) | Phased array probe and method for determining its specifications | |
Jin et al. | Profile reconstruction of irregular planar defects by mirrored composite-mode total focusing method | |
KR20100124238A (en) | Calibration (Contrast) Specimen and Calibration Procedure for Phased Array Ultrasonic Testing | |
Robert et al. | Assessment of real-time techniques for ultrasonic non-destructive testing | |
Liu et al. | Multi-mode high resolution TFM imaging of microdefects based on laser ultrasonic full matrix capture | |
CN104040329A (en) | Method and device for detecting defects within a test object | |
Ingram et al. | Calibration of ultrasonic hardware for enhanced total focusing method imaging | |
JP7490531B2 (en) | Ultrasonic flaw detection image evaluation device, ultrasonic flaw detection system, and ultrasonic flaw detection image evaluation method | |
JP6089805B2 (en) | Measuring device, measuring method, program, and storage medium | |
BAJGHOLI et al. | Developing flaw sizing methodology in Total Focusing Method (TFM) by EDM calibration blocks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5112261 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |