[go: up one dir, main page]

JP5111259B2 - Surface covering member - Google Patents

Surface covering member Download PDF

Info

Publication number
JP5111259B2
JP5111259B2 JP2008167410A JP2008167410A JP5111259B2 JP 5111259 B2 JP5111259 B2 JP 5111259B2 JP 2008167410 A JP2008167410 A JP 2008167410A JP 2008167410 A JP2008167410 A JP 2008167410A JP 5111259 B2 JP5111259 B2 JP 5111259B2
Authority
JP
Japan
Prior art keywords
hard phase
ratio
average particle
cermet substrate
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008167410A
Other languages
Japanese (ja)
Other versions
JP2010005729A (en
Inventor
隆司 徳永
正人 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008167410A priority Critical patent/JP5111259B2/en
Publication of JP2010005729A publication Critical patent/JP2010005729A/en
Application granted granted Critical
Publication of JP5111259B2 publication Critical patent/JP5111259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は切削工具や耐摩耗部材等に適する表面被覆部材に関する。   The present invention relates to a surface covering member suitable for a cutting tool, a wear resistant member, or the like.

現在、切削工具や耐摩部材、摺動部材といった耐摩耗性や摺動性、耐欠損性を必要とする表面被覆部材としてTiを主成分とするサーメットが広く使われている。   At present, cermets containing Ti as a main component are widely used as surface coating members that require wear resistance, slidability, and fracture resistance, such as cutting tools, wear-resistant members, and sliding members.

例えば、特許文献1では、TiCN等(周期表第5族遷移金属の炭窒化物)からなるI型粒子と、Tiとそれ以外の周期表第4、5、6族金属を含んでWの含有量が芯部で多くて周辺部で少ないII型粒子の2種類の硬質相を含むサーメットが開示されている。   For example, in Patent Document 1, type I particles made of TiCN or the like (carbonitride of a transition metal of Group 5 transition metal) and Ti and other W metals including Group 4, 5, 6 metals of the periodic table are included. A cermet containing two types of hard phases of type II particles having a large amount at the core and a small amount at the periphery is disclosed.

また、特許文献2では、黒色の芯部とこれを取り囲む周辺部との有芯構造からなる第1硬質相と、周辺部のみからなる白色の第2硬質相とからなり、第1硬質相の平均粒径に比べて第2硬質相の平均粒径が2〜8倍である組織からなるサーメットが開示されている。   Moreover, in patent document 2, it consists of the 1st hard phase which consists of a core structure of a black core part and the peripheral part surrounding this, and the white 2nd hard phase which consists only of a peripheral part, A cermet having a structure in which the average particle size of the second hard phase is 2 to 8 times the average particle size is disclosed.

さらに、特許文献3には、超硬合金基体やサーメット基体の表面にTi、Al、Siを含有する被覆層を形成した切削工具が開示されている。
特開平2−190438号公報 特開2005−292842号公報 特開2004−351541号公報
Furthermore, Patent Document 3 discloses a cutting tool in which a coating layer containing Ti, Al, and Si is formed on the surface of a cemented carbide substrate or a cermet substrate.
Japanese Patent Laid-Open No. 2-190438 JP 2005-292842 A JP 2004-351541 A

しかしながら、上記特許文献1、2のようなサーメットの構成によっても、まだ耐摩耗性および耐欠損性が不十分であり、また、特許文献3の被覆サーメットからなる表面被覆部材においてもさらなる耐欠損性の向上が望まれていた。特に、このサーメット基体を具備する表面被覆部材を切削工具として用いた場合には鋼や炭素鋼等の被削材によって切削性能が大きく変わってしまう場合があり、安定した切削性能を発揮する切削工具が求められていた。   However, even with the structure of the cermet as in Patent Documents 1 and 2, the wear resistance and fracture resistance are still insufficient, and the surface-coated member made of the coated cermet of Patent Document 3 has further fracture resistance. Improvement was desired. In particular, when the surface covering member provided with this cermet base is used as a cutting tool, the cutting performance may vary greatly depending on the work material such as steel or carbon steel, and a cutting tool that exhibits stable cutting performance. Was demanded.

本発明では上記問題を解決するためのものであり、その目的は、サーメット基体の表面において高い耐摩耗性と耐欠損性を有する表面被覆部材を提供することである。   The present invention is to solve the above problems, and an object of the present invention is to provide a surface covering member having high wear resistance and fracture resistance on the surface of a cermet substrate.

本発明の表面被覆部材は、Tiを主成分とする周期表4、5および6族金属の窒化物または炭窒化物からなる硬質相をCoまたはNiを主成分とする結合相で結合したサーメット基体と、該サーメット基体の表面を被覆する被覆層とからなるものであって、前記サーメット基体の断面組織を観察した場合、前記硬質相が、TiCNを主成分とする第1硬質相と、周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体の第2硬質相とからなり、前記サーメット基体の表面領域において、前記第1硬質相の平均粒径をaとし、前記第2硬質相の平均粒径をbとしたとき、aとbとの比率(b/a)が2〜10であり、該表面領域における前記硬質相全体に対する前記第1硬質相が占める平均面積をAとし、前記第2硬質相が占める平均面積をBとしたとき、AとBとの比率(B/A)が2〜10であるとともに、前記被覆層は、層厚が3.5〜10μmであって、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0≦d≦0.1、0≦x≦1)からなることを特徴とする。 The surface covering member of the present invention comprises a cermet substrate in which a hard phase composed of a nitride or carbonitride of a periodic table 4, 5 and 6 metal having Ti as a main component is bonded with a binder phase having Co or Ni as a main component. And a coating layer covering the surface of the cermet substrate, and when the cross-sectional structure of the cermet substrate is observed, the hard phase is composed of a first hard phase mainly composed of TiCN and a periodic table. consists of a second hard phase of the complex carbonitride solid solution of at least one of Ti 4, 5 and 6 metals in the surface region of the cermet substrate, the average particle size of the first hard phase a s and then, when the average particle diameter of the second hard phase was b s, a ratio between a s and b s (b s / a s ) is 2 to 10, wherein with respect to the entire hard phase in the surface region the average area of the first hard phase occupies a s And then, when the average area of the second hard phase occupies was B s, with a ratio between A s and B s (B s / A s ) is 2 to 10, wherein the coating layer has a thickness of 3 a .5~10μm, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x) ( however, M is selected Nb, Mo, Ta, Hf, from Y At least one kind, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0 ≦ d ≦ 0.1, 0 ≦ x ≦ 1). It is characterized by becoming.

ここで、上記構成において、前記第2硬質相はWおよびNbの少なくとも一方を含むとともに、該第2硬質相の中心部ではWおよびNbの少なくとも一方の含有量が多く、該第2硬質相の外周部ではWおよびNbの少なくとも一方の含有量が少ないことが望ましい。   Here, in the above-described configuration, the second hard phase contains at least one of W and Nb, and at the center of the second hard phase, the content of at least one of W and Nb is large. It is desirable that the content of at least one of W and Nb is small in the outer peripheral portion.

また、前記第2硬質相の外周部における(WとNbとの合計質量)/(金属元素全体の合計質量)の比率が2〜20%であることが望ましい。   Moreover, it is desirable that the ratio of (total mass of W and Nb) / (total mass of the entire metal element) in the outer peripheral portion of the second hard phase is 2 to 20%.

さらに、前記サーメット基体の内部における前記第1硬質相の平均粒径をaとし、該第2硬質相の平均粒径をbとしたとき、aとbとの比率(b/a)が2〜8であって、前記bがbより大きく、前記サーメット基体の内部における前記硬質相全体に対する前記第1硬質相が占める平均面積をAとし、前記第2硬質相が占める平均面積をBとしたとき、AとBとの比率(B/A)が1.5〜5であって、前記BがBよりも大きいことが望ましい。 Further, the average particle size of the first hard phase in the interior of the cermet substrate and a i, when the average particle diameter of the second hard phase was b i, a i and b i and the ratio of (b i / a i ) is 2 to 8, b s is larger than b i , and the average area occupied by the first hard phase with respect to the entire hard phase in the cermet substrate is A i, and the second hard phase When the average area occupied by B i is B i , the ratio (B i / A i ) between A i and B i is 1.5 to 5, and it is desirable that the B s is larger than B i .

また、前記bが前記bより大きい表面領域が前記サーメット基体の表面から30〜300μmの厚さの範囲で存在することが望ましい。 Further, it is desirable that the b s are present in a thickness range of 30~300μm from the b i is greater than the surface area is the surface of the cermet substrate.

本発明の表面被覆部材によれば、表面領域における第1硬質相の平均粒径aと第2硬質相の平均粒径をbとの比率(b/a)が2〜10であり、かつ第1硬質相が占める平均面積をAと第2硬質相が占める平均面積をBとの比率(B/A)が2〜10であるサーメット基体の表面に、層厚が3.5〜10μmで、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0≦d≦0.1、0≦x≦1)からなる被覆層を形成したことを特徴とする。これによって、耐摩耗性に優れるとともに表面領域においては厚くても内部応力が高くならず、耐摩耗性および耐欠損性に優れる。 According to the surface-coated member of the present invention, the average particle size a s of the first hard phase in the surface region an average particle diameter of the second hard phase in a ratio of b s (b s / a s ) is 2 to 10 There, and in the average area of a s and the ratio of the average area of B s of the second hard phase occupies (B s / a s) is a surface of the cermet substrate is a 2-10 first hard phase occupies, the layer thickness but in 3.5~10μm, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x) ( however, M is selected Nb, Mo, Ta, Hf, from Y At least one kind, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0 ≦ d ≦ 0.1, 0 ≦ x ≦ 1). A coating layer is formed. As a result, the wear resistance is excellent, and even if the surface region is thick, the internal stress is not increased, and the wear resistance and fracture resistance are excellent.

ここで、上記構成において、前記第2硬質相はWおよびNbの少なくとも一方を含むとともに、該第2硬質相の中心部ではWおよびNbの少なくとも一方の含有量が多く、該第2硬質相の外周部ではWおよびNbの少なくとも一方の含有量が少ないことが、第2硬質相の中心部では靭性が向上して耐衝撃性が高くなるとともに、第2硬質相の外周部では硬度が向上して塑性変形性が向上する点で望ましい。   Here, in the above-described configuration, the second hard phase contains at least one of W and Nb, and at the center of the second hard phase, the content of at least one of W and Nb is large. The fact that the content of at least one of W and Nb is small in the outer peripheral portion, the toughness is improved in the central portion of the second hard phase and the impact resistance is increased, and the hardness is improved in the outer peripheral portion of the second hard phase. This is desirable in terms of improving plastic deformability.

また、前記第2硬質相の外周部における(WとNbとの合計質量)/(金属元素全体の合計質量)が2〜20%であることが、サーメットの熱伝導性が向上して耐熱衝撃性が向上するため望ましい。   Further, (the total mass of W and Nb) / (the total mass of the entire metal element) in the outer peripheral portion of the second hard phase is 2 to 20%, which improves the thermal conductivity of the cermet and improves the thermal shock resistance. This is desirable because of improved properties.

さらに、内部における前記第1硬質相の平均粒径をaとし、該第2硬質相の平均粒径をbとしたとき、aとbとの比率(b/a)が2〜8であって、bがbより大きく、内部における前記硬質相全体に対する前記第1硬質相が占める平均面積をAとし、前記第2硬質相が占める平均面積をBとしたとき、AとBとの比率(B/A)が1.5〜5であって、前記BがBよりも大きいことが、第2硬質相が熱伝播に有効に寄与してサーメットの熱伝導率が向上し、サーメットの耐熱衝撃性が向上する点で望ましい。 Further, the average particle size of the first hard phase in the interior and a i, when the average particle diameter of the second hard phase was b i, a ratio between a i and b i (b i / a i ) is a 2 to 8, b s is greater than b i, the average area of the first hard phase occupied for the entire the hard phase in the interior and a i, and the average area of the second hard phase occupies a B i When the ratio of A i to B i (B i / A i ) is 1.5 to 5 and the B s is larger than B i , the second hard phase effectively contributes to heat propagation Thus, it is desirable in that the thermal conductivity of the cermet is improved and the thermal shock resistance of the cermet is improved.

また、前記bが前記bより大きい表面領域が前記サーメット基体の表面から30〜300μmの厚さの範囲で存在することが、サーメット表面近傍における熱伝導性を高めてサーメットの耐熱衝撃性を向上させるために望ましい。 Further, the b s may be present in a range thickness of 30~300μm from the b i is greater than the surface area is the surface of the cermet substrate, to enhance the thermal conductivity in the vicinity of the cermet surface thermal shock resistance of the cermet Desirable to improve.

本発明の表面被覆部材の好適例である切削工具の一例について、図1の被覆層とサーメット基体とを含む断面についての走査型電子顕微鏡写真、および図2のサーメット基体について(a)表面付近、(b)内部についての走査型電子顕微鏡写真を基に説明する。   About an example of the cutting tool which is a suitable example of the surface coating member of this invention, about the scanning electron micrograph about the cross section containing the coating layer and cermet base | substrate of FIG. 1, and (a) surface vicinity about the cermet base | substrate of FIG. (B) A description will be given based on a scanning electron micrograph of the inside.

図1、2のように、本発明の切削工具1は、硬質相2を結合相3で結合したサーメット基体4と、サーメット基体4の表面を被覆する被覆層5とからなる。また、サーメット基体4の断面組織写真である図2から明らかなように、硬質相2は、黒色の第1硬質相2aと、灰白色の第2硬質相2bとからなり、サーメット基体4の表面領域について、第1硬質相2aの平均粒径をaとし、第2硬質相2bの平均粒径をbとしたとき、aとbとの比率(b/a)が2〜10であり、表面領域における硬質相2全体に対する第1硬質相2aが占める平均面積をAとし、第2硬質相2bが占める平均面積をBとしたとき、AとBとの比率(B/A)が2〜10となっている。 As shown in FIGS. 1 and 2, the cutting tool 1 of the present invention includes a cermet substrate 4 in which a hard phase 2 is bonded with a bonding phase 3, and a coating layer 5 that covers the surface of the cermet substrate 4. Further, as apparent from FIG. 2 which is a cross-sectional structure photograph of the cermet substrate 4, the hard phase 2 is composed of a black first hard phase 2 a and an off-white second hard phase 2 b, and the surface region of the cermet substrate 4. for the average particle diameter of the first hard phase 2a and a s, when the average particle diameter of the second hard phase 2b was b s, the ratio of a s and b s (b s / a s ) is 2 is 10, when the average area occupied by the first hard phase 2a to the whole hard phase 2 in the surface region and a s, and the average area of the second hard phase 2b occupies a B s, the ratio between a s and B s (B s / A s ) is 2 to 10.

一方、被覆層5は、層厚が3〜10μmであって、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0≦d≦0.1、0≦x≦1)からなる。 On the other hand, the coating layer 5 has a thickness in a 3~10μm, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x) ( however, M is Nb, At least one selected from Mo, Ta, Hf, and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0 ≦ d ≦ 0. 1, 0 ≦ x ≦ 1).

この組み合わせによって、切削工具1の耐摩耗性および耐欠損性が向上する。特に、切削工具1として用いた場合、鋼のみならず炭素鋼を切削する場合であっても優れた耐摩耗性と耐欠損性を発揮する。   This combination improves the wear resistance and fracture resistance of the cutting tool 1. In particular, when used as the cutting tool 1, excellent wear resistance and fracture resistance are exhibited even when cutting not only steel but also carbon steel.

すなわち、比率(b/a)が2より小さいかまたは比率(B/A)が2より小さいと切削工具1の耐摩耗性が低下する。逆に、比率(b/a)が10より大きいかまたは比率(B/A)が10を超えると被覆層5が剥離しやすくなって耐摩耗性が悪くなる。また、被覆層5の組成が上記範囲から外れると、高温での耐酸化性が悪くなって切削工具1の耐摩耗性が低下したり、内部応力が高くなって切削工具1の耐欠損性が悪くなる。さらに、被覆層5の厚みが3.5μmより薄いと切削工具1の耐摩耗性が悪く、逆に被覆層5の厚みが10μmを超えると被覆層5がチッピングしやすくなって耐欠損性が低下する。 That is, if the ratio (b s / a s ) is smaller than 2 or the ratio (B s / A s ) is smaller than 2, the wear resistance of the cutting tool 1 is lowered. Conversely, if the ratio (b s / a s ) is greater than 10 or the ratio (B s / A s ) exceeds 10, the coating layer 5 is easily peeled off and the wear resistance is deteriorated. Further, if the composition of the coating layer 5 is out of the above range, the oxidation resistance at high temperature is deteriorated and the wear resistance of the cutting tool 1 is lowered, or the internal stress is increased and the fracture resistance of the cutting tool 1 is reduced. Deteriorate. Furthermore, if the thickness of the coating layer 5 is less than 3.5 μm, the wear resistance of the cutting tool 1 is poor, and conversely if the thickness of the coating layer 5 exceeds 10 μm, the coating layer 5 tends to chip and the chipping resistance decreases. To do.

ここで、本発明における被覆層5の厚みは切刃稜線部における被覆層5の厚みを規定する。また、被覆層5の望ましい組成は、0.45≦a≦0.50、0.02≦b≦0.06、0.01≦c≦0.03、0.03≦d≦0.08、x=0である。   Here, the thickness of the coating layer 5 in this invention prescribes | regulates the thickness of the coating layer 5 in a cutting edge ridgeline part. Desirable compositions of the coating layer 5 are 0.45 ≦ a ≦ 0.50, 0.02 ≦ b ≦ 0.06, 0.01 ≦ c ≦ 0.03, 0.03 ≦ d ≦ 0.08, x = 0.

なお、硬質相2は、Tiを主成分とする周期表4、5および6族金属の窒化物または炭窒化物からなり、結合相3はCoまたはNiを主成分とする組成からなる。また、第1硬質相2aはTiCNを主成分としてその他の成分の含有比率は10質量%以下であり、第2硬質相2bは周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体からなる。   The hard phase 2 is made of a nitride or carbonitride of Periodic Tables 4, 5 and 6 metals having Ti as a main component, and the binder phase 3 has a composition having Co or Ni as a main component. The first hard phase 2a has TiCN as a main component and the content ratio of the other components is 10% by mass or less, and the second hard phase 2b is composed of at least one of Group 4, 5, and 6 metals of the periodic table and Ti. The composite carbonitride solid solution.

ここで、上記構成において、第2硬質相2bはWおよびNbの少なくとも一方を含むとともに、第2硬質相2bの中心部ではWおよびNbの少なくとも一方の含有量が多く、第2硬質相2bの外周部ではWおよびNbの少なくとも一方の含有量が少ないことが、第2硬質相2bの中心部では靭性が向上して耐衝撃性が高くなるとともに、第2硬質相2bの外周部では硬度が向上して塑性変形性が向上する点で望ましい。   Here, in the above configuration, the second hard phase 2b includes at least one of W and Nb, and at the center of the second hard phase 2b, the content of at least one of W and Nb is large, and the second hard phase 2b The fact that the content of at least one of W and Nb is small in the outer peripheral portion improves the toughness and the impact resistance at the central portion of the second hard phase 2b, and the hardness at the outer peripheral portion of the second hard phase 2b. It is desirable in terms of improving the plastic deformability.

また、第2硬質相2bの外周部における(WとNbとの合計質量)/(金属元素全体の合計質量)の比率が2〜20%であることが、サーメット基体4の熱伝導性が向上して耐熱衝撃性が向上するため望ましい。   Further, the ratio of (total mass of W and Nb) / (total mass of the entire metal element) in the outer peripheral portion of the second hard phase 2b is 2 to 20%, so that the thermal conductivity of the cermet substrate 4 is improved. Therefore, it is desirable because the thermal shock resistance is improved.

さらに、サーメット基体4の内部6における第1硬質相2aの平均粒径をaとし、第2硬質相2bの平均粒径をbとしたとき、aとbとの比率(b/a)が2〜8であり、bがbより大きく、かつ、内部6における硬質相2全体に対する第1硬質相2aが占める平均面積をAとし、第2硬質相2bが占める平均面積をBとしたとき、AとBとの比率(B/A)が1.5〜5であって、前記BがBよりも大きいこと、すなわち、サーメット基体4の表面には硬質相の平均粒径が大きい表面領域7が存在することが、第2硬質相2bが熱伝播に有効に寄与してサーメット基体4の熱伝導率が向上し、サーメット基体4の耐熱衝撃性が向上する点で望ましい。 Further, the average particle diameter of the first hard phase 2a in the interior 6 of the cermet substrate 4 and a i, when the average particle diameter of the second hard phase 2b was b i, a ratio between a i and b i (b i / A i ) is 2 to 8, b s is larger than b i , and the average area occupied by the first hard phase 2a with respect to the entire hard phase 2 in the interior 6 is A i, and the second hard phase 2b occupies When the average area is B i , the ratio (B i / A i ) between A i and B i is 1.5 to 5, and the B s is larger than B i , that is, the cermet substrate 4 The surface region 7 having a large average particle size of the hard phase is present on the surface of the cermet substrate, the second hard phase 2b effectively contributes to heat propagation, and the thermal conductivity of the cermet substrate 4 is improved. It is desirable in terms of improving thermal shock resistance.

また、表面領域7はサーメット基体4の表面から30〜300μmの厚さの範囲で存在することが、サーメット基体4の表面近傍における熱伝導性を高めてサーメット基体4の耐熱衝撃性を向上させるために望ましい。   Further, the surface region 7 exists in a thickness range of 30 to 300 μm from the surface of the cermet substrate 4 in order to increase the thermal conductivity in the vicinity of the surface of the cermet substrate 4 and improve the thermal shock resistance of the cermet substrate 4. Is desirable.

なお、断面組織を走査型電子顕微鏡にて観察した場合に、第1硬質相2aは黒色の粒子、または黒色の芯部の周辺に灰白色の周辺部が存在する有芯構造からなる粒子として観察される。一方、第2硬質相2bは灰白色の粒子、または白色の芯部の周辺に灰白色の周辺部が存在する有芯構造からなる粒子として観察される。なお、上記灰白色とは、写真撮影の条件によって白色に近い色調に見えることもあり、灰色に近い色調に見えることもある。   When the cross-sectional structure is observed with a scanning electron microscope, the first hard phase 2a is observed as black particles or particles having a cored structure in which a grayish white peripheral portion exists around the black core portion. The On the other hand, the second hard phase 2b is observed as grayish white particles or particles having a cored structure in which a grayish white peripheral portion exists around the white core portion. The grayish white color may appear to be a color tone close to white or may be a color tone close to gray depending on the conditions of photography.

また、他の実施態様についてのサーメット基体の(a)表面付近、(b)内部における走査型電子顕微鏡写真である図3に示すように、表面領域7のさらに表面に、硬質相2の中の第1硬質相2aの含有比率が高い極表面領域8が存在することもある。しかしながら、本発明においては極表面領域8が存在しないほうが、被覆層5の密着性を強固にする点で望ましい。   In addition, as shown in FIG. 3 which is a scanning electron micrograph of (a) the vicinity of the cermet substrate and (b) inside the cermet substrate according to another embodiment, on the surface of the surface region 7, There may be a pole surface region 8 having a high content ratio of the first hard phase 2a. However, in the present invention, the absence of the extreme surface region 8 is desirable in terms of strengthening the adhesion of the coating layer 5.

ここで、サーメット基体4に含有される硬質相2をなすTiを主成分とする周期表4、5および6族金属の窒化物または炭窒化物の合計含有量は70〜96質量%であることが望ましく、特に耐摩耗性の向上の点で85〜95質量%であることが望ましい。一方、結合相3の含有量は4〜14質量%であることによって、基体の硬度および靭性のバランスに優れたものとなる。また、結合相3としては、鉄族金属の総量に対してCoを65質量%以上含有することが切削工具の耐熱衝撃性を高めるために望ましい。なお、サーメット基体4の焼肌面が平滑な面となるようにサーメット基体4の良好な焼結性を維持するためには、鉄族金属としてNiを5〜50質量%、特に10〜35質量%の割合で含有せしめることが望ましい。   Here, the total content of the nitrides or carbonitrides of the periodic tables 4, 5 and 6 metals mainly composed of Ti forming the hard phase 2 contained in the cermet substrate 4 is 70 to 96% by mass. In particular, it is preferably 85 to 95% by mass from the viewpoint of improving wear resistance. On the other hand, when the content of the binder phase 3 is 4 to 14% by mass, the balance between hardness and toughness of the substrate is excellent. Moreover, as the binder phase 3, it is desirable to contain 65% by mass or more of Co with respect to the total amount of the iron group metal in order to improve the thermal shock resistance of the cutting tool. In order to maintain good sinterability of the cermet base 4 so that the burned surface of the cermet base 4 is a smooth surface, Ni as the iron group metal is 5 to 50% by weight, particularly 10 to 35% by weight. It is desirable to make it contain in the ratio of%.

なお、本発明における硬質相2の粒径の測定は、CIS−019D−2005に規定された超硬合金の平均粒径の測定方法に準じて測定する。この時、硬質相2が有芯構造からなる場合については、芯部と周辺部を含めた周辺部の外縁までを1つの硬質相として測定する。
(製造方法)
次に、上述した工具の製造方法について説明する。
In addition, the measurement of the particle size of the hard phase 2 in this invention is measured according to the measuring method of the average particle size of the cemented carbide prescribed | regulated to CIS-019D-2005. At this time, in the case where the hard phase 2 has a cored structure, the outer edge of the peripheral part including the core part and the peripheral part is measured as one hard phase.
(Production method)
Next, the manufacturing method of the tool mentioned above is demonstrated.

まず、平均粒径0.1〜1.2μm、特に0.2〜0.9μmのTiCN粉末と、平均粒径0.1〜2μmのTiN粉末、上述した他の金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、Co粉末やNi粉末とを混合した混合粉末を調整する。   First, TiCN powder having an average particle size of 0.1 to 1.2 μm, especially 0.2 to 0.9 μm, TiN powder having an average particle size of 0.1 to 2 μm, carbide powder of other metals described above, and nitride powder Alternatively, a mixed powder obtained by mixing any one of carbonitride powders and Co powder or Ni powder is prepared.

さらに、鉄族金属粉末、すなわちCo粉末やNi粉末の平均粒径は2μm以下、特に0.05〜1.5μmであることが、サーメット基体の焼結性を高めるために望ましい。さらには、結合金属原料粉末として、CoおよびNiを所定の比率で含有する固溶体粉末を用いることが、さらに焼結性を高める点で望ましい。なお、他の原料粉末の平均粒径は0.05〜3μmであることが望ましい。   Further, the average particle size of the iron group metal powder, that is, Co powder or Ni powder is preferably 2 μm or less, particularly 0.05 to 1.5 μm, in order to improve the sinterability of the cermet substrate. Furthermore, it is desirable to use a solid solution powder containing Co and Ni in a predetermined ratio as the binding metal raw material powder from the viewpoint of further improving the sinterability. The average particle size of other raw material powders is preferably 0.05 to 3 μm.

そして、この混合粉末にバインダを添加して、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。   And a binder is added to this mixed powder, and it shape | molds in a predetermined shape by well-known shaping | molding methods, such as press molding, extrusion molding, and injection molding.

次に、本発明によれば、下記の条件にて焼成することにより、上述した所定組織の超硬合金を作製することができる。焼成条件としては、(a)1050〜1250℃の焼成温度Aまで5〜15℃/分で昇温した後、焼成温度Aから1275〜1375℃の焼成温度Bまでを0.1〜3℃/分で昇温し、(b)ついで窒素分圧30〜2000Paの雰囲気下にて焼成温度Bから1500〜1600℃の焼成温度Cまで4〜15℃/分で昇温して、焼成温度Cにて窒素分圧30〜2500Paの雰囲気下で、0.5〜2時間焼成した後、(d)1100℃までを真空で、その後の降温は窒素分圧30〜2500Paの不活性ガス雰囲気下で降温する。   Next, according to the present invention, the above-mentioned cemented carbide having a predetermined structure can be produced by firing under the following conditions. As firing conditions, (a) after raising the temperature from 1050 to 1250 ° C. at a firing temperature A of 5 to 15 ° C./min, the firing temperature A to 1275 to 1375 ° C. to a firing temperature B of 0.1 to 3 ° C. / (B) Then, the temperature is increased from 4 to 15 ° C./minute from the firing temperature B to 1500 to 1600 ° C. in an atmosphere having a nitrogen partial pressure of 30 to 2000 Pa. After firing for 0.5 to 2 hours in an atmosphere with a nitrogen partial pressure of 30 to 2500 Pa, (d) vacuuming up to 1100 ° C., and subsequent cooling is performed under an inert gas atmosphere with a nitrogen partial pressure of 30 to 2500 Pa. To do.

本発明によれば、上記焼成時の昇温パターン、および所定量の不活性ガスを導入するタイミングを制御することによって上述した組織のサーメット基体4を作製することができる。   According to the present invention, the cermet substrate 4 having the above-described structure can be produced by controlling the temperature rising pattern during firing and the timing of introducing a predetermined amount of inert gas.

そして、サーメット基体4の表面に被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   Then, a coating layer is formed on the surface of the cermet substrate 4. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method.

被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明すると、被覆層をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属タングステン(W)、金属シリコン(Si)、金属M(MはNb、Mo、Ta、Hf、Yから選ばれる少なくとも1種)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用い、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。 A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method. The details of an example of the film forming method will be described. When the coating layer is formed by an ion plating method, metal titanium (Ti), metal aluminum (Al), metal tungsten (W), metal silicon (Si), Using metal M (M is at least one selected from Nb, Mo, Ta, Hf, and Y) independently or a composite alloy target, the metal source is evaporated by arc discharge or glow discharge. Simultaneously with the ionization, a film is formed by reacting with nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source.

また、成膜雰囲気として窒素(N)ガスとアルゴン(Ar)ガスを1〜10Paの割合で導入することによって、被覆層の基体に対する密着力と硬度が向上する。なお、イオンプレーティング法やスパッタリング法で被覆層を成膜する際には、被覆層の結晶構造および配向性を制御して高硬度な被覆層を作製できるとともに、厚膜化が可能であり、かつ基体との密着性を高めるために30〜70Vのバイアス電圧を印加することが好ましい。 Further, by introducing nitrogen (N 2 ) gas and argon (Ar) gas at a rate of 1 to 10 Pa as a film forming atmosphere, the adhesion and hardness of the coating layer to the substrate are improved. In addition, when forming a coating layer by an ion plating method or a sputtering method, it is possible to produce a high hardness coating layer by controlling the crystal structure and orientation of the coating layer, and it is possible to increase the thickness of the coating layer. In addition, it is preferable to apply a bias voltage of 30 to 70 V in order to improve the adhesion to the substrate.

マイクロトラック法による測定にて平均粒径0.6μmのTiCN粉末、平均粒径1.1μmで表1の炭素量のWC粉末、平均粒径1.5μmのTiN粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を表1に示す割合で調整した混合粉末をステンレス製ボールミルと超硬ボールを用いて、イソプロピルアルコール(IPA)にて湿式混合し、パラフィンを3質量%添加、混合した後、200MPaでCNMG120408の工具形状にプレス成形した。   TiCN powder having an average particle diameter of 0.6 μm as measured by the microtrack method, WC powder having an average particle diameter of 1.1 μm and the carbon content shown in Table 1, TiN powder having an average particle diameter of 1.5 μm, and TaC powder having an average particle diameter of 2 μm NbC powder having an average particle size of 1.5 μm, ZrC powder having an average particle size of 1.8 μm, VC powder having an average particle size of 1.0 μm, Ni powder having an average particle size of 2.4 μm, and Co having an average particle size of 1.9 μm The mixed powder prepared by adjusting the ratio of the powder shown in Table 1 was wet-mixed with isopropyl alcohol (IPA) using a stainless steel ball mill and cemented carbide ball, 3% by mass of paraffin was added and mixed, and then CNMG120408 was mixed at 200 MPa. Press molded into a tool shape.

この成形体を用いて、真空雰囲気下で、1200℃の焼成温度Aまで10℃/分で昇温した後、1200℃の焼成温度Aから1350℃の焼成温度Bまでを0.7℃/分で昇温し、ついで窒素分圧150Paの雰囲気下にて1350℃の焼成温度Bから表2に示す焼成温度Cまで8℃/分で昇温して、焼成温度Cにて窒素分圧150Paの雰囲気下で1時間焼成した後、1100℃までを表1に示す条件で降温し、その後の降温は窒素分圧500Paの不活性ガス雰囲気下で降温して、サーメット基体を作製した。   Using this molded body, the temperature was raised at 10 ° C./min to a firing temperature A of 1200 ° C. in a vacuum atmosphere, and then the firing temperature A from 1200 ° C. to the firing temperature B of 1350 ° C. was 0.7 ° C./min. Then, the temperature was raised from a firing temperature B of 1350 ° C. to a firing temperature C shown in Table 2 at 8 ° C./min in an atmosphere with a nitrogen partial pressure of 150 Pa. After firing in an atmosphere for 1 hour, the temperature was lowered to 1100 ° C. under the conditions shown in Table 1, and the temperature was lowered in an inert gas atmosphere with a nitrogen partial pressure of 500 Pa to produce a cermet substrate.

この基体(焼結体)に対して、この基体にブラシ加工にて刃先処理(ホーニングR)を施した。上記基体をアークイオンプレーティング装置にセットし500℃に加熱した後、表1に示す被覆層を成膜した。なお、成膜条件は窒素ガスを圧力4Paの雰囲気中、アーク電流150A、バイアス電圧35V、加熱温度500℃とした。   The base (sintered body) was subjected to blade edge processing (Honing R) by brushing. The substrate was set in an arc ion plating apparatus and heated to 500 ° C., and then a coating layer shown in Table 1 was formed. The film forming conditions were an atmosphere of nitrogen gas and a pressure of 4 Pa, an arc current of 150 A, a bias voltage of 35 V, and a heating temperature of 500 ° C.

得られた切削工具について、走査型電子顕微鏡(SEM)観察を行い、5000倍の写真にて、表面および内部のそれぞれ任意5箇所について市販の画像解析ソフトを用いて15μm×15μmの領域で画像解析を行い、硬質相の存在状態、表面領域、中間領域の存在を確認するとともにこれらの平均粒径を測定し、これらの比率を算出した。結果は表2に示した。なお、表2のdはサーメット基体内部における硬質相全体の平均粒径である。 The obtained cutting tool was observed with a scanning electron microscope (SEM), and an image analysis was performed in a 15 μm × 15 μm region using commercially available image analysis software for each of the surface and the interior at a 5000 × magnification. Then, the presence state of the hard phase, the surface region, and the presence of the intermediate region were confirmed, and the average particle diameters thereof were measured to calculate the ratio thereof. The results are shown in Table 2. Incidentally, d i of Table 2 is the average particle size of the entire hard phase in the interior cermet substrate.

また、オージェ電子分光分析法(AES)の線分析によってサーメット内部の第2硬質相の中心部と外周部の組成について定量した。なお、オージェ電子分光分析法(AES)の測定条件は、加速電圧は20KeV、試料電流10nA、試料傾斜角30度として測定を行った。そして、周期表4、5および6族金属の総量に対するWとNbの合計含有量の比率を算出した。なお、比率の算出については任意の第2硬質相5個についての平均値をとった。結果は表3に示した。また、被覆層の組成はキーエンス社製走査型電子顕微鏡(VE8800)を用いて倍率500倍にて観察を行い、同装置に付随のEDAXアナライザ(AMETEK EDAX-VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光分析(EDX)法の一種であるZAF法により組成の定量分析を行った。また、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行った。さらに、被覆層の厚みは切刃稜線部における厚みを測定した。結果は表3に示した。   Further, the composition of the central portion and the outer peripheral portion of the second hard phase inside the cermet was quantified by line analysis of Auger electron spectroscopy (AES). Note that the measurement conditions of Auger electron spectroscopy (AES) were measured with an acceleration voltage of 20 KeV, a sample current of 10 nA, and a sample tilt angle of 30 degrees. And the ratio of the total content of W and Nb with respect to the total amount of periodic table 4, 5 and 6 group metal was computed. In addition, about the calculation of a ratio, the average value about five arbitrary 2nd hard phases was taken. The results are shown in Table 3. The composition of the coating layer was observed at a magnification of 500 using a scanning electron microscope (VE8800) manufactured by Keyence Corporation, and at an acceleration voltage of 15 kV using an EDAX analyzer (AMETEK EDAX-VE9800) attached to the apparatus. The composition was quantitatively analyzed by the ZAF method, which is a type of energy dispersive X-ray spectroscopy (EDX) method. For elements that could not be measured by this method, an X-ray photoelectron spectrometer (Quantum2000) manufactured by PHI was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurements were made. Furthermore, the thickness of the coating layer measured the thickness in a cutting edge ridgeline part. The results are shown in Table 3.

次に、得られた切削工具を用いて以下の切削条件にて切削試験を行った。結果は表3に合わせて併記した。
(耐摩耗性試験)
被削材:S45C(炭素鋼)
切削速度:250m/min
送り:0.20mm/rev
切込み:1.5mm
切削状態:湿式(水溶性切削液使用)
評価方法:摩耗量が0.2mmに達するまでの時間(分)
(耐欠損性試験)
被削材:S45C(炭素鋼)
切削速度:100m/min
送り:0.25mm/rev
切込み:2.0mm
切削状態:乾式
評価方法:欠損するまでの衝撃回数(回)
Next, a cutting test was performed using the obtained cutting tool under the following cutting conditions. The results are shown together in Table 3.
(Abrasion resistance test)
Work material: S45C (carbon steel)
Cutting speed: 250 m / min
Feed: 0.20mm / rev
Cutting depth: 1.5mm
Cutting condition: wet (use water-soluble cutting fluid)
Evaluation method: Time until the wear amount reaches 0.2 mm (minutes)
(Fracture resistance test)
Work material: S45C (carbon steel)
Cutting speed: 100 m / min
Feed: 0.25mm / rev
Cutting depth: 2.0mm
Cutting condition: Dry evaluation method: Number of impacts before breakage (times)

表1〜3より、上記工程のうちの(d)工程の1150℃までの降温をガス雰囲気中で行った試料No.8では、表面領域が形成されずに、比率(b/a)が2未満で比率(B/A)も2よりも小さくなり、耐摩耗性が低くなった。また、上記工程のうちの焼成温度Cでの焼成を1650℃で真空中とした試料No.9では、比率(b/a)が10を超えるとともに比率(B/A)も10よりも大きくなり、刃先硬度の低下により耐摩耗性が低くなった。さらに、被覆層の組成が本発明の範囲から外れる試料No.10〜17では、耐摩耗性および耐欠損性とも低下した。さらには、被覆層の厚みが3.5μmよりも薄い試料No.18では耐摩耗性が悪く、被覆層の厚みが10μmよりも厚い試料No.19では被覆層のチッピングによって摩耗が進行してしまった。 From Tables 1-3, sample No. 1 in which the temperature was lowered to 1150 ° C. in step (d) of the above steps in a gas atmosphere. In 8, without the surface region is formed, the ratio (b s / a s) is smaller than the ratio (B s / A s) even 2 less than 2, the wear resistance is lowered. In addition, in the above-described steps, the sample No. 1 in which the firing at the firing temperature C was performed at 1650 ° C. in vacuum. In No. 9, the ratio (b s / a s ) exceeded 10 and the ratio (B s / A s ) was larger than 10, and the wear resistance was lowered due to the decrease in the edge hardness. Furthermore, the sample No. in which the composition of the coating layer falls outside the scope of the present invention. In 10-17, both abrasion resistance and fracture resistance decreased. Furthermore, the sample No. 4 in which the thickness of the coating layer is thinner than 3.5 μm. In Sample No. 18, the abrasion resistance was poor and the thickness of the coating layer was more than 10 μm. In No. 19, wear progressed due to chipping of the coating layer.

これに対し、本発明の範囲内の組織となったサーメットである試料No.1〜7では、優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、その結果、工具寿命も長いものであった。   On the other hand, sample No. which is a cermet having a structure within the scope of the present invention. Nos. 1 to 7 exhibited excellent wear resistance and good fracture resistance. As a result, the tool life was long.

本発明の表面被覆部材の一例を示し、サーメット基体および被覆層を含む断面における研磨面についての走査型電子顕微鏡写真である。It is a scanning electron micrograph about the grinding | polishing surface in the cross section which shows an example of the surface coating member of this invention, and contains a cermet base | substrate and a coating layer. 図1の表面被覆部材のサーメット基体について、(a)表面付近、(b)内部についての走査型電子顕微鏡写真である。It is a scanning electron micrograph about (a) surface vicinity and (b) inside about the cermet base | substrate of the surface coating member of FIG. 本発明の表面被覆部材についてサーメット基体の他の一例を示し、(a)表面付近、(b)内部についての走査型電子顕微鏡写真である。The other example of a cermet base | substrate is shown about the surface coating member of this invention, (a) Surface vicinity, (b) The scanning electron micrograph about the inside.

符号の説明Explanation of symbols

1 切削工具
2 硬質相
2a 第1硬質相
2b 第2硬質相
3 結合相
4 サーメット基体
5 被覆層
6 内部
7 表面領域
8 極表面領域
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Hard phase 2a 1st hard phase 2b 2nd hard phase 3 Bonding phase 4 Cermet base | substrate 5 Covering layer 6 Inside 7 Surface area 8 Extreme surface area

Claims (5)

Tiを主成分とする周期表4、5および6族金属の窒化物または炭窒化物からなる硬質相をCoまたはNiを主成分とする結合相で結合したサーメット基体と、該サーメット基体の表面を被覆する被覆層とからなる表面被覆部材であって、
前記サーメット基体の断面組織を観察した場合、前記硬質相が、TiCNを主成分とする第1硬質相と、周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体の第2硬質相とからなり、
前記サーメット基体の表面領域において、前記第1硬質相の平均粒径をaとし、前記第2硬質相の平均粒径をbとしたとき、aとbとの比率(b/a)が2〜10であり、該表面領域における前記硬質相全体に対する前記第1硬質相が占める平均面積をAとし、前記第2硬質相が占める平均面積をBとしたとき、AとBとの比率(B/A)が2〜10であるとともに、
前記被覆層は、層厚が3.5〜10μmであって、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる少なくとも1種、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0≦d≦0.1、0≦x≦1)からなることを特徴とする表面被覆部材。
A cermet substrate in which a hard phase composed of a nitride or carbonitride of a periodic table 4, 5 and 6 metal containing Ti as a main component is bonded with a binder phase mainly containing Co or Ni, and a surface of the cermet substrate A surface coating member comprising a coating layer to be coated,
When the cross-sectional structure of the cermet substrate is observed, the hard phase is a composite carbonitride of a first hard phase mainly composed of TiCN, at least one of Group 4, 5, and 6 metals of the periodic table and Ti. Consisting of a second hard phase of solid solution,
In the surface region of the cermet substrate, wherein an average particle diameter of the first hard phase and a s, when the average particle diameter of the second hard phase was b s, a s and b s ratio of (b s / a s ) is 2 to 10, the average area occupied by the first hard phase with respect to the entire hard phase in the surface region is A s, and the average area occupied by the second hard phase is B s , A The ratio of s to B s (B s / A s ) is 2 to 10,
The coating layer has a thickness in a 3.5~10μm, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x) ( however, M is Nb, At least one selected from Mo, Ta, Hf, and Y, 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0.1, 0.01 ≦ c ≦ 0.05, 0 ≦ d ≦ 0. 1. A surface covering member comprising 0 ≦ x ≦ 1).
前記第2硬質相はWおよびNbの少なくとも一方を含むとともに、該第2硬質相の中心部ではWおよびNbの少なくとも一方の含有量が多く、該第2硬質相の外周部ではWおよびNbの少なくとも一方の含有量が少ないことを特徴とする請求項1記載の表面被覆部材。   The second hard phase contains at least one of W and Nb, and has a large content of at least one of W and Nb in the central portion of the second hard phase, and W and Nb in the outer peripheral portion of the second hard phase. The surface covering member according to claim 1, wherein the content of at least one is small. 前記第2硬質相の外周部における(WとNbとの合計質量)/(金属元素全体の合計質量)の比率が2〜20%であることを特徴とする請求項2記載の表面被覆部材。   The surface covering member according to claim 2, wherein a ratio of (total mass of W and Nb) / (total mass of the entire metal element) in the outer peripheral portion of the second hard phase is 2 to 20%. 前記サーメット基体の内部における前記第1硬質相の平均粒径をaとし、前記第2硬質相の平均粒径をbとしたとき、aとbとの比率(b/a)が2〜8であって、前記bがbより大きく、前記サーメット基体の内部における前記硬質相全体に対する前記第1硬質相が占める平均面積をAとし、前記第2硬質相が占める平均面積をBとしたとき、AとBとの比率(B/A)が1.5〜5であって、前記BがBよりも大きいことを特徴とする請求項2または3記載の表面被覆部材。 The average particle size of the first hard phase in the interior of the cermet substrate and a i, wherein when the average particle diameter of the second hard phase was b i, a i and b i and the ratio of (b i / a i ) is a 2-8, wherein b s is greater than b i, the average area of the first hard phase with respect to the entire hard phases in the interior of the cermet substrate is occupied by an a i, occupied by the second hard phase The ratio (B i / A i ) between A i and B i when the average area is B i is 1.5 to 5, and the B s is larger than B i. The surface covering member according to 2 or 3. 前記bが前記bより大きい表面領域が前記サーメット基体の表面から30〜300μmの厚さの範囲で存在することを特徴とする請求項4記載の表面被覆部材。 Surface-coated member according to claim 4, wherein said b s are present in a thickness range of 30~300μm from the b i is greater than the surface area is the surface of the cermet substrate.
JP2008167410A 2008-06-26 2008-06-26 Surface covering member Active JP5111259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167410A JP5111259B2 (en) 2008-06-26 2008-06-26 Surface covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167410A JP5111259B2 (en) 2008-06-26 2008-06-26 Surface covering member

Publications (2)

Publication Number Publication Date
JP2010005729A JP2010005729A (en) 2010-01-14
JP5111259B2 true JP5111259B2 (en) 2013-01-09

Family

ID=41586790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167410A Active JP5111259B2 (en) 2008-06-26 2008-06-26 Surface covering member

Country Status (1)

Country Link
JP (1) JP5111259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139696A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Rotating tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280048B2 (en) * 2002-09-27 2009-06-17 京セラ株式会社 Method for producing TiCN-based cermet
JP5127110B2 (en) * 2004-01-29 2013-01-23 京セラ株式会社 TiCN-based cermet and method for producing the same
JP5060714B2 (en) * 2004-09-30 2012-10-31 株式会社神戸製鋼所 Hard coating excellent in wear resistance and oxidation resistance, and target for forming the hard coating
JP2007307691A (en) * 2006-05-22 2007-11-29 Mitsubishi Materials Corp Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP5213326B2 (en) * 2006-11-28 2013-06-19 京セラ株式会社 cermet
JP5127264B2 (en) * 2007-02-23 2013-01-23 京セラ株式会社 TiCN-based cermet

Also Published As

Publication number Publication date
JP2010005729A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP4690475B2 (en) Cermet and coated cermet tools
CN101617061B (en) Ti-based cermet
WO2011002008A1 (en) Cermet and coated cermet
KR101701186B1 (en) Cutting tool
JP2009050997A (en) Cutting tools
JP5213326B2 (en) cermet
JP5989930B1 (en) Cermet and cutting tools
WO2012053237A1 (en) Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool
JP2010031308A (en) Cermet
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5273987B2 (en) Cermet manufacturing method
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP5063129B2 (en) cermet
JP5111259B2 (en) Surface covering member
JP4069749B2 (en) Cutting tool for roughing
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP7035820B2 (en) Base material and cutting tools
JP2009006413A (en) Ti-based cermet
JP7170964B2 (en) Cemented Carbide and Coated Cemented Carbide
JP2011093006A (en) Cermet and coated cermet
CN113453828A (en) Hard film cutting tool
EP3427873B1 (en) Surface-coated cutting tool with excellent chip resistance and abrasion resistance
JP2011132057A (en) Sintered compact
JP2010105100A (en) Cermet sintered body and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150