[go: up one dir, main page]

JP5109277B2 - Multi-cell module and fuel cell stack - Google Patents

Multi-cell module and fuel cell stack Download PDF

Info

Publication number
JP5109277B2
JP5109277B2 JP2006093799A JP2006093799A JP5109277B2 JP 5109277 B2 JP5109277 B2 JP 5109277B2 JP 2006093799 A JP2006093799 A JP 2006093799A JP 2006093799 A JP2006093799 A JP 2006093799A JP 5109277 B2 JP5109277 B2 JP 5109277B2
Authority
JP
Japan
Prior art keywords
cell
stack
module
stacking direction
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006093799A
Other languages
Japanese (ja)
Other versions
JP2007273113A (en
Inventor
三喜男 和田
政志 村手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006093799A priority Critical patent/JP5109277B2/en
Publication of JP2007273113A publication Critical patent/JP2007273113A/en
Application granted granted Critical
Publication of JP5109277B2 publication Critical patent/JP5109277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、複数のセルを積層したモジュール(マルチセルモジュール)と、積層したマルチセルモジュールを含む燃料電池スタックに関する。   The present invention relates to a module (multi-cell module) in which a plurality of cells are stacked, and a fuel cell stack including the stacked multi-cell modules.

特開2004−207074号公報に開示されているように、燃料電池(セル)は、MEA(膜電極接合体、membrane-electrode assembly )をセパレータで挟んだものを含む。MEAとセパレータとの間にはガス拡散層が介装される。セルは積層されて燃料電池スタックを構成する。
セパレータは薄板で流路等が形成されるため、また、特にメタルセパレータは剛性が低いため、製作された時、またはセル化されて拡散層から面圧を受けて、反りやセル中央部が太鼓状に膨らんだ変形が生じていることが多い。変形したセルを積層してスタック化した場合には、反りや変形が累積される。その結果、スタック締結荷重がかかった時に、セルにかかる面圧が不均一となり、面圧が小さい部位では接触抵抗が増加し、出力性能が低下する、シール性の確保が困難になる、等の問題が生じる。
セパレータ、セルの反りや変形を抑制するために、特開2002−151136号公報に開示されているように、セルの所定数単位毎に、金属製またはカーボン性の矯正プレートを介在させる場合がある(たとえば、特開2002−151136号公報)。
特開2004−207074号公報 特開2002−151136号公報
As disclosed in Japanese Patent Application Laid-Open No. 2004-207074, a fuel cell (cell) includes an MEA (membrane-electrode assembly) sandwiched between separators. A gas diffusion layer is interposed between the MEA and the separator. The cells are stacked to form a fuel cell stack.
Since separators are thin plates and flow paths are formed, especially metal separators are low in rigidity. In many cases, a bulging deformation is generated. When the deformed cells are stacked to form a stack, warpage and deformation are accumulated. As a result, when the stack fastening load is applied, the surface pressure applied to the cell becomes non-uniform, the contact resistance increases at the portion where the surface pressure is small, the output performance decreases, and it becomes difficult to ensure the sealing performance, etc. Problems arise.
In order to suppress the warpage and deformation of the separator and the cell, as disclosed in JP 2002-151136 A, a metal or carbon correction plate may be interposed for each predetermined number of cells. (For example, JP 2002-151136 A).
Japanese Patent Laid-Open No. 2004-207074 JP 2002-151136 A

しかし、セルの所定数単位毎に金属製またはカーボン性の矯正プレートを介在させるだけでは、セル中央部と外側部との面圧不均一の問題を解決することは困難である。
そこで、セルの所定数単位毎に金属製またはカーボン性の矯正プレートを介在させ、セル積層方向に締め付け荷重を付与し、矯正プレート間を外枠で拘束してモジュール化(ユニット化)すると、セル中央部と外側部との面圧不均一の問題は抑制されるが、他方、モジュールの両端の矯正プレートが、セル中央部で拡散層からの面圧によって、互いに離れる方向の荷重を受けた時に矯正プレートと外枠との結合部(たとえば、接着部)に高い応力が加わる、耐久性に影響する(接着の場合は剥がれる)という問題が生じる。
However, it is difficult to solve the problem of uneven surface pressure between the central portion and the outer portion of the cell only by interposing a metal or carbon correction plate for each predetermined number of cells.
Therefore, a metal or carbon correction plate is interposed for each predetermined number of cells, a clamping load is applied in the cell stacking direction, and the correction plates are constrained by an outer frame to be modularized (unitized). The problem of uneven surface pressure between the central part and the outer part is suppressed, but on the other hand, when the correction plates at both ends of the module are subjected to loads away from each other due to the surface pressure from the diffusion layer in the central part of the cell. There arises a problem that a high stress is applied to a joint portion (for example, a bonding portion) between the correction plate and the outer frame, and the durability is affected (peeling in the case of bonding).

本発明の第1の目的は、複数のセルを積層し締結荷重を付与したセル積層体における、セル中央部と外側部との面圧不均一の問題を解決できるマルチセルモジュールおよび該マルチセルモジュールを含む燃料電池スタックを提供することにある。
本発明の第2の目的は、マルチセルモジュールの両端のプレートとそれを連結する外枠との連結部を損傷させることなく、第1の目的を達成できるマルチセルモジュールおよび該マルチセルモジュールを含む燃料電池スタックを提供することにある。
A first object of the present invention includes a multi-cell module capable of solving the problem of non-uniform surface pressure between a cell central portion and an outer portion in a cell laminate in which a plurality of cells are laminated and a fastening load is applied, and the multi-cell module. It is to provide a fuel cell stack.
A second object of the present invention is to provide a multi-cell module that can achieve the first object without damaging the connecting portion between the plates at both ends of the multi-cell module and the outer frame that connects the plates, and a fuel cell stack including the multi-cell module. Is to provide.

上記課題を解決する、そして上記目的を達成する、本発明は、つぎのとおりである。
(1) (a)複数積層されて燃料電池スタックのモジュール積層体を構成するマルチセルモジュールであって、
(b)前記マルチセルモジュールが、
積層された複数のセルを含むセル積層体と、
セル積層体の積層端面の外側部をセル積層方向に挟む第1の挟持部材と、
セル積層体の積層端面の内側部をセル積層方向に挟む、前記第1の挟持部材に対してセル積層方向に移動可能な、第2の挟持部材と、
含み、
(c)第1の挟持部材は剛体でセル積層体のセル積層方向両面の各面に1つ、両面で一対あり、該一対の第1の挟持部材は連結用側板を介して互いに連結されていて前記セル積層体に対してセル積層方向に移動不能であり、第2の挟持部材は剛体でセル積層体のセル積層方向両面の各面に1つ、両面で一対あり、
(d)マルチセルモジュールの自由状態では前記一対の第2の挟持部材の間隔D2は前記一対の第1の挟持部材の間隔D1よりも大であり、マルチセルモジュールにスタック締結荷重がかかった状態では前記一対の第2の挟持部材の間隔は前記マルチセルモジュールの自由状態での前記一対の第2の挟持部材の間隔D2より減少しているマルチセルモジュール。
) 前記セルはメタルセパレータを含む(1)記載のマルチセルモジュール。
) (1)または2)記載の前記マルチセルモジュールを、複数、積層し、スタック締結荷重を付与した燃料電池スタック。
) セル積層方向での曲げ剛性がセルよりも大な1枚以上の、前記第1、第2の挟持部材からなる、板状部材がセル間に介在する()記載の燃料電池スタック。
) 前記板状部材の一方の面に接触するセルと他方の面に接触するセルとは、互いに逆方向に撓み、前記板状部材は撓まない()記載の燃料電池スタック。
The present invention for solving the above problems and achieving the above object is as follows.
(1) (a) A multi-cell module in which a plurality of layers are stacked to form a module stack of a fuel cell stack,
(B) The multi-cell module is
A cell stack including a plurality of stacked cells; and
A first clamping member that sandwiches the outer side of the stacking end face of the cell stack in the cell stacking direction;
A second sandwiching member that is movable in the cell stacking direction with respect to the first sandwiching member, sandwiching the inner side of the stack end face of the cell stack in the cell stacking direction;
Including
(C) The first sandwiching member is a rigid body, one on each surface of the cell stack in the cell stacking direction, and a pair of both surfaces, and the pair of first sandwiching members are connected to each other via a connecting side plate. The second sandwiching member is a rigid body, one on each side of the cell stacking direction of the cell stack, and a pair on both sides.
(D) In the free state of the multi-cell module, the distance D2 between the pair of second clamping members is larger than the distance D1 between the pair of first clamping members, and when the stack fastening load is applied to the multi-cell module, The multi-cell module, wherein a distance between the pair of second clamping members is smaller than a distance D2 between the pair of second clamping members in a free state of the multi-cell module.
(2) multi-cell module of the cell containing the metal separator (1) Symbol placement.
(3) (1) or (2) Symbol mounting the multi-cell module, a plurality, laminated, a fuel cell stack granted stack fastening load of.
( 4 ) The fuel cell stack according to ( 3 ) , wherein one or more plate-shaped members made of the first and second clamping members having a bending rigidity in the cell stacking direction larger than those of the cells are interposed between the cells. .
( 5 ) The fuel cell stack according to ( 4 ), wherein the cell that contacts one surface of the plate member and the cell that contacts the other surface bend in opposite directions, and the plate member does not bend.

上記(1)のマルチセルモジュールによれば、マルチセルモジュールは複数積層されて燃料電池スタックのモジュール積層体を構成するものであるので、各マルチセルモジュールでセル変形を吸収でき、スタック全体にわたるセル変形の累積を防止できる。
また、第2の挟持部材が第1の挟持部材に対してセル積層方向に移動可能であり、マルチセルモジュールの自由状態では一対の第2の挟持部材の間隔D2は一対の第1の挟持部材の間隔D1よりも大であるため、マルチセルモジュールの両端の第2の挟持部材が拡散層からの面圧を受けた時に、互いに離れる方向に移動し、セル積層体の太鼓状の変形を吸収できる。
また、マルチセルモジュールにスタック締結荷重がかかった状態では一対の第2の挟持部材の間隔はマルチセルモジュールの自由状態での一対の第2の挟持部材の間隔D2より減少しているので、各マルチセルモジュールの両端の第2の挟持部材互いに近接する方向に移動して、第1の挟持部材とほぼ同位置になり、セル中央部と外側部との面圧不均一の問題を解決できる。
According to the multi- cell module of (1) above, a plurality of multi-cell modules are stacked to form a module stack of a fuel cell stack. Therefore, each multi-cell module can absorb cell deformation and accumulate cell deformation over the entire stack. Can be prevented.
Further, the second holding member is movable in the cell stacking direction with respect to the first holding member, and in the free state of the multi-cell module, the distance D2 between the pair of second holding members is the distance between the pair of first holding members. Since the distance is larger than the distance D1 , when the second clamping members at both ends of the multi-cell module receive a surface pressure from the diffusion layer, they move away from each other and can absorb the drum-like deformation of the cell stack .
Further, when the stack fastening load is applied to the multi-cell module, the distance between the pair of second clamping members is smaller than the distance D2 between the pair of second clamping members in the free state of the multi-cell module. the second clamping member at both ends of the moving toward each other, becomes substantially the same position as the first clamping member, can solve the surface圧不uniformity problems with cell central portion and the outer portion.

また、上記()のマルチセルモジュールによれば、第2の挟持部材が第1の挟持部材に対してセル積層方向に移動可能なため、マルチセルモジュールの両端の第2の挟持部材が拡散層からの面圧を受けた時に、互いに離れる方向に移動できる。その結果、モジュール化した時に、第2の挟持部材から第1の挟持部材に大きな荷重がかかることがなく、第1の挟持部材と連結用側板の連結部に損傷が生じない。
上記()のマルチセルモジュールによれば、セルはメタルセパレータを含み、メタルセパレータは剛性が低いため、拡散層から面圧を受けた場合に、セル積層体が太鼓状に変形しやすいので、本発明による上記(1)による問題解決がとくに効果的となる。
Further , according to the multi-cell module of ( 1 ), since the second clamping member is movable in the cell stacking direction with respect to the first clamping member, the second clamping members at both ends of the multi-cell module are separated from the diffusion layer. Can be moved away from each other when the surface pressure is received. As a result, when modularized, a large load is not applied from the second clamping member to the first clamping member, and the connecting portion between the first clamping member and the connecting side plate is not damaged.
According to the multi-cell module of ( 2 ) above, since the cell includes a metal separator and the metal separator has low rigidity, the cell stack is easily deformed into a drum shape when subjected to surface pressure from the diffusion layer. The problem solving according to the above (1) according to the invention is particularly effective.

上記()の燃料電池スタックによれば、上記(1)または)のマルチセルモジュールを、複数、積層し、スタック締結荷重を付与してスタックとしたので、スタックの全セルにわたって変形が累積することがなく各マルチセルモジュールでセル積層体の太鼓状変形を吸収でき、セル中央部と外側部との面圧不均一の問題を解決でき、かつ各マルチセルモジュールでマルチセルモジュールの両端の第1の挟持部材とそれを連結する外枠との連結部の損傷を防止することができる。
上記()の燃料電池スタックによれば、セル積層方向での曲げ剛性がセルよりも大な1枚以上の板状部材(第1、第2の挟持部材)がセル間に介在するので、各マルチセルモジュールのセル積層方向両端で平面度と垂直度(マルチセルモジュールの両端面のセル積層方向に対する垂直度)が出される。
上記()の燃料電池スタックに記載によれば、板状部材の一方の面に接触するセルと他方の面に接触するセルとは、互いに逆方向に撓み、板状部材は撓まない
According to the fuel cell stack of ( 3 ) above, a plurality of the multi-cell modules of (1) or ( 2 ) are stacked and a stack fastening load is applied to form a stack, so that deformation accumulates over all cells of the stack. Each multi-cell module can absorb the drum-like deformation of the cell stack, can solve the problem of non-uniform surface pressure between the cell central portion and the outer portion, and each multi-cell module can solve the first problem at both ends of the multi-cell module. It is possible to prevent damage to the connecting portion between the holding member and the outer frame connecting the holding member.
According to the fuel cell stack of ( 4 ) above, since one or more plate-like members (first and second clamping members) having a bending rigidity in the cell stacking direction larger than that of the cells are interposed between the cells, Flatness and perpendicularity (perpendicularity with respect to the cell stacking direction of both end faces of the multicell module) are output at both ends of each multicell module in the cell stacking direction.
According to the description of the fuel cell stack of ( 5 ) above, the cell that contacts one surface of the plate member and the cell that contacts the other surface bend in opposite directions, and the plate member does not bend .

以下に、本発明のマルチセルモジュールとそれを積層した燃料電池スタックを図1〜図5を参照して説明する。
まず、本発明のマルチセルモジュールとそれを積層した燃料電池スタックに含まれる燃料電池(セル)は、低温型燃料電池であり、たとえば固体高分子電解質型燃料電池10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
固体高分子電解質型燃料電池10は、図4に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )19とセパレータ18との積層体からなる。
膜−電極アッセンブリ19は、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層からなる電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリ19とセパレータ18との間には、アノード側、カソード側にそれぞれガス拡散層(単に、拡散層ともいう)13、16が設けられる。
図1に示すように、膜−電極アッセンブリ19とセパレータ18を重ねてセル10を構成し、セル10を複数積層してセル積層体1としセル積層体1のセル積層方向両端にセル積層体1を挟持する挟持部材2を配置してマルチセルモジュール(複数のセルで取扱の1単位であるモジュールを構成したもの)3を構成する。
Hereinafter, a multi-cell module of the present invention and a fuel cell stack in which the multi-cell module is laminated will be described with reference to FIGS.
First, the fuel cell (cell) included in the multi-cell module of the present invention and the fuel cell stack in which the multi-cell module is laminated is a low-temperature fuel cell, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIG. 4, the solid polymer electrolyte fuel cell 10 includes a laminate of a membrane-electrode assembly (MEA) 19 and a separator 18.
The membrane-electrode assembly 19 includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 made of a catalyst layer arranged on one surface of the electrolyte membrane 11, and a catalyst arranged on the other surface of the electrolyte membrane 11. It consists of electrodes (cathode, air electrode) 17 composed of layers. Between the membrane-electrode assembly 19 and the separator 18, gas diffusion layers (also simply referred to as diffusion layers) 13 and 16 are provided on the anode side and the cathode side, respectively.
As shown in FIG. 1, a cell 10 is configured by stacking a membrane-electrode assembly 19 and a separator 18, and a plurality of cells 10 are stacked to form a cell stack 1. A multi-cell module (a module that is a unit of handling by a plurality of cells) 3 is configured by arranging a clamping member 2 that sandwiches the two.

図3に示すように、マルチセルモジュール3を、複数、セル積層方向に重ねてモジュール積層体とし、モジュール積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、両端エンドプレート22をセル積層方向に延びる締結部材24(たとえば、通しボルト)、ナット25にて固定し、モジュール積層体をセル積層方向に締め付けてスタック締結荷重を付与し燃料電池スタック23を構成する。スタック締結荷重の付与は、たとえばスタック一端側のエンドプレート22の内側にプレッシャプレート37を配置し、エンドプレート22とプレッシャプレート37の間にバネ35(たとえば、皿バネ)を配置してバネ力でスタック締結力を出すことにより行うことができる(他の方法でも可)。 As shown in FIG. 3, a plurality of multi-cell modules 3 are stacked in the cell stacking direction to form a module stack, and terminals 20, insulators 21 and end plates 22 are arranged at both ends of the module stack in the cell stacking direction. The plate 22 is fixed with fastening members 24 (for example, through bolts) and nuts 25 extending in the cell stacking direction, and the module stack is tightened in the cell stacking direction to apply a stack fastening load to form the fuel cell stack 23. The stack fastening load is applied by, for example, arranging a pressure plate 37 inside the end plate 22 on one end side of the stack, and arranging a spring 35 (for example, a disc spring) between the end plate 22 and the pressure plate 37 by a spring force. This can be done by applying a stack fastening force (other methods are also possible).

図4、図5に示すように、セパレータ18には、発電領域51において、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18には冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。セパレータ18には、非発電領域52において、燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成されている。燃料ガスマニホールド30は燃料ガス流路27と連通しており、酸化ガスマニホールド31は酸化ガス流路28と連通しており、冷媒マニホールド29は冷媒流路26と連通している。   As shown in FIGS. 4 and 5, the separator 18 is formed with a fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14 in the power generation region 51, and an oxidant gas (oxygen, oxygen) is supplied to the cathode 17. An oxidizing gas passage 28 for supplying air (usually air) is formed. The separator 18 is also formed with a refrigerant flow path 26 for flowing a refrigerant (usually cooling water). In the separator 18, a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 are formed in the non-power generation region 52. The fuel gas manifold 30 is in communication with the fuel gas passage 27, the oxidizing gas manifold 31 is in communication with the oxidizing gas passage 28, and the refrigerant manifold 29 is in communication with the refrigerant passage 26.

各セル19の、アノード14側では、水素を水素イオン(プロトン)と電子に変換する電離反応が行われ、水素イオンは電解質膜11中をカソード17側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水が生成され、次式にしたがって発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 19, and the hydrogen ions move through the electrolyte membrane 11 to the cathode 17 side. Water is generated from ions and electrons (electrons generated at the anode of the adjacent MEA come through the separator, or electrons generated at the anode of the cell at one end in the cell stacking direction come to the cathode of the other end cell through an external circuit), Power generation is performed according to the following formula.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

セパレータ18は、メタルセパレータ(樹脂フレームとの組み合わせである場合を含む)、またはカーボンセパレータからなる。図4は、セパレータ18がメタルセパレータである場合を示している。   The separator 18 is made of a metal separator (including a combination with a resin frame) or a carbon separator. FIG. 4 shows a case where the separator 18 is a metal separator.

図5、図1に示すように、各種流体は、互いに、かつ外部から、それぞれシールされる。各セル10のMEA19を挟む2つのセパレータ18間は、第1のシール部材32によってシールされており、隣接するセル19同士の間は、第2のシール部材32によってシールされており、マルチセルモジュール間は第3のシール部材32によってシールされている。メタルセパレータ18と電解質膜11との間には、非発電領域52において、樹脂フレーム(発電領域51が中抜きされた樹脂製フレームで、マニホールド孔は具備しているフレーム))が介装される場合があるが、その場合は、メタルセパレータ18と樹脂フレームとの間、および樹脂フレームと電解質膜11との間が第1のシール部材32によってシールされる。   As shown in FIGS. 5 and 1, various fluids are sealed from each other and from the outside. Between the two separators 18 sandwiching the MEA 19 of each cell 10 is sealed by a first seal member 32, and between adjacent cells 19 is sealed by a second seal member 32, and between the multi-cell modules. Is sealed by a third seal member 32. Between the metal separator 18 and the electrolyte membrane 11, a resin frame (a frame made of resin in which the power generation region 51 is hollowed out and having a manifold hole) is interposed in the non-power generation region 52. In some cases, the first seal member 32 seals between the metal separator 18 and the resin frame and between the resin frame and the electrolyte membrane 11.

第1のシール部材32、第2のシール部材32、第3のシール部材32は、たとえば接着剤、ゴムなどのガスケットから構成される。第1のシール部材32、第2のシール部材32、第3のシール部材32は同じシール部材から構成されてもよいし、互いに異なるシール部材から構成されてもよい。   The 1st seal member 32, the 2nd seal member 32, and the 3rd seal member 32 are constituted from gaskets, such as adhesives and rubber, for example. The 1st seal member 32, the 2nd seal member 32, and the 3rd seal member 32 may be constituted from the same seal member, and may be constituted from mutually different seal members.

図1、図2に示すように、マルチセルモジュール3は、積層された複数のセル10を含むセル積層体1と、セル積層体1をセル積層方向に挟持する挟持部材2を含む。
挟持部材2は、セル積層体1の積層端面の外側部(たとえば、非発電領域52)をセル積層方向に定寸で挟む第1の挟持部材4と、セル積層体1の積層端面の内側部(たとえば、発電領域51)をセル積層方向に挟む、第1の挟持部材4に対してセル積層方向に移動可能な、第2の挟持部材5と、を含む。第2の挟持部材5は、第1の挟持部材4の内側にある。第2の挟持部材5の第1の挟持部材4に対する可動構造は、たとえば、第2の挟持部材5と第1の挟持部材4の一方にピン7を設け、他方に溝8を設けて、ピン7を溝8内で摺動可能とすることにより達成できる。ただし、他の可動構造としてもよい。
As shown in FIGS. 1 and 2, the multi-cell module 3 includes a cell stack 1 including a plurality of stacked cells 10 and a sandwiching member 2 that sandwiches the cell stack 1 in the cell stacking direction.
The sandwiching member 2 includes a first sandwiching member 4 that sandwiches the outer portion (for example, the non-power generation region 52) of the stack end surface of the cell stack 1 in the cell stack direction, and the inner side of the stack end surface of the cell stack 1. A second clamping member 5 that is movable in the cell stacking direction with respect to the first clamping member 4 that sandwiches the portion (for example, the power generation region 51) in the cell stacking direction. The second clamping member 5 is inside the first clamping member 4. The movable structure of the second clamping member 5 relative to the first clamping member 4 is, for example, provided with a pin 7 on one of the second clamping member 5 and the first clamping member 4 and a groove 8 on the other, This can be achieved by allowing 7 to slide in the groove 8. However, other movable structures may be used.

第1の挟持部材4は、剛体で、セル積層体1のセル積層方向両面部位に一対ある(各面に1枚、両面で一対)。一対の第1の挟持部材4は、セル積層体1の外周面に沿って設けられた連結用側板6(外枠板といってもよい)を介して互いに連結されており、セル積層体1に対してセル積層方向に移動不能である。図1、図2において、第1の挟持部材4と連結用側板6とは、たとえばネジ9により連結され固定されている。第1の挟持部材4には、スタックの連結ボルト24が挿通する孔36もあいている。
第2の挟持部材5は、剛体で、セル積層体1のセル積層方向両面部位に一対ある(各面に1枚、両面で一対)。第2の挟持部材5は導電性であり、たとえば金属製である。第1の挟持部材4は導電性(たとえば、金属製)であってもよいし絶縁性(たとえば、樹脂製)であってもよい。
連結用側板6は絶縁性であり、たとえば、樹脂製である。第1の挟持部材4と第2の挟持部材5は、セル10に比べて十分大な曲げ剛性を有する。
The 1st clamping member 4 is a rigid body, and there exist a pair in the cell lamination direction both-surface part of the cell laminated body 1 (one piece on each surface, a pair on both surfaces). The pair of first clamping members 4 are connected to each other via a connection side plate 6 (may be called an outer frame plate) provided along the outer peripheral surface of the cell stack 1. However, it cannot move in the cell stacking direction. 1 and 2, the first clamping member 4 and the connecting side plate 6 are connected and fixed by, for example, screws 9. The first clamping member 4 also has a hole 36 through which the connecting bolt 24 of the stack is inserted.
The 2nd clamping member 5 is a rigid body, and there exists a pair in the cell lamination direction double-sided part of the cell laminated body 1 (one piece on each surface, a pair on both surfaces). The 2nd clamping member 5 is electroconductive, for example, is metal. The first clamping member 4 may be conductive (for example, made of metal) or insulative (for example, made of resin).
The connecting side plate 6 is insulative and is made of resin, for example. The first clamping member 4 and the second clamping member 5 have a sufficiently large bending rigidity as compared with the cell 10.

マルチセルモジュール3は、セル面内方向において複数の挟持部材4、5を有する。該複数の挟持部材4、5は、マルチセルモジュール3にスタック締結荷重がかかっていないフリーの状態において、互いに異なる間隔D1、D2でセル積層体1をセル積層方向に挟持している。
挟持部材2(第1の挟持部材4、第2の挟持部材5を含む)は、マルチセルモジュール3にスタック締結荷重がかかっていないフリーの状態で、セルの中央よりもセルの外周端部側ほど、短い間隔でセル積層体1をセル積層方向に挟持している。
挟持部材2のうち、第1の挟持部材4はセル積層方向に移動不能であり、第2の挟持部材5はセル積層方向に移動可能である。第2の挟持部材5は、第1の挟持部材4に移動可能に連結されている。
The multi-cell module 3 has a plurality of clamping members 4 and 5 in the cell in-plane direction. The plurality of sandwiching members 4 and 5 sandwich the cell stack 1 in the cell stacking direction at intervals D1 and D2 that are different from each other when the stack fastening load is not applied to the multicell module 3.
The sandwiching member 2 (including the first sandwiching member 4 and the second sandwiching member 5) is in a free state in which no stack fastening load is applied to the multicell module 3, and is closer to the outer peripheral end of the cell than the center of the cell. The cell stack 1 is sandwiched in the cell stacking direction at short intervals.
Of the clamping members 2, the first clamping member 4 is not movable in the cell stacking direction, and the second clamping member 5 is movable in the cell stacking direction. The 2nd clamping member 5 is connected with the 1st clamping member 4 so that a movement is possible.

マルチセルモジュール3は、複数、セル積層方向に積層され、ばね35によりスタック締結荷重を付与されて、燃料電池スタック23を構成する。
燃料電池スタック23において、セル積層方向での曲げ剛性がセル10よりも大な1枚以上の板状部材4、5が、隣接するマルチセルモジュール3の間に、一つのマルチセルモジュール3のセルと、隣接するマルチセルモジュール3のセルとの間に介在する。
燃料電池スタック23において、板状部材4、5の一方の面に接触するセルと他方の面に接触するセルとは、互いに逆方向に撓み、板状部材4、5は撓まない。
燃料電池スタック23において、セルはメタルセパレータを含む。
A plurality of multi-cell modules 3 are stacked in the cell stacking direction, and a stack fastening load is applied by a spring 35 to constitute a fuel cell stack 23.
In the fuel cell stack 23, one or more plate-like members 4 and 5 having a bending rigidity in the cell stacking direction larger than that of the cell 10 are arranged between the cells of one multi-cell module 3 between adjacent multi-cell modules 3. It is interposed between the cells of the adjacent multi-cell module 3.
In the fuel cell stack 23, the cells that contact one surface of the plate-like members 4 and 5 and the cells that contact the other surface bend in opposite directions, and the plate-like members 4 and 5 do not bend.
In the fuel cell stack 23, the cell includes a metal separator.

つぎに、本発明の作用、効果を説明する。
本発明のマルチセルモジュール3では、第2の挟持部材5が第1の挟持部材4に対してセル積層方向に移動可能なため、マルチセルモジュール3の両端の第2の挟持部材5は、拡散層13、16から面圧を受けた時に、互いに離れる方向に移動し、セル積層体1の太鼓状の変形を吸収できる。また、第1、第2の挟持部材4、5がマルチセルモジュール3の両端面を構成しているので、セル10の太鼓状変形と無関係に平面度とセル積層方向との垂直度が出ている。また、各マルチセルモジュール3で両端面の平面度とセル積層方向との垂直度が出ているので、スタック化してもセル10の変形が累積することはない。スタック化した場合は、スタック締結荷重が付与されるので、各マルチセルモジュール3の両端の第2の挟持部材5が互いに近接する方向に移動して、セル積層方向において第1の挟持部材4とほぼ同位置になっており、セル10は全域にわたって第1の挟持部材4と第2の挟持部材5で同量(ほぼ均一に)圧縮されて、セル10の中央部と外側部との面圧不均一の問題が解決される。
Next, functions and effects of the present invention will be described.
In the multi-cell module 3 of the present invention, since the second clamping member 5 can move in the cell stacking direction with respect to the first clamping member 4, the second clamping members 5 at both ends of the multi-cell module 3 are provided with the diffusion layer 13. , 16 can be moved away from each other when the surface pressure is received, and the drum-like deformation of the cell stack 1 can be absorbed. Further, since the first and second clamping members 4 and 5 constitute both end faces of the multi-cell module 3, the flatness and the perpendicularity between the cell stacking directions are obtained irrespective of the drum-like deformation of the cell 10. . Moreover, since the flatness of both end faces and the perpendicularity of the cell stacking direction are obtained in each multi-cell module 3, the deformation of the cell 10 does not accumulate even when stacked. In the case of stacking, a stack fastening load is applied, so that the second clamping members 5 at both ends of each multi-cell module 3 move in a direction in which they are close to each other, and almost the same as the first clamping member 4 in the cell stacking direction. The cell 10 is compressed by the first clamping member 4 and the second clamping member 5 over the entire area by the same amount (substantially uniformly), so that the surface pressure between the central portion and the outer portion of the cell 10 is not reduced. Uniform problem is solved.

第2の挟持部材5が第1の挟持部材4に対してセル積層方向に移動可能なため、マルチセルモジュール3の両端の第2の挟持部材5が拡散層13、16の圧縮の反力である面圧を受けた時に、互いに離れる方向に移動できる。その結果、モジュール化した時に、第2の挟持部材5から第1の挟持部材1にセル積層方向に大きな荷重がかかることがなく、第1の挟持部材4と連結用側板6の連結部に損傷(ネジ9の破損、ネジ9のかわりに第1の挟持部材4と連結用側板6とを接着剤で接着した場合は接着部位の剥がれ)が生じることが防止される。   Since the second sandwiching member 5 is movable in the cell stacking direction with respect to the first sandwiching member 4, the second sandwiching members 5 at both ends of the multi-cell module 3 are the reaction force for compressing the diffusion layers 13 and 16. When subjected to surface pressure, they can move away from each other. As a result, when modularized, a large load is not applied from the second sandwiching member 5 to the first sandwiching member 1 in the cell stacking direction, and the connecting portion between the first sandwiching member 4 and the connecting side plate 6 is damaged. (Damage of the screw 9 or peeling of the bonded part when the first holding member 4 and the connecting side plate 6 are bonded with an adhesive instead of the screw 9) is prevented.

セル面内方向において複数の挟持部材4、5を有し、該複数の挟持部材4、5はフリー状態において互いに異なる間隔D1、Dでセル積層体をセル積層方向に挟持するので、マルチセルモジュール3の両端の、中央の挟持部材5がセル積層方向に互いに離れる方向に移動し、セル積層体の太鼓状の変形を吸収できる。マルチセルモジュール3を複数積層してスタック締結荷重を付与しスタック化した時には、各マルチセルモジュール3の両端の、中央の挟持部材5がセル積層方向に互いに近接する方向に移動して、外周の挟持部材4とセル積層方向にほぼ同位置になり、従来の単にセルを積層した場合の、セル中央部と外側部との面圧不均一の問題を解決できる。   The plurality of sandwiching members 4 and 5 are provided in the cell in-plane direction, and the plurality of sandwiching members 4 and 5 sandwich the cell stack in the cell stacking direction at different intervals D1 and D in the free state. The center clamping member 5 at both ends of the cell moves in a direction away from each other in the cell stacking direction, so that the drum-like deformation of the cell stack can be absorbed. When a plurality of multi-cell modules 3 are stacked to form a stack by applying a stack fastening load, the center clamping members 5 at both ends of each multi-cell module 3 move in the direction adjacent to each other in the cell stacking direction, and the outer circumferential clamping members 4 and approximately in the same direction in the cell stacking direction, it is possible to solve the problem of non-uniform surface pressure between the cell central portion and the outer portion when cells are simply stacked.

挟持部材4、5は(マルチセルモジュール3の自由状態において)、セルの中央よりもセルの端部側ほど短い間隔でセル積層体をセル積層方向に挟持するので、中央の挟持部材から外周の挟持部材に大きな荷重がかかることがなく、外周の挟持部材が連結用側板によって連結されていても、外周の挟持部材と連結用側板の連結部に損傷が生じない。
挟持部材4、5が、連結用側板6によって連結されることによりセル積層方向に移動不能とされている第1の挟持部材4と、セル積層方向に移動可能に第1の挟持部材4に連結された第2の挟持部材5とを含むので、マルチセルモジュール3の両端の第2の挟持部材5が拡散層13、16からの面圧を受けた時に、互いに離れる方向に移動できる。その結果、モジュール化した時に、第2の挟持部材5から第1の挟持部材4にセル積層方向に大きな荷重がかかることがなく、第1の挟持部材4と連結用側板6の連結部(ネジ8による連結や接着剤による接着部)に損傷が生じない。
The sandwiching members 4 and 5 (in the free state of the multi-cell module 3) sandwich the cell stack in the cell stacking direction at a shorter distance from the center of the cell toward the end of the cell. A large load is not applied to the member, and even if the outer peripheral holding member is connected by the connecting side plate, the connecting portion between the outer peripheral holding member and the connecting side plate is not damaged.
The sandwiching members 4 and 5 are connected to the first sandwiching member 4 that is made immovable in the cell stacking direction by being connected by the connecting side plate 6 and the first sandwiching member 4 that is movable in the cell stacking direction. And the second holding member 5 at the both ends of the multi-cell module 3 can move away from each other when receiving the surface pressure from the diffusion layers 13 and 16. As a result, when modularized, a large load is not applied from the second sandwiching member 5 to the first sandwiching member 4 in the cell stacking direction, and the connecting portion (screw) of the first sandwiching member 4 and the connecting side plate 6 No damage is caused to the connection by 8 or the adhesive part by the adhesive.

セル10のセパレータ18がメタルセパレータである場合は、メタルセパレータは剛性が低いため、拡散層13、16から面圧を受けた場合に、セル積層体が太鼓状に変形しやすいので、上記のセル積層体1の太鼓状変形吸収効果がとくに発揮される。   When the separator 18 of the cell 10 is a metal separator, since the metal separator has low rigidity, the cell stack is easily deformed into a drum shape when subjected to surface pressure from the diffusion layers 13 and 16. The drum-shaped deformation absorbing effect of the laminate 1 is particularly exerted.

燃料電池スタック23において、上記のマルチセルモジュール3を、複数、積層してスタックを構成したので、従来のようなスタック23の全セルにわたって変形が累積するという問題が解決され、各マルチセルモジュール3でセル積層体1の太鼓状変形を吸収できる。その結果、セル中央部と外側部との面圧不均一の問題を解決でき、かつ各マルチセルモジュール3でマルチセルモジュールの両端の第1の挟持部材4とそれを連結する外枠6との連結部の損傷を防止することができる。   In the fuel cell stack 23, a plurality of the above-described multi-cell modules 3 are stacked to form a stack, so that the problem that deformation is accumulated over all the cells of the stack 23 as in the prior art is solved. The drum-like deformation of the laminate 1 can be absorbed. As a result, it is possible to solve the problem of uneven surface pressure between the cell central portion and the outer portion, and in each multicell module 3, the connecting portion between the first clamping member 4 at both ends of the multicell module and the outer frame 6 that connects it. Can prevent damage.

燃料電池スタック23において、セル積層方向での曲げ剛性がセルよりも大な1枚以上の板状部材4、5(第1、第2の挟持部材4、5)がセル間に介在するので、各マルチセルモジュール3の両端部で平面度とセル積層方向に対する垂直度が出される。
この場合、板状部材4、5の一方の面に接触するセルと他方の面に接触するセルとは、互いに逆方向に撓み、板状部材4、5は剛体のため撓まない。
セル10がメタルセパレータを含む場合は、メタルセパレータは剛性が低いため、拡散層13、16から面圧を受けた場合に、セル積層体1が太鼓状に変形しやすいので、上記のセル積層体1の太鼓状変形吸収効果がとくに発揮される。
In the fuel cell stack 23, since one or more plate-like members 4 and 5 (first and second clamping members 4 and 5) having a bending rigidity in the cell stacking direction larger than the cells are interposed between the cells, Flatness and perpendicularity to the cell stacking direction are obtained at both ends of each multi-cell module 3.
In this case, the cell that contacts one surface of the plate-like members 4 and 5 and the cell that contacts the other surface bend in opposite directions, and the plate-like members 4 and 5 do not bend because they are rigid.
When the cell 10 includes a metal separator, since the metal separator has low rigidity, the cell stack 1 is easily deformed into a drum shape when subjected to surface pressure from the diffusion layers 13 and 16. No. 1 drum-shaped deformation absorbing effect is particularly exerted.

本発明のマルチセルモジュールの断面図である。It is sectional drawing of the multicell module of this invention. 本発明のマルチセルモジュールの平面図(または正面図)である。It is a top view (or front view) of the multicell module of this invention. 本発明の燃料電池スタックの側面図である。It is a side view of the fuel cell stack of the present invention. 本発明のマルチセルモジュール、燃料電池スタックの一部の断面図である。It is a cross-sectional view of a part of the multi-cell module and fuel cell stack of the present invention. 本発明のマルチセルモジュール、燃料電池スタックのセル間から見たマルチセルモジュールの平面図(または正面図)である。It is the top view (or front view) of the multicell module seen from between the cells of the multicell module and the fuel cell stack of the present invention.

1 マルチセルモジュールのセル積層体
2 挟持部材
3 マルチセルモジュール
4 第1の挟持部材
5 第2の挟持部材
6 連結用側板(外枠板)
7 ピン
8 溝
9 ネジ
10 (固体高分子電解質型)燃料電池
11 電解質膜
13、16 拡散層
14 アノード
17 カソード
18 セパレータ
19 MEA
20 ターミナル
21 インシュレータ
22 エンドプレート
23 燃料電池スタック
24 締結部材(たとえば、通しボルト)
25 ナット
26 冷媒流路(冷却水流路)
27 燃料ガス流路
28 酸化ガス流路
29 冷媒マニホールド
30 燃料ガスマニホールド
31 酸化ガスマニホールド
32 第1、第2、第3のシール部材
35 バネ
36 孔
37 プレッシャプレート
51 発電領域
52 非発電領域
DESCRIPTION OF SYMBOLS 1 Cell laminated body 2 of a multicell module 2 Holding member 3 Multicell module 4 1st clamping member 5 2nd clamping member 6 Side plate for connection (outer frame board)
7 Pin 8 Groove 9 Screw 10 (Solid polymer electrolyte type) Fuel cell 11 Electrolyte membrane 13, 16 Diffusion layer 14 Anode 17 Cathode 18 Separator 19 MEA
20 Terminal 21 Insulator 22 End plate 23 Fuel cell stack 24 Fastening member (for example, through bolt)
25 Nut 26 Refrigerant flow path (cooling water flow path)
27 Fuel gas channel 28 Oxidizing gas channel 29 Refrigerant manifold 30 Fuel gas manifold 31 Oxidizing gas manifold 32 First, second and third seal members 35 Spring 36 Hole 37 Pressure plate 51 Power generation region 52 Non-power generation region

Claims (5)

(a)複数積層されて燃料電池スタックのモジュール積層体を構成するマルチセルモジュールであって、
(b)前記マルチセルモジュールが、
積層された複数のセルを含むセル積層体と、
セル積層体の積層端面の外側部をセル積層方向に挟む第1の挟持部材と、
セル積層体の積層端面の内側部をセル積層方向に挟む、前記第1の挟持部材に対してセル積層方向に移動可能な、第2の挟持部材と、
含み、
(c)第1の挟持部材は剛体でセル積層体のセル積層方向両面の各面に1つ、両面で一対あり、該一対の第1の挟持部材は連結用側板を介して互いに連結されていて前記セル積層体に対してセル積層方向に移動不能であり、第2の挟持部材は剛体でセル積層体のセル積層方向両面の各面に1つ、両面で一対あり、
(d)マルチセルモジュールの自由状態では前記一対の第2の挟持部材の間隔D2は前記一対の第1の挟持部材の間隔D1よりも大であり、マルチセルモジュールにスタック締結荷重がかかった状態では前記一対の第2の挟持部材の間隔は前記マルチセルモジュールの自由状態での前記一対の第2の挟持部材の間隔D2より減少しているマルチセルモジュール。
(A) a multi-cell module in which a plurality of stacked modules constitute a fuel cell stack module stack,
(B) The multi-cell module is
A cell stack including a plurality of stacked cells; and
A first clamping member that sandwiches the outer side of the stacking end face of the cell stack in the cell stacking direction;
A second sandwiching member that is movable in the cell stacking direction with respect to the first sandwiching member, sandwiching the inner side of the stack end face of the cell stack in the cell stacking direction;
Including
(C) The first sandwiching member is a rigid body, one on each surface of the cell stack in the cell stacking direction, and a pair of both surfaces, and the pair of first sandwiching members are connected to each other via a connecting side plate. The second sandwiching member is a rigid body, one on each side of the cell stacking direction of the cell stack, and a pair on both sides.
(D) In the free state of the multi-cell module, the distance D2 between the pair of second clamping members is larger than the distance D1 between the pair of first clamping members, and when the stack fastening load is applied to the multi-cell module, The multi-cell module, wherein a distance between the pair of second clamping members is smaller than a distance D2 between the pair of second clamping members in a free state of the multi-cell module.
前記セルはメタルセパレータを含む請求項1記載のマルチセルモジュール。 The cell multi-cell module according to claim 1 Symbol mounting comprises a metal separator. 請求項1または請求項2記載の前記マルチセルモジュールを、複数、積層し、スタック締結荷重を付与した燃料電池スタック。 The multi-cell module according to claim 1 or claim 2 Symbol placement, multiple, stacked, a fuel cell stack granted stack fastening load. セル積層方向での曲げ剛性がセルよりも大な1枚以上の、前記第1、第2の挟持部材からなる、板状部材がセル間に介在する請求項記載の燃料電池スタック。 4. The fuel cell stack according to claim 3 , wherein a plate-like member composed of one or more first and second clamping members having a bending rigidity in the cell stacking direction larger than that of the cells is interposed between the cells. 前記板状部材の一方の面に接触するセルと他方の面に接触するセルとは、互いに逆方向に撓み、前記板状部材は撓まない請求項記載の燃料電池スタック。 The fuel cell stack according to claim 4 , wherein the cell that contacts one surface of the plate-like member and the cell that contacts the other surface bend in opposite directions, and the plate-like member does not bend.
JP2006093799A 2006-03-30 2006-03-30 Multi-cell module and fuel cell stack Expired - Fee Related JP5109277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093799A JP5109277B2 (en) 2006-03-30 2006-03-30 Multi-cell module and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093799A JP5109277B2 (en) 2006-03-30 2006-03-30 Multi-cell module and fuel cell stack

Publications (2)

Publication Number Publication Date
JP2007273113A JP2007273113A (en) 2007-10-18
JP5109277B2 true JP5109277B2 (en) 2012-12-26

Family

ID=38675731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093799A Expired - Fee Related JP5109277B2 (en) 2006-03-30 2006-03-30 Multi-cell module and fuel cell stack

Country Status (1)

Country Link
JP (1) JP5109277B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869376B1 (en) * 2012-07-02 2016-09-21 Nissan Motor Co., Ltd. Fuel cell stack
JP5708614B2 (en) * 2012-11-02 2015-04-30 トヨタ自動車株式会社 Cell module and fuel cell stack
EP2988355B1 (en) * 2013-04-15 2018-09-05 Nissan Motor Co., Ltd Fuel-cell-stack manufacturing method and manufacturing device
DE102018212715A1 (en) 2018-07-31 2020-02-06 Robert Bosch Gmbh Fuel cell stack and method for producing a fuel cell stack

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205972A (en) * 1984-03-29 1985-10-17 Shin Kobe Electric Mach Co Ltd Fuel cell
JPS6158176A (en) * 1984-08-30 1986-03-25 Shin Kobe Electric Mach Co Ltd Fuel cell
JP3570669B2 (en) * 1998-04-17 2004-09-29 松下電器産業株式会社 Solid polymer electrolyte fuel cell and manufacturing method thereof
JP2000012068A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Fuel cell device
JP4510267B2 (en) * 2000-11-07 2010-07-21 本田技研工業株式会社 Fuel cell stack
JP2004185845A (en) * 2002-11-29 2004-07-02 Suzuki Motor Corp Fuel cell stack fastening structure
JP4450553B2 (en) * 2002-12-25 2010-04-14 本田技研工業株式会社 Fuel cell
JP2004362940A (en) * 2003-06-04 2004-12-24 Yuasa Corp Fuel cell stack
JP2005149849A (en) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd Fuel cell stack
JP4402438B2 (en) * 2003-11-27 2010-01-20 本田技研工業株式会社 Fuel cell manufacturing method and fuel cell manufacturing apparatus
JP2005243282A (en) * 2004-02-24 2005-09-08 Honda Motor Co Ltd Assembly method of fuel cell stack

Also Published As

Publication number Publication date
JP2007273113A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4747486B2 (en) Fuel cell
CN103730679B (en) Fuel cell unit
CA2549555C (en) Fuel cell stack structure with an adhesive layer
JPWO2007105740A1 (en) Cell stack and fuel cell having the same
JP2007250353A (en) Fuel cell
JP4510267B2 (en) Fuel cell stack
JP5375940B2 (en) Fuel cell
WO2014007182A1 (en) Fuel cell stack
JP5034273B2 (en) Fuel cell
JP5109277B2 (en) Multi-cell module and fuel cell stack
JP5879239B2 (en) In-vehicle fuel cell system
JP4592927B2 (en) Manufacturing method of fuel cell stack
JP2007194124A (en) Fuel cell
JP4569084B2 (en) Fuel cell stack structure
JP2003086229A (en) Stack structure of fuel cell
JP4581702B2 (en) Fuel cell
JP4539069B2 (en) Fuel cell
JP4765594B2 (en) Fuel cell
JP3636126B2 (en) Fuel cell seal structure
JP2007242373A (en) Fuel cell and manufacturing method thereof
JP5181572B2 (en) Fuel cell separator, separator manufacturing method, and fuel cell manufacturing method
JP2008108485A (en) Fuel cell
JP4507650B2 (en) Fuel cell
JP4851722B2 (en) Fuel cell
JP2007042510A (en) Gasket for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5109277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees