[go: up one dir, main page]

JP5107583B2 - Travel device for work vehicle - Google Patents

Travel device for work vehicle Download PDF

Info

Publication number
JP5107583B2
JP5107583B2 JP2007012655A JP2007012655A JP5107583B2 JP 5107583 B2 JP5107583 B2 JP 5107583B2 JP 2007012655 A JP2007012655 A JP 2007012655A JP 2007012655 A JP2007012655 A JP 2007012655A JP 5107583 B2 JP5107583 B2 JP 5107583B2
Authority
JP
Japan
Prior art keywords
transmission
speed
main
continuously variable
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012655A
Other languages
Japanese (ja)
Other versions
JP2008179198A (en
Inventor
均 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007012655A priority Critical patent/JP5107583B2/en
Priority to PCT/JP2007/069818 priority patent/WO2008090650A1/en
Priority to EP07829556.5A priority patent/EP2106951B1/en
Priority to US12/523,925 priority patent/US8261543B2/en
Publication of JP2008179198A publication Critical patent/JP2008179198A/en
Application granted granted Critical
Publication of JP5107583B2 publication Critical patent/JP5107583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Description

本発明は、農作業に使用されるトラクタ又は土木作業に使用されるホイルローダ等の作業車両の走行変速装置に係り、より詳しくは、無段変速機と、多段変速用の副変速機構とを備えた作業車両の走行装置に関するものである。   The present invention relates to a traveling speed change device for a work vehicle such as a tractor used for agricultural work or a wheel loader used for civil engineering work, and more specifically, includes a continuously variable transmission and a sub-transmission mechanism for multi-speed transmission. The present invention relates to a traveling device for a work vehicle.

従来、一般に、前記したトラクタ又はホイルローダ等の作業車両において、左右の走行車輪または走行クローラ等の走行部に動力伝達するに際しては、作業車両における走行機体に搭載したエンジンからメインクラッチを介してミッションケースに動力伝達されて、ミッションケースの変速機構を介して左右の走行部に対して出力するように構成している。   Conventionally, in general, in a working vehicle such as a tractor or a wheel loader described above, when power is transmitted to traveling parts such as left and right traveling wheels or traveling crawlers, a transmission case is transmitted from an engine mounted on a traveling machine body in the working vehicle via a main clutch. The power is transmitted to the left and right traveling parts via the transmission mechanism of the transmission case.

この場合、従来の作業車両の走行装置においては、その走行機体にクラッチハウジング及びミッションケースを配設し、クラッチハウジングにメインクラッチを内蔵して、油圧式無段変速機にメインクラッチを介してエンジンからの動力を入力し、油圧式無段変速機からギヤ式副変速機構を介して走行部に動力伝達するという構成にしている(例えば、特許文献1参照)。
特開2003−226165号公報
In this case, in a conventional traveling device for a work vehicle, a clutch housing and a transmission case are disposed in the traveling machine body, a main clutch is built in the clutch housing, and the engine is connected to the hydraulic continuously variable transmission via the main clutch. The power is transmitted from the hydraulic continuously variable transmission to the traveling unit via the gear type sub-transmission mechanism (see, for example, Patent Document 1).
JP 2003-226165 A

前記従来技術は、主変速操作具(主変速操作レバー)を操作して油圧式無段変速機の主変速出力を制御する場合、ギヤ式副変速機構の全ての変速段において、車速が零から最高速に移行するから、副変速機構の低速側駆動出力(例えば1速)時の最高車速より、前記副変速機構の高速側駆動出力(例えば2速)時の最低車速が遅くなることがあり、ギヤ式副変速機構の複数の変速段において、車速が重複する等の問題がある。   In the prior art, when the main shift operation tool (main shift operation lever) is operated to control the main shift output of the hydraulic continuously variable transmission, the vehicle speed is reduced from zero at all the shift stages of the gear type sub-transmission mechanism. Since shifting to the maximum speed, the minimum vehicle speed at the high speed side drive output (for example, second speed) of the auxiliary transmission mechanism may be slower than the maximum vehicle speed at the low speed side drive output (for example, first speed) of the auxiliary transmission mechanism. There are problems such as overlapping vehicle speeds at a plurality of shift stages of the gear-type sub-transmission mechanism.

その結果、副変速操作具(副変速操作レバー)を操作して、副変速機構の変速段を高速側に変更しても、主変速操作具の操作によっては、副変速機構の変速段を変更する前より車速が遅くなることがある。一方、副変速機構の変速段を低速側に変更しても、主変速操作具の操作によっては、副変速機構の変速段を変更する前より車速が速くなることがある。そのため、運転が不慣れなオペレータ等によってスムーズな増速操作又は減速操作を簡単に実行できない等の問題がある。   As a result, even if the sub-transmission operation tool (sub-transmission operation lever) is operated and the gear position of the sub-transmission mechanism is changed to the high speed side, the gear position of the sub-transmission mechanism is changed depending on the operation of the main transmission operation tool. The vehicle speed may be slower than before. On the other hand, even if the gear position of the sub-transmission mechanism is changed to the low speed side, the vehicle speed may become faster than before the gear position of the sub-transmission mechanism is changed depending on the operation of the main transmission operating tool. Therefore, there is a problem that a smooth acceleration operation or deceleration operation cannot be easily executed by an operator who is unfamiliar with driving.

また、副変速機構の変速段を高速側(例えば3速、副変速の最高速)に変更した場合、主変速操作具を低速側(油圧ポンプの斜板角が小さい低速)に操作することにより、油圧式無段変速機が失速(ストール)状態になり、エンジンからの動力が、油圧式無段変速機からギヤ式副変速機構に伝わらなくなることがある。したがって、副変速機構を高速側に切換えて、高速で移動する路上走行等において、主変速操作具を低速側に操作することにより、主変速操作具が中立位置に移行する前に、エンジンからの動力が走行部に伝わらなくなり、走行機体が停止したり、坂道等で逆進する等の問題がある。   In addition, when the gear position of the subtransmission mechanism is changed to the high speed side (for example, the third speed, the maximum speed of the subtransmission), the main transmission operating tool is operated to the low speed side (low speed with a small swash plate angle of the hydraulic pump). The hydraulic continuously variable transmission may be stalled, and the power from the engine may not be transmitted from the hydraulic continuously variable transmission to the gear-type sub-transmission mechanism. Therefore, by switching the sub-transmission mechanism to the high speed side and operating the main transmission operation tool to the low speed side when traveling on the road traveling at high speed, the main transmission operation tool is moved from the engine before moving to the neutral position. There is a problem that the power is not transmitted to the traveling part, and the traveling machine body stops or reversely travels on a slope.

本発明の目的は、主変速操作具及び副変速操作具によってスムーズな増速操作又は減速操作を簡単に実行でき、且つ主変速操作具の低速側の操作によって、走行機体が停止したり坂道等で逆進するのを簡単に防止できるようにした作業車両の走行装置を提供するものである。   An object of the present invention is to enable a smooth speed increasing operation or a speed reducing operation to be easily executed by a main transmission operation tool and a sub transmission operation tool, and to stop a traveling machine body by a low speed operation of the main transmission operation tool, It is intended to provide a traveling device for a work vehicle that can be easily prevented from going backward.

前記目的を達成するため、請求項1に係る発明の作業車両の走行装置は、走行機体に搭載されたエンジンからの動力を変速する無段変速機と、前記無段変速機の変速比を変更する主変速操作具と、前記無段変速機からの変速駆動出力を伝達する多段変速用の副変速機構と、前記副変速機構の変速比を変更する副変速操作具とを備えてなる作業車両の走行装置において、前記主変速操作具の操作位置を検出する主変速センサと、前記無段変速機の変速駆動出力回転数を検出する変速出力部回転センサと、前記副変速操作具の操作位置を検出する副変速センサとを備え、前記主変速操作具の中立操作によって、前記無段変速機からの主変速出力を車速零にし、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を、前記副変速操作具の変速段操作が高速段側のものほど速くし、更に、前記副変速操作具の変速段操作が低速段側の状態で、前記主変速操作具の最高車速操作によって決定される前記無段変速機からの最高主変速出力よりも、前記副変速操作具の変速段操作が高速段側の状態で、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を速くするように構成しているものである。 In order to achieve the above object, a traveling device for a work vehicle according to a first aspect of the present invention includes a continuously variable transmission that shifts power from an engine mounted on a traveling machine body, and a gear ratio of the continuously variable transmission is changed. A work vehicle comprising: a main transmission operation tool that performs a transmission, a sub-transmission mechanism for multi-stage transmission that transmits a shift drive output from the continuously variable transmission, and a sub-transmission operation tool that changes a gear ratio of the sub transmission mechanism. In the traveling apparatus, a main transmission sensor that detects an operation position of the main transmission operation tool, a transmission output portion rotation sensor that detects a transmission drive output rotation speed of the continuously variable transmission, and an operation position of the auxiliary transmission operation tool A sub-transmission sensor for detecting the main transmission operation tool, the main transmission output from the continuously variable transmission is made zero by the neutral operation of the main transmission operation tool, and the non-transmission sensor is determined by the minimum vehicle speed operation of the main transmission operation tool. Minimum main gear shift from step transmission The speed is increased as the speed change operation of the auxiliary transmission operation tool is performed on the high speed side, and the maximum vehicle speed operation of the main transmission operation tool is performed when the speed change operation of the sub transmission operation tool is on the low speed side. The speed change operation of the sub-shift operation tool is at a higher speed side than the maximum main shift output from the continuously variable transmission determined by In this configuration, the minimum main shift output from the step transmission is increased .

請求項1に係る発明によれば、走行機体に搭載されたエンジンからの動力を変速する無段変速機と、前記無段変速機の変速比を変更する主変速操作具と、前記無段変速機からの変速駆動出力を伝達する多段変速用の副変速機構と、前記副変速機構の変速比を変更する副変速操作具とを備えてなる作業車両の走行装置において、前記主変速操作具の操作位置を検出する主変速センサと、前記無段変速機の変速駆動出力回転数を検出する変速出力部回転センサと、前記副変速操作具の操作位置を検出する副変速センサとを備え、前記主変速操作具の中立操作によって、前記無段変速機からの主変速出力を車速零にし、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を、前記副変速操作具の変速段操作が高速段側のものほど速くし、更に、前記副変速操作具の変速段操作が低速段側の状態で、前記主変速操作具の最高車速操作によって決定される前記無段変速機からの最高主変速出力よりも、前記副変速操作具の変速段操作が高速段側の状態で、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を速くするように構成しているものであるから、前記副変速機構の複数の変速段において、車速が重複するのを防止できる。その結果、前記副変速機構の変速段を高速側に変更した場合、前記副変速機構の変速段を変更する前よりも、前記主変速操作具にて選択される車速が遅くなることがない。一方、前記副変速機構の変速段を低速側に変更した場合、前記副変速機構の変速段を変更する前よりも、前記主変速操作具にて選択される車速が速くなることがない。したがって、変速用の油圧ポンプ及び油圧モータ等を用いていない従来のギヤミッション(主変速機構及び副変速機構の両方を複数のギヤにて構成した構造)と同様に、前記主変速操作具及び副変速操作具によってスムーズな増速操作又は減速操作を簡単に実行できるものである。 According to the first aspect of the present invention, a continuously variable transmission that shifts power from an engine mounted on a traveling machine body, a main transmission operating tool that changes a gear ratio of the continuously variable transmission, and the continuously variable transmission. In a traveling device for a work vehicle, comprising: a sub-transmission mechanism for multi-stage transmission that transmits a shift drive output from a machine; and a sub-transmission operation tool that changes a gear ratio of the sub-transmission mechanism. comprising a main shift sensor for detecting an operation position, the speed change output section rotation sensor for detecting the speed drive output speed of the continuously variable transmission, and a sub-transmission sensor for detecting an operation position of the subtransmission operation member, wherein By the neutral operation of the main transmission operation tool, the main transmission output from the continuously variable transmission is made zero vehicle speed, and the minimum main transmission output from the continuously variable transmission determined by the minimum vehicle speed operation of the main transmission operation tool is The speed change operation of the auxiliary speed change operation tool is The speed on the speed side is faster, and the maximum main speed from the continuously variable transmission is determined by the maximum vehicle speed operation on the main speed change operation tool when the speed change operation of the auxiliary speed change operation is on the low speed side. The minimum main transmission output from the continuously variable transmission determined by the minimum vehicle speed operation of the main transmission operation tool is made faster when the shift stage operation of the auxiliary transmission operation tool is on the higher speed side than the transmission output. since those constituting, in a plurality of shift speeds of the subtransmission mechanism, thereby preventing the vehicle speed overlap. As a result, when the shift speed of the auxiliary transmission mechanism is changed to the high speed side, the vehicle speed selected by the main transmission operating tool does not become slower than before the shift speed of the auxiliary transmission mechanism is changed. On the other hand, when the shift speed of the auxiliary transmission mechanism is changed to the low speed side, the vehicle speed selected by the main transmission operating tool does not become faster than before the shift speed of the auxiliary transmission mechanism is changed. Therefore, as in the case of a conventional gear mission (a structure in which both the main transmission mechanism and the sub-transmission mechanism are configured by a plurality of gears) that does not use a hydraulic pump for shifting, a hydraulic motor, or the like, A smooth speed-up operation or speed-down operation can be easily executed by the speed change operation tool.

また、高速で移動する路上走行等において、前記主変速操作具を低速側に操作することにより、前記主変速操作具が中立位置に移行する前に、前記エンジンからの動力が走行部に伝わらなくなるのを阻止できる。そのため、路上走行中、前記エンジンが作動していて、前記主変速操作具が変速位置に操作されているにも係わらず、前記走行機体が停止したり、坂道等で逆進するのを、簡単に防止できるものである。   In addition, when driving on the road moving at a high speed, the power from the engine is not transmitted to the traveling unit before the main transmission operation tool shifts to the neutral position by operating the main transmission operation tool to the low speed side. Can be prevented. Therefore, while traveling on the road, it is easy for the traveling machine to stop or reversely travel on a slope even though the engine is operating and the main transmission operating tool is operated to the transmission position. Can be prevented.

その上、前記副変速操作具の変速段操作が低速段側の状態で、前記主変速操作具の最高車速操作によって決定される前記無段変速機からの最高主変速出力よりも、前記副変速操作具の変速段操作が高速段側の状態で、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を速くするように構成しているものであるから、前記副変速機構の複数の変速段において、車速が重複するのを防止できる。前記副変速機構の変速段を高速側(低速側)に変更しても、前記副変速機構の変速段を変更する前よりも、前記主変速操作具にて選択した車速が遅く(速く)なるのを防止できる。前記主変速操作具及び副変速操作具によってスムーズな増速操作又は減速操作を簡単に実行できるものである。 In addition, in the state where the speed change operation of the auxiliary speed changer is on the low speed side, the auxiliary speed change is greater than the maximum main speed output from the continuously variable transmission determined by the maximum vehicle speed operation of the main speed changer. The minimum main shift output from the continuously variable transmission determined by the minimum vehicle speed operation of the main transmission operation tool is increased in a state where the operation stage of the operation gear is on the high speed side. Therefore, it is possible to prevent the vehicle speeds from overlapping at a plurality of shift speeds of the auxiliary transmission mechanism. Even if the gear position of the auxiliary transmission mechanism is changed to the high speed side (low speed side), the vehicle speed selected by the main transmission operation tool becomes slower (higher) than before the gear position of the auxiliary transmission mechanism is changed. Can be prevented. A smooth speed-up operation or a speed-down operation can be easily executed by the main transmission operation tool and the auxiliary transmission operation tool.

以下、本発明の実施の形態を、作業車両としての農作業用トラクタに適用した場合の図面について説明する。図1はトラクタの側面図、図2は同平面図、図3は同走行駆動系統図、図4は油圧回路図、図5は走行変速用の制御回路図、図6は主変速出力と車速の関係を表した線図、図7は変速比適応制御のフローチャートである。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, drawings when an embodiment of the present invention is applied to a farm tractor as a work vehicle will be described. 1 is a side view of a tractor, FIG. 2 is a plan view of the same, FIG. 3 is a diagram of a traveling drive system, FIG. 4 is a hydraulic circuit diagram, FIG. 5 is a control circuit diagram for traveling shifting, and FIG. FIG. 7 is a flowchart of gear ratio adaptive control.

図1及び図2に示されるように、トラクタ1は、走行機体2を左右一対の前車輪3と同じく左右一対の後車輪4とで支持し、前記走行機体2の前部に搭載したエンジン5にて前記両後車輪4及び両前車輪3を駆動することにより、前後進走行するように構成されている。走行機体2は、前バンパ6及び前車軸ケース7を有するエンジンフレーム8と、エンジン5から出力された動力を継断するためのメインクラッチを有するクラッチハウジング10と、エンジン5の回転を適宜変速して前記両後車輪4及び両前車輪3に伝達するためのミッションケース11と、クラッチハウジング10にミッションケース11を連結するためのミッション前面ケース12と、クラッチハウジング10の外側面から外向きに突出するように着脱可能に装着される左右一対のステップフレーム13とからなる。   As shown in FIGS. 1 and 2, the tractor 1 supports the traveling machine body 2 with a pair of left and right rear wheels 4 as well as a pair of left and right front wheels 3, and an engine 5 mounted on the front portion of the traveling machine body 2. The two rear wheels 4 and the two front wheels 3 are driven to drive forward and backward. The traveling machine body 2 appropriately shifts the rotation of the engine 5 having an engine frame 8 having a front bumper 6 and a front axle case 7, a clutch housing 10 having a main clutch for interrupting power output from the engine 5, and the engine 5. A transmission case 11 for transmitting to the rear wheels 4 and the front wheels 3, a transmission front case 12 for connecting the transmission case 11 to the clutch housing 10, and projecting outward from the outer surface of the clutch housing 10. It comprises a pair of left and right step frames 13 that are detachably mounted.

なお、エンジン5の前方に水冷用のラジエータ9を配置している。エンジンフレーム8の後端側がエンジン5の左右外側面に連結されている。エンジン5の後面側にはクラッチハウジング10の前面側が連結されている。クラッチハウジング10の後面側には、ミッション前面ケース12を介してミッションケース11の前面側が連結されている。   A water-cooling radiator 9 is disposed in front of the engine 5. The rear end side of the engine frame 8 is connected to the left and right outer surfaces of the engine 5. The front side of the clutch housing 10 is connected to the rear side of the engine 5. The front side of the mission case 11 is connected to the rear side of the clutch housing 10 via a mission front case 12.

エンジン5はボンネット14にて覆われる。また、クラッチハウジング10の上面には、操縦コラム15が立設されている。前記両前車輪3を左右に動かすことによってかじ取りするようにした操縦ハンドル16が操縦コラム15の上面側に配置されている。ミッションケース11の上面には、操縦座席17が配置されている。左右一対のステップフレーム13の上面には、平坦な床板18がそれぞれ設けられている。両前車輪3は、前車軸ケース7を介してエンジンフレーム8に取付けられている。また、両後車輪4は、ミッションケース11に対して、当該ミッションケース11の外側面から外向きに突出するように着脱可能に装着される後車軸ケース11aを介して取付けられている。なお、両後車輪4の上面側は、左右のリヤフェンダ4aにて覆われている。   The engine 5 is covered with a hood 14. A steering column 15 is erected on the upper surface of the clutch housing 10. A steering handle 16 that is steered by moving the front wheels 3 to the left and right is disposed on the upper surface side of the steering column 15. A control seat 17 is disposed on the upper surface of the mission case 11. Flat floor boards 18 are respectively provided on the upper surfaces of the pair of left and right step frames 13. Both front wheels 3 are attached to the engine frame 8 via a front axle case 7. Both rear wheels 4 are attached to the mission case 11 via a rear axle case 11 a that is detachably mounted so as to protrude outward from the outer surface of the mission case 11. The upper surface side of both rear wheels 4 is covered with left and right rear fenders 4a.

前記ミッションケース11の上面には、走行機体2の後部に連結される耕耘機等の作業機(図示省略)を昇降動するための油圧式の作業機用昇降機構20が着脱可能に取付けられている。さらに、前記ミッションケース11の後側面には、前記作業機に駆動力を伝えるためのPTO軸21が後向きに突出するように設けられている。なお、前記作業機は、ミッションケース11の後部に、一対の左右のロワーリンク22及び1本のトップリンク23からなる3点リンク機構24を介して連結されている。作業機用昇降機構20の左右のリフトアーム20aがリフトロッド20bを介して左右のロワーリンク22に連結され、作業機用昇降機構20を作動させた場合、前記作業機が昇降動することになる。   On the upper surface of the mission case 11, a hydraulic working machine lifting mechanism 20 for lifting and lowering a working machine (not shown) such as a tiller connected to the rear part of the traveling machine body 2 is detachably attached. Yes. Furthermore, a PTO shaft 21 for transmitting a driving force to the working machine is provided on the rear side surface of the transmission case 11 so as to protrude rearward. The working machine is connected to the rear portion of the mission case 11 via a three-point link mechanism 24 including a pair of left and right lower links 22 and one top link 23. When the left and right lift arms 20a of the work implement lifting mechanism 20 are connected to the left and right lower links 22 via the lift rod 20b, and the work implement lift mechanism 20 is operated, the work implement moves up and down. .

図3に示されるように、ミッション前面ケース12の前側面には、後述する静油圧式無段変速機(HST)25が配置されている。静油圧式無段変速機25は、クラッチハウジング10の後部に内設されている。エンジン5からメインクラッチ19を介して後ろ向きに主動軸26を突出し、その主動軸26を介して、前記エンジン5の回転を無段変速機25に伝達し、次いで、無段変速機25からの出力を副変速ギヤ機構59にて適宜変速して、前記両後車輪4及び両前車輪3に伝達することになる。一方、主動軸26からの前記エンジン5の回転は、図示しないPTO伝動軸及びPTOクラッチを介してPTO変速ギヤ機構を介して、PTO軸21に伝達されることになる。   As shown in FIG. 3, a hydrostatic continuously variable transmission (HST) 25 described later is disposed on the front side surface of the mission front case 12. The hydrostatic continuously variable transmission 25 is installed in the rear part of the clutch housing 10. A main drive shaft 26 protrudes rearward from the engine 5 through the main clutch 19, and the rotation of the engine 5 is transmitted to the continuously variable transmission 25 through the main drive shaft 26, and then output from the continuously variable transmission 25. Is appropriately shifted by the auxiliary transmission gear mechanism 59 and transmitted to the both rear wheels 4 and both front wheels 3. On the other hand, the rotation of the engine 5 from the main drive shaft 26 is transmitted to the PTO shaft 21 through a PTO transmission gear mechanism via a PTO transmission shaft and a PTO clutch (not shown).

次に、図1乃至図3を参照して、操縦座席17のオペレータが操作する操縦部の構造を説明する。操縦座席17の前方の床板18から上方に突出する操縦コラム15より左方には、クラッチペダル31が配置されている。オペレータがクラッチペダル31を足踏み操作することにより、エンジン5から無段変速機25に動力を伝達するためのクラッチハウジング10内のメインクラッチ19が切断作動されることになる。   Next, with reference to FIGS. 1 to 3, the structure of the control unit operated by the operator of the control seat 17 will be described. A clutch pedal 31 is disposed on the left side of the control column 15 protruding upward from the floor plate 18 in front of the control seat 17. When the operator depresses the clutch pedal 31, the main clutch 19 in the clutch housing 10 for transmitting power from the engine 5 to the continuously variable transmission 25 is disconnected.

一方、操縦コラム15より右方には、左右の後車輪4制動用のブレーキ機構32をそれぞれ作動させる左右のブレーキペダル33が配置されている。ブレーキペダル33の足踏み操作によってブレーキ機構32が作動し、左右の後車輪4が制動されることになる。なお、操縦ハンドル16の下方で操縦コラム15の左方には、前進又は後進に移動方向を切換えるリバーサレバー27を配置する。操縦ハンドル16の下方で操縦コラム15の右方には、エンジン5の回転数を変更するアクセルレバー28を配置する。   On the other hand, right and left brake pedals 33 for operating the left and right rear wheel 4 braking brake mechanisms 32 are disposed to the right of the steering column 15. The brake mechanism 32 is actuated by stepping on the brake pedal 33, and the left and right rear wheels 4 are braked. A reverser lever 27 that switches the moving direction to forward or backward is disposed below the steering handle 16 and to the left of the steering column 15. An accelerator lever 28 for changing the rotational speed of the engine 5 is disposed below the steering handle 16 and to the right of the steering column 15.

図2及び図3に示されるように、操縦座席17より右方には、主変速用油圧無段変速機25を変速操作する主変速レバー36が配置されている。主変速レバー36の操作によって作動する主変速アクチュエータとしての主変速用油圧シリンダ37に、主変速用油圧無段変速機25の変速制御部(トラニオン軸)が連結され、主変速レバー36の操作によって無段変速機25が変速動作することになる。また、操縦座席17より右方には、作業機昇降レバー40及び耕耘深さ調節レバー41が配置されている。作業機昇降レバー40又は耕耘深さ調節レバー41の操作によって、作業機用昇降機構20を作動させることになる。   As shown in FIG. 2 and FIG. 3, a main transmission lever 36 for shifting the main transmission hydraulic continuously variable transmission 25 is disposed to the right of the control seat 17. A shift control unit (trunnion shaft) of the main transmission hydraulic continuously variable transmission 25 is connected to a main transmission hydraulic cylinder 37 as a main transmission actuator that is operated by the operation of the main transmission lever 36. The continuously variable transmission 25 performs a shifting operation. Further, a work implement elevating lever 40 and a tilling depth adjusting lever 41 are disposed to the right of the control seat 17. By operating the work implement lifting lever 40 or the tilling depth adjusting lever 41, the work implement lifting mechanism 20 is operated.

図2及び図3に示されるように、操縦座席17より左方には、副変速ギヤ機構59を切換える副変速レバー42が配置されている。副変速レバー42を操作することによって、低速(1速出力)位置と中速(2速出力)位置と高速(3速出力)位置の3段階に、機械式ミッション構造の副変速ギヤ機構59の各変速ギヤ(図示省略)が択一的に切換えられることになる。前記低速位置と中速位置の間、及び前記中速位置と高速位置の間には、副変速出力が零になる中立位置をそれぞれ形成している。また、操縦座席17より左方には、PTO軸21に回転力を伝達するためのPTO変速機構(図示省略)を切換えるPTO変速レバー43を配置している。PTO変速レバー43の操作によって、PTO変速機構からのPTO変速出力が、低速(1速出力)と中速(2速出力)と高速(3速出力)の3段階に、中立状態を挟んで、変速されることになる。 As shown in FIG. 2 and FIG. 3, a sub transmission lever 42 for switching the sub transmission gear mechanism 59 is disposed on the left side of the control seat 17. By operating the sub-shift lever 42, the sub-transmission gear mechanism 59 of the mechanical transmission structure is divided into three stages: a low speed (first speed output) position, a medium speed (second speed output) position, and a high speed (third speed output) position. Each transmission gear (not shown) is selectively switched. Between the low-speed position and the medium-speed position, and between the medium-speed position and the high-speed position, neutral positions where the sub-shift output is zero are formed. A PTO speed change lever 43 for switching a PTO speed change mechanism (not shown) for transmitting rotational force to the PTO shaft 21 is disposed on the left side of the control seat 17. By operating the PTO speed change lever 43, the PTO speed change output from the PTO speed change mechanism is divided into three stages of low speed (1st speed output), medium speed (2nd speed output), and high speed (3rd speed output), with the neutral state sandwiched, It will be shifted.

上記の構成により、無段変速機25からの無段変速出力は、主変速出力軸60を介して副変速ギヤ機構59に伝えられることになる。副変速ギヤ機構59からの副変速出力は、低速(1速出力)と中速(2速出力)と高速(3速出力)の3段階に変速された後、副変速出力軸61から差動ギヤ機構62等を介して左右の後車輪4に伝えられることになる。   With the above configuration, the continuously variable transmission output from the continuously variable transmission 25 is transmitted to the auxiliary transmission gear mechanism 59 via the main transmission output shaft 60. The auxiliary transmission output from the auxiliary transmission gear mechanism 59 is shifted from the auxiliary transmission output shaft 61 after being shifted in three stages of low speed (first speed output), medium speed (second speed output), and high speed (third speed output). It is transmitted to the left and right rear wheels 4 via the gear mechanism 62 and the like.

図4は本実施形態のトラクタ1の油圧回路70を示し、エンジン5の回転力により作動する作業機用油圧ポンプ74及びチャージ用油圧ポンプ75を備える。作業機用油圧ポンプ74は、作業機用昇降機構20における単動式の昇降油圧シリンダ76に作動油を供給するための昇降用油圧切換弁77に接続している。したがって、オペレータが作業機昇降レバー40を操作して、昇降用油圧切換弁77を切換えて、昇降油圧シリンダ76を作動させ、リフトアーム20aを回動させることにより、ロワーリンク22を介して作業機が上昇または下降されることになる。   FIG. 4 shows a hydraulic circuit 70 of the tractor 1 according to this embodiment, which includes a working machine hydraulic pump 74 and a charging hydraulic pump 75 that are operated by the rotational force of the engine 5. The working machine hydraulic pump 74 is connected to a lifting hydraulic switching valve 77 for supplying hydraulic oil to a single-acting lifting hydraulic cylinder 76 in the working machine lifting mechanism 20. Accordingly, the operator operates the work implement elevating lever 40 to switch the elevating hydraulic switching valve 77 to operate the elevating hydraulic cylinder 76 and rotate the lift arm 20a, so that the work implement is connected via the lower link 22. Will be raised or lowered.

図4に示すように、無段変速機25は、変速用油圧ポンプ63と、この油圧ポンプ63にて作動する変速用油圧モータ64とからなる。上述した油圧無段変速機25の可変容量形の変速用油圧ポンプ63と、この油圧ポンプ63から吐出される高圧の作動油にて作動する定容量形の変速用油圧モータ64とは、閉ループ油路65を介してそれらの吸入側及び吐出側が接続されている。閉ループ油路65には、チャージ用油圧ポンプ75から作動油が補給される。また、チャージ用油圧ポンプ75は、主変速用油圧切換弁78を介して主変速用油圧シリンダ37に接続している。   As shown in FIG. 4, the continuously variable transmission 25 includes a transmission hydraulic pump 63 and a transmission hydraulic motor 64 that is operated by the hydraulic pump 63. The above-described variable displacement type shifting hydraulic pump 63 of the hydraulic continuously variable transmission 25 and the constant displacement type shifting hydraulic motor 64 operated by the high pressure hydraulic oil discharged from the hydraulic pump 63 are a closed loop oil. The suction side and the discharge side are connected via a path 65. The closed loop oil passage 65 is supplied with hydraulic oil from a charging hydraulic pump 75. The charge hydraulic pump 75 is connected to the main transmission hydraulic cylinder 37 via the main transmission hydraulic switching valve 78.

したがって、主変速レバー36の操作によって主変速用油圧切換弁78を切換えて、主変速用油圧シリンダ37を作動させた場合、換言すると、変速入力軸65を介して駆動される変速用油圧ポンプ63の斜板63aを、主変速用油圧シリンダ37にて角度調節した場合、変速用油圧モータ64を介して駆動される主変速出力軸60の回転数が変更されることになる。なお、上述した油圧回路70には、図4に示すように、リリーフ弁や流量調整弁、チェック弁、オイルクーラ、オイルフィルタ等を備えている。   Therefore, when the main transmission hydraulic switching valve 78 is switched by operating the main transmission lever 36 and the main transmission hydraulic cylinder 37 is operated, in other words, the transmission hydraulic pump 63 driven via the transmission input shaft 65. When the angle of the swash plate 63a is adjusted by the main transmission hydraulic cylinder 37, the rotational speed of the main transmission output shaft 60 driven via the transmission hydraulic motor 64 is changed. As shown in FIG. 4, the hydraulic circuit 70 described above includes a relief valve, a flow rate adjustment valve, a check valve, an oil cooler, an oil filter, and the like.

次に、本実施形態の作業車両(走行車両)の走行制御(変速制御)について説明する。図5は、走行制御手段の機能ブロック図であり、マイクロコンピュータ等の変速用コントローラ80を備える。変速用コントローラ80は、制御プログラムを記憶したROMと、各種データを記憶したRAMとを有する。   Next, traveling control (shift control) of the work vehicle (traveling vehicle) of the present embodiment will be described. FIG. 5 is a functional block diagram of the travel control means, and includes a speed change controller 80 such as a microcomputer. The shift controller 80 includes a ROM that stores a control program and a RAM that stores various data.

また、変速用コントローラ80には、図5に示すように、入力系の各種センサ及びスイッチ類、即ち、エンジン5の回転数を検出するエンジン回転センサ81と、副変速軸61の回転数(トラクタ1の移動速度=車速)を検出する車速センサ82と、主変速レバー36の操作位置(回動量)を検出するポテンショメータ型の主変速センサ83と、副変速レバー42の操作位置(回動量)を検出するポテンショメータ型の副変速センサ84と、副変速レバー42の低速(1速)操作位置に応答した主変速レバー36の最低速の操作位置の最低車速FLP1Vmin及び変速比パターンを設定する低速用設定器85と、副変速レバー42の中速(2速)操作位置に応答した主変速レバー36の最低速の操作位置の最低車速FLP2Vmin及び変速比パターンを設定する中速用設定器86と、副変速レバー42の高速(3速)操作位置に応答した主変速レバー36の最低速の操作位置の最低車速FLP3Vmin及び変速比パターンを設定する高速用設定器86とが接続されている。なお、各設定器85,86,87は、可変抵抗器にて形成して、主変速レバー36の最低速の操作位置の最低車速FLP1Vmin,FLP2Vmin,FLP3Vminを無段階に変更可能に構成している。   Further, as shown in FIG. 5, the speed change controller 80 includes various sensors and switches of the input system, that is, an engine rotation sensor 81 for detecting the rotation speed of the engine 5 and the rotation speed (tractor) Vehicle speed sensor 82 for detecting the movement speed of 1 (vehicle speed), a potentiometer-type main transmission sensor 83 for detecting the operation position (rotation amount) of the main transmission lever 36, and the operation position (rotation amount) of the sub transmission lever 42. A potentiometer-type sub transmission sensor 84 to be detected, a minimum vehicle speed FLP1Vmin at the lowest speed operation position of the main transmission lever 36 in response to a low speed (first speed) operation position of the sub transmission lever 42, and a low speed setting for setting a gear ratio pattern. , The minimum vehicle speed FLP2Vmin at the lowest speed operation position of the main speed change lever 36 in response to the medium speed (second speed) operation position of the auxiliary speed change lever 42, and the change. A medium speed setter 86 for setting the ratio pattern, a minimum vehicle speed FLP3Vmin at the lowest speed operation position of the main speed change lever 36 in response to a high speed (third speed) operation position of the auxiliary speed change lever 42, and a high speed for setting the speed ratio pattern A setting device 86 is connected. Each setter 85, 86, 87 is formed of a variable resistor so that the minimum vehicle speeds FLP1Vmin, FLP2Vmin, FLP3Vmin at the lowest speed operation position of the main transmission lever 36 can be changed steplessly. .

さらに、変速用コントローラ80には、図5に示すように、出力系の各種電磁弁及びモニタ等の表示器類、即ち、油圧比例電磁弁型の主変速用油圧切換弁78の電磁ソレノイド等が接続されている。上述した主変速センサ83と、副変速センサ84と、低速用設定器85と、中速用設定器86と、高速用設定器86との各出力に基づき、主変速用油圧切換弁78が作動して、主変速用油圧シリンダ37を作動させ、主変速用油圧無段変速機25の油圧ポンプ63の斜板63a角度を制御し、主変速用油圧無段変速機25の主変速比を変更するように構成している。なお、オペレータが作業条件等に応じて副変速レバー42を操作可能に、副変速機構59の各変速段毎に最低車速及び変速比パターンを設定可能に、低速用設定器85と、中速用設定器86と、高速用設定器86とをそれぞれ設けたが、単一の設定器で各設定器85,86,87を兼用してもよく、保守点検者がメンテナンス作業によって初期設定する半固定式の構造に各設定器85,86,87を形成してもよい。   Further, as shown in FIG. 5, the speed change controller 80 includes various output solenoid valves and indicators such as a monitor, that is, an electromagnetic solenoid of a main hydraulic pressure switching valve 78 of a hydraulic proportional solenoid valve type. It is connected. Based on the outputs of the main transmission sensor 83, the sub transmission sensor 84, the low speed setting device 85, the medium speed setting device 86, and the high speed setting device 86, the main transmission hydraulic pressure switching valve 78 is operated. Then, the main transmission hydraulic cylinder 37 is operated, the angle of the swash plate 63a of the hydraulic pump 63 of the main transmission hydraulic continuously variable transmission 25 is controlled, and the main transmission ratio of the main transmission hydraulic continuously variable transmission 25 is changed. It is configured to do. It is to be noted that the operator can operate the sub-shift lever 42 according to work conditions, etc., and the minimum vehicle speed and the gear ratio pattern can be set for each gear position of the sub-transmission mechanism 59. The setting device 86 and the high-speed setting device 86 are provided. However, a single setting device may be used as each setting device 85, 86, and 87. Each setting device 85, 86, 87 may be formed in the structure of the equation.

次に、主変速用油圧無段変速機25の主変速比の適応制御について説明する。ここで、主変速比とは、エンジン5回転数に対する油圧式無段変速機25の主変速出力軸60の回転数の比率をいう。また、主変速レバー36の操作位置及び副変速レバー42の操作位置に応答させて、目標車速に近接若しくは一致させる制御を、変速比適応制御という。換言すると、主変速レバー36の操作位置及び副変速レバー42の操作位置に応答した車速が目標車速となるように、油圧式無段変速機29の変速比を制御するための主変速用油圧切換弁78を制御するものである。そのため、主変速レバー36の操作位置及び副変速レバー42の操作位置に対する油圧式無段変速機29における主変速出力軸60の回転数の変速比の変速比パターンを、変速用コントローラ80におけるパターン記憶手段としてのRAM(随時読み書き可能メモリ)に記憶させる。   Next, adaptive control of the main gear ratio of the main transmission hydraulic continuously variable transmission 25 will be described. Here, the main transmission ratio refers to the ratio of the rotational speed of the main transmission output shaft 60 of the hydraulic continuously variable transmission 25 to the engine 5 rotational speed. In addition, the control to make the speed close to or coincide with the target vehicle speed in response to the operation position of the main transmission lever 36 and the operation position of the sub transmission lever 42 is referred to as transmission ratio adaptive control. In other words, hydraulic switching for main transmission for controlling the gear ratio of the hydraulic continuously variable transmission 29 so that the vehicle speed in response to the operation position of the main transmission lever 36 and the operation position of the sub transmission lever 42 becomes the target vehicle speed. The valve 78 is controlled. Therefore, the speed ratio pattern of the speed ratio of the main speed change output shaft 60 in the hydraulic continuously variable transmission 29 with respect to the operation position of the main speed change lever 36 and the operation position of the sub speed change lever 42 is stored in the pattern controller 80. The data is stored in a RAM (a readable / writable memory as needed).

この変速比パターンは、主変速レバー36の操作量が増大するのに比例して、車速が大きくなるパターンであり、その比例関数は一次関数である。なお、変速比パターンの比例関数は2次曲線の関数であっても良い。パターン記憶手段には複数の変速比パターンが関数表形式またはマップ形式(図6に示すような変速比線図を参照)にて記憶されている。低速(1速出力)位置と中速(2速出力)位置と高速(3速出力)位置の3段階の副変速レバー42の操作に応じて、図6の実施形態では3種類の変速比パターン(変速比線)を準備して、予めパターン記憶手段に記憶させている。オペレータが副変速レバー42を操作すると、3種類の変速比パターンのうちから副変速操作位置に対応した1つのパターンが選択(指示)される。換言すると、副変速レバー42は、主変速レバー36の操作量に対応する主変速比の変化率を変えるためのものである。   This speed ratio pattern is a pattern in which the vehicle speed increases in proportion to an increase in the operation amount of the main speed change lever 36, and the proportional function is a linear function. The proportional function of the gear ratio pattern may be a function of a quadratic curve. The pattern storage means stores a plurality of speed ratio patterns in a function table format or a map format (see a gear ratio diagram as shown in FIG. 6). In the embodiment of FIG. 6, there are three types of gear ratio patterns according to the operation of the sub-shift lever 42 in three stages of a low speed (first speed output) position, a medium speed (second speed output) position, and a high speed (third speed output) position. (Speed ratio line) is prepared and stored in advance in the pattern storage means. When the operator operates the sub transmission lever 42, one pattern corresponding to the sub transmission operation position is selected (instructed) from the three types of gear ratio patterns. In other words, the auxiliary transmission lever 42 is for changing the change rate of the main transmission ratio corresponding to the operation amount of the main transmission lever 36.

図6に示す実施形態では、横軸に主変速比P(主変速レバー36の操作量)を採り、縦軸(左縦軸参照)には車速V(副変速出力軸61の回転数)を採って変速比パターンの線図を示す。図6において下の線から順に副変速低速(1速)出力FLP1、副変速中速(2速)出力FLP2、副変速高速(3速)出力FLP3としている。主変速用油圧無段変速機25の油圧ポンプ63の斜板63a角度は、主変速出力軸60の回転数が略零になる中立から、最大傾斜角(最大車速)になる回動範囲、即ち、最低車速から最高車速になる主変速用油圧無段変速機25の変速範囲(SLP、1=SLPmin〜10=SLPmaxの範囲)が設定されている。主変速用油圧無段変速機25の主変速範囲(1=SLPmin〜10=SLPmax)のうち、最低車速(1=SLPmin)に応じた車速Vが、副変速の低速出力FLP1の最低車速FLP1Vmin、又は中速出力FLP2の最低車速FLP2Vmin、又は高速出力FLP3の最低車速FLP3Vminのいずれか一つと一致するように、主変速用油圧無段変速機25の主変速範囲における主変速用油圧無段変速機25の油圧モータ64の最低回転数を維持させる。   In the embodiment shown in FIG. 6, the horizontal transmission axis P is the main transmission ratio P (the amount of operation of the main transmission lever 36), and the vertical axis (see the left vertical axis) is the vehicle speed V (the number of rotations of the auxiliary transmission output shaft 61). A diagram of the transmission ratio pattern is shown. In FIG. 6, the sub-shift low-speed (first speed) output FLP1, the sub-shift medium speed (second speed) output FLP2, and the sub-shift high-speed (third speed) output FLP3 are shown in order from the lower line. The angle of the swash plate 63a of the hydraulic pump 63 of the main transmission hydraulic continuously variable transmission 25 is a rotation range from the neutral where the rotation speed of the main transmission output shaft 60 becomes substantially zero to the maximum inclination angle (maximum vehicle speed), that is, A shift range (SLP, 1 = SLPmin to 10 = SLPmax range) of the main transmission hydraulic continuously variable transmission 25 from the lowest vehicle speed to the highest vehicle speed is set. Of the main shift range (1 = SLPmin to 10 = SLPmax) of the main transmission hydraulic continuously variable transmission 25, the vehicle speed V corresponding to the minimum vehicle speed (1 = SLPmin) is the minimum vehicle speed FLP1Vmin of the low speed output FLP1 of the auxiliary shift. Alternatively, the main transmission hydraulic continuously variable transmission in the main transmission range of the main transmission hydraulic continuously variable transmission 25 so as to coincide with either the minimum vehicle speed FLP2Vmin of the medium speed output FLP2 or the minimum vehicle speed FLP3Vmin of the high speed output FLP3. The minimum number of rotations of the 25 hydraulic motors 64 is maintained.

即ち、副変速レバー42が低速(1速出力)位置に操作された状態では、主変速レバー36が最低車速(1=SLPmin)に操作されることによって、車速Vが、油圧モータ64の最低回転数の維持に必要な最低車速FLP1Vminとなるように、油圧ポンプ63の斜板63a角度が制御される。換言すると、副変速機構59の変速比が高い低速段FLP1,FLP2側で主変速レバー36を最高車速10=SLPmax位置に操作したときの副変速出力の最高車速FLP1max,FLP2maxよりも、副変速機構59の変速比が低い高速段FLP2,FLP3側で主変速レバー36を最低車速1=SLPmin位置に操作したときの副変速出力の最低車速FLP1min,FLP2minが速くなるように構成している。その結果、主変速レバー36の超低速(最低車速1=SLPmin)操作によって、主変速用油圧無段変速機25がストール(油圧ポンプ63の斜板63a角度を中立より大きくしたにも関らず、油圧モータ64の回転数が零のままを維持)して、トラクタ1が停止するのを防止できる。   In other words, in a state where the auxiliary transmission lever 42 is operated to the low speed (first speed output) position, the main transmission lever 36 is operated to the lowest vehicle speed (1 = SLPmin), so that the vehicle speed V becomes the lowest rotation of the hydraulic motor 64. The angle of the swash plate 63a of the hydraulic pump 63 is controlled so that the minimum vehicle speed FLP1Vmin necessary for maintaining the number is reached. In other words, the subtransmission mechanism is higher than the maximum vehicle speeds FLP1max and FLP2max of the subtransmission output when the main transmission lever 36 is operated to the maximum vehicle speed 10 = SLPmax position on the low speed stage FLP1, FLP2 side where the transmission ratio of the auxiliary transmission mechanism 59 is high. The minimum vehicle speeds FLP1min and FLP2min of the sub-shift output when the main transmission lever 36 is operated to the minimum vehicle speed 1 = SLPmin position on the high speed stage FLP2 and FLP3 side where the gear ratio of 59 is low are configured to increase. As a result, when the main transmission lever 36 is operated at an extremely low speed (minimum vehicle speed 1 = SLPmin), the main transmission hydraulic continuously variable transmission 25 is stalled (although the angle of the swash plate 63a of the hydraulic pump 63 is larger than neutral). Thus, it is possible to prevent the tractor 1 from stopping by maintaining the rotation speed of the hydraulic motor 64 at zero.

例えば、従来は、農作業等において、主変速レバー36の超低速(最低車速1=SLPmin)操作によって主変速用油圧無段変速機25がストールした状態が、オペレータの勘違いによって、主変速レバー36の中立操作によってトラクタ1が停止した状態と誤認された場合、エンジン5の負荷の減少等によって、主変速用油圧無段変速機25がストールした状態から解除されると、オペレータの意図とは別に、トラクタ1が超低速の車速で移動する問題があったが、本実施形態では、主変速用油圧無段変速機25のストールを阻止して、主変速レバー36を超低速操作できる。   For example, in the past, a state in which the main transmission hydraulic continuously variable transmission 25 is stalled due to an extremely low speed (minimum vehicle speed 1 = SLPmin) operation of the main transmission lever 36 in farm work or the like is due to a misunderstanding by the operator. If it is mistaken that the tractor 1 is stopped due to the neutral operation, when the main transmission hydraulic continuously variable transmission 25 is released from the stalled state due to a decrease in the load of the engine 5 or the like, Although there is a problem that the tractor 1 moves at an extremely low vehicle speed, in this embodiment, the main transmission lever 36 can be operated at an extremely low speed by preventing the main transmission hydraulic continuously variable transmission 25 from stalling.

一方、副変速レバー42が中速(2速出力)位置に操作された状態、又は副変速レバー42が高速(3速出力)位置に操作された状態では、主変速レバー36が最低車速(1=SLPmin)に操作されることによって、車速Vが、油圧モータ64の最低回転数の維持に必要な最低車速FLP2Vmin,FLP3Vminとなるように、油圧ポンプ63の斜板63a角度が制御される。その結果、副変速レバー42がいずれの変速段位置にあっても、主変速レバー36の中立操作によって車速が零になるが、本実施形態では、副変速低速(1速出力)の最高車速FLP1Vmaxより副変速中速(2速出力)の最低車速FLP2Vminを大きく設定し、副変速中速(2速出力)の最高車速FLP2Vmaxより副変速高速(3速出力)の最低車速FLP3Vminを大きく設定したから、副変速レバー42の各変速段において、主変速レバー36の変速操作によって車速Vが重複するのを防止できる。   On the other hand, when the auxiliary transmission lever 42 is operated to the medium speed (second speed output) position or when the auxiliary transmission lever 42 is operated to the high speed (third speed output) position, the main transmission lever 36 is at the minimum vehicle speed (1). = SLPmin), the angle of the swash plate 63a of the hydraulic pump 63 is controlled so that the vehicle speed V becomes the minimum vehicle speeds FLP2Vmin and FLP3Vmin necessary for maintaining the minimum rotational speed of the hydraulic motor 64. As a result, the vehicle speed becomes zero by the neutral operation of the main transmission lever 36 regardless of the position of the sub transmission lever 42, but in this embodiment, the maximum vehicle speed FLP1Vmax at the sub transmission low speed (first speed output). Further, the minimum vehicle speed FLP2Vmin for the sub-shift medium speed (second-speed output) is set larger, and the minimum vehicle speed FLP3Vmin for the sub-shift high speed (third-speed output) is set larger than the maximum vehicle speed FLP2Vmax of the medium sub-speed (second-speed output). Thus, it is possible to prevent the vehicle speed V from being overlapped by the speed change operation of the main speed change lever 36 at each speed of the sub speed change lever 42.

即ち、副変速レバー42の変速段の切換操作に関らず、副変速低速から副変速高速の間の大きな変速範囲で、主変速レバー36の変速操作によって車速Vが直線的に増速又は減速されるから、オペレータが移動速度の変化を簡単に予測しながら、副変速低速段から副変速高速段に亘って、主変速レバー36をスムーズに変速操作でき、農作業条件等に適応した車速Vに簡単に変更でき、農作業等の作業能率等を向上できる。   That is, the vehicle speed V is linearly increased or decreased by the shift operation of the main shift lever 36 in a large shift range between the sub shift low speed and the sub shift high speed regardless of the shift operation of the sub shift lever 42. Therefore, the operator can smoothly change the speed of the main shift lever 36 from the sub-shift low speed stage to the sub-shift high speed stage while easily predicting the change in the moving speed, and the vehicle speed V can be adjusted to the farm work conditions. It can be easily changed and the work efficiency of farm work etc. can be improved.

また、副変速レバー42が低速(1速出力)位置に操作された場合と同様に、中速(2速出力)位置又は高速(3速出力)位置に副変速レバー42が操作されている状態でも、主変速レバー36の超低速(最低車速1=SLPmin)操作によって、主変速用油圧無段変速機25がストールして、トラクタ1が停止するのを防止できる。したがって、無段変速機25を有するミッション構造であっても、無段変速機25の代わりに主変速ギヤを有する従来のギヤミッション構造のように走行駆動力をスムーズに変速できる。   Similarly to the case where the sub transmission lever 42 is operated to the low speed (first speed output) position, the sub transmission lever 42 is operated to the medium speed (second speed output) position or the high speed (third speed output) position. However, it is possible to prevent the main transmission hydraulic continuously variable transmission 25 from stalling and stopping the tractor 1 by operating the main transmission lever 36 at an extremely low speed (minimum vehicle speed 1 = SLPmin). Therefore, even if the transmission structure has the continuously variable transmission 25, the driving force can be smoothly shifted as in the conventional gear transmission structure having the main transmission gear instead of the continuously variable transmission 25.

次に、変速比制御のフローチャート(図7)を参照しながら主変速比適応制御態様を説明する。上述のように、主変速レバー36の操作量に比例させて主変速用油圧切換弁78を作動し、これからの作動油で主変速用油圧シリンダ37を駆動させて主変速機構である油圧無段変速機25の油圧ポンプ25の圧油吐出量を制御する。その場合、各設定器85,86,87で設定した最低車速FLP1Vmin,FLP2Vmin,FLP3Vminを維持する自動制御であり、より詳しくは、主変速レバー36の操作量と副変速レバー42の操作位置とを自己監視し、主変速レバー36の操作量と副変速レバー42の操作位置との変化に応じて各設定器85,86,87で設定される最低車速FLP1Vmin,FLP2Vmin,FLP3Vminを維持するように自動制御するものである。これにて主変速出力軸36の回転数を無段階に変更調節できるものである。   Next, the main gear ratio adaptive control mode will be described with reference to the flowchart of the gear ratio control (FIG. 7). As described above, the main transmission hydraulic pressure switching valve 78 is actuated in proportion to the operation amount of the main transmission lever 36, and the main transmission hydraulic cylinder 37 is driven by the hydraulic oil from now on so that the hydraulic continuously variable as the main transmission mechanism. The pressure oil discharge amount of the hydraulic pump 25 of the transmission 25 is controlled. In this case, automatic control is performed to maintain the minimum vehicle speeds FLP1Vmin, FLP2Vmin, FLP3Vmin set by the setting devices 85, 86, 87. More specifically, the operation amount of the main transmission lever 36 and the operation position of the auxiliary transmission lever 42 are determined. Self-monitoring and automatically maintaining the minimum vehicle speeds FLP1Vmin, FLP2Vmin, FLP3Vmin set by the setting devices 85, 86, 87 according to changes in the operation amount of the main transmission lever 36 and the operation position of the auxiliary transmission lever 42 It is something to control. Thus, the rotational speed of the main transmission output shaft 36 can be changed and adjusted steplessly.

従って、変速比適応制御では、エンジンを始動させ(S1)、続いて副変速レバー42の操作位置を読み込み(S2)、変速用コントローラ80のRAM(随時読み書き可能メモリ)に記憶された所定の変速比パターンFLP1,FLP2,FLP3を読み出す。   Therefore, in the gear ratio adaptive control, the engine is started (S1), then the operation position of the sub-shift lever 42 is read (S2), and a predetermined gear shift stored in the RAM (a readable / writable memory as needed) of the gear shift controller 80 is read. The ratio patterns FLP1, FLP2, FLP3 are read out.

次に、オペレータがトラクタ1を前進(後進)させるために主変速レバー36を操作することにより、主変速センサ83から主変速レバー36の操作量を変速用コントローラ80に読み込む(S3)。この読み込み数値に基づいて、変速用コントローラ80の演算部では、上記の選択された変速比パターンFLP1,FLP2,FLP3上の主変速レバー36の操作量に対応する目標車速(目標変速比値)を算出する(S4)。   Next, when the operator operates the main transmission lever 36 to move the tractor 1 forward (reverse), the operation amount of the main transmission lever 36 is read from the main transmission sensor 83 into the transmission controller 80 (S3). Based on the read numerical value, the calculation unit of the speed change controller 80 determines the target vehicle speed (target speed ratio value) corresponding to the operation amount of the main speed change lever 36 on the selected speed ratio patterns FLP1, FLP2, and FLP3. Calculate (S4).

他方、変速用コントローラ80では、走行中に常時一定時間間隔(サンプリング時間間隔)毎に、エンジン回転センサ81からエンジン5回転数を読み込み、車速センサ82により、副変速出力軸61回転数を検出して読み込む(S5)。サンプリング時間(現在)でのエンジン回転数(分母)と副変速出力軸61回転数(分子)との比率から現在車速Vを演算し、現在車速Vが変速比パターンFLP1,FLP2,FLP3上の目標車速に略等しいか否かを判別する(S6)。   On the other hand, the shift controller 80 reads the engine 5 rotation speed from the engine rotation sensor 81 at every constant time interval (sampling time interval) during traveling, and the vehicle speed sensor 82 detects the auxiliary transmission output shaft 61 rotation speed. (S5). The current vehicle speed V is calculated from the ratio between the engine speed (denominator) at the sampling time (current) and the sub-shift output shaft 61 speed (numerator), and the current vehicle speed V is the target on the speed ratio patterns FLP1, FLP2, and FLP3. It is determined whether or not the vehicle speed is substantially equal (S6).

現在車速V(現在変速比値)が目標車速(目標変速比値)から大小の所定%以上離しているときは(S6:no)、変速用コントローラ80が油圧切換弁78の印加電圧値を補正することにより、油圧ポンプ63の斜板63a角度を変更調節し、油圧モータ64への作動油吐出量を制御して主変速出力軸60の回転数を増加または減少させるという主変速操作を実行する(S7)。現在車速Vが目標車速に略等しければ(目標車速に対して現在車速Vが±所定%以内の場合)(S6:yes )、主変速出力軸60の回転数を維持させる(S8)。   When the current vehicle speed V (current gear ratio value) is separated from the target vehicle speed (target gear ratio value) by a predetermined percentage larger or smaller (S6: no), the gear shift controller 80 corrects the voltage applied to the hydraulic pressure switching valve 78. As a result, the angle of the swash plate 63a of the hydraulic pump 63 is changed and adjusted, and the amount of hydraulic oil discharged to the hydraulic motor 64 is controlled to increase or decrease the rotational speed of the main transmission output shaft 60. (S7). If the current vehicle speed V is substantially equal to the target vehicle speed (when the current vehicle speed V is within ± predetermined% with respect to the target vehicle speed) (S6: yes), the rotational speed of the main transmission output shaft 60 is maintained (S8).

したがって、副変速レバー42が低速(1速出力)位置に操作された状態、又は副変速レバー42が中速(2速出力)位置に操作された状態、又は副変速レバー42が高速(3速出力)位置に操作された状態では、主変速レバー36が最低車速(1=SLPmin)に操作されることによって、車速Vが、油圧モータ64の最低回転数の維持に必要な最低車速FLP1Vmin,FLP2Vmin,FLP3Vminになるように、油圧ポンプ63の斜板63a角度が制御される。その結果、副変速レバー42がいずれの変速位置にあっても、主変速レバー36の中立操作によって車速が零になるが、主変速レバー36の変速操作によって最低車速FLP1Vmin,FLP2Vmin,FLP3Vminが維持されるから、副変速レバー42の各変速段において、主変速レバー36の変速操作によって車速Vが重複するのを防止でき、且つ主変速レバー36を超低速(最低車速1=SLPmin)操作での主変速用油圧無段変速機25のストール(油圧ポンプ63の斜板63a角度が中立位置より大きいにも関らず油圧モータ64が停止している過負荷運転状態の発生)を防止できる。   Accordingly, the state in which the auxiliary transmission lever 42 is operated to the low speed (first speed output) position, the state in which the auxiliary transmission lever 42 is operated to the middle speed (second speed output) position, or the auxiliary transmission lever 42 is operated to the high speed (third speed). In the state of being operated to the output) position, the main speed change lever 36 is operated to the minimum vehicle speed (1 = SLPmin), so that the vehicle speed V is the minimum vehicle speed FLP1Vmin, FLP2Vmin required to maintain the minimum rotation speed of the hydraulic motor 64. , FLP3Vmin, the swash plate 63a angle of the hydraulic pump 63 is controlled. As a result, the vehicle speed becomes zero by the neutral operation of the main transmission lever 36 regardless of the shift position of the auxiliary transmission lever 42, but the minimum vehicle speeds FLP1Vmin, FLP2Vmin, FLP3Vmin are maintained by the transmission operation of the main transmission lever 36. Therefore, it is possible to prevent the vehicle speed V from being overlapped by the shifting operation of the main shifting lever 36 at each shift stage of the sub shifting lever 42 and to operate the main shifting lever 36 at the very low speed (minimum vehicle speed 1 = SLPmin). Stall of the transmission hydraulic continuously variable transmission 25 (occurrence of an overload operation state in which the hydraulic motor 64 is stopped even though the angle of the swash plate 63a of the hydraulic pump 63 is larger than the neutral position) can be prevented.

上記の記載及び図3、図5、図6から明らかなように、走行機体2に搭載されたエンジン5からの動力を変速する無段変速機25と、無段変速機25の変速比を変更する主変速操作具としての主変速レバー36と、無段変速機25からの変速駆動出力を伝達する多段変速用の副変速機構59と、副変速機構59の変速比を変更する副変速操作具としての副変速レバー42とを備えてなる作業車両の走行装置において、主変速レバー36の操作位置を検出する主変速センサ83と、無段変速機25の変速駆動出力回転数を検出する変速出力部回転センサとしての車速センサ82と、副変速レバー42の操作位置を検出する副変速センサ84とを備え、副変速レバー42の操作によって、主変速レバー36の操作によって決定される無段変速機25からの最低主変速出力FLP1Vmin,FLP2Vmin,FLP3Vminが変更されるように構成したものであるから、副変速機構59の複数の変速段FLP1,FLP2,FLP3において、車速FLP1Vが重複するのを防止できる。その結果、副変速機構59の変速段FLP1,FLP2を高速側に変更した場合、副変速機構59の変速段FLP1,FLP2を変更する前よりも、主変速レバー36にて選択される車速が遅くなることがない。一方、副変速機構59の変速段FLP2,FLP3を低速側に変更した場合、副変速機構59の変速段FLP2,FLP3を変更する前よりも、主変速レバー36にて選択される車速が速くなることがない。したがって、変速用の油圧ポンプ63及び油圧モータ64等を用いていない従来のギヤミッション(主変速機構及び副変速機構の両方を複数のギヤにて構成した構造)と同様に、主変速レバー36及び副変速レバー42によってスムーズな増速操作又は減速操作を簡単に実行できる。   As is clear from the above description and FIGS. 3, 5, and 6, the continuously variable transmission 25 that changes the power from the engine 5 mounted on the traveling machine body 2 and the transmission ratio of the continuously variable transmission 25 are changed. A main transmission lever 36 as a main transmission operation tool, a multi-speed transmission sub-transmission mechanism 59 that transmits a shift drive output from the continuously variable transmission 25, and a sub-transmission operation tool that changes the gear ratio of the sub-transmission mechanism 59. In the traveling device of the work vehicle including the auxiliary transmission lever 42 as a main transmission sensor 83, a main transmission sensor 83 that detects the operation position of the main transmission lever 36, and a transmission output that detects the transmission drive output speed of the continuously variable transmission 25. A continuously variable transmission that includes a vehicle speed sensor 82 as a part rotation sensor and a sub-transmission sensor 84 that detects an operation position of the sub-transmission lever 42 and is determined by operation of the main transmission lever 36 by operation of the sub-transmission lever 42. 2 From main speed change output FLP1Vmin from, FLP2Vmin, since those configured as FLP3Vmin is changed, the plurality of shift speeds FLP1, FLP2, FLP3 of the subtransmission mechanism 59, that the vehicle speed FLP1V overlap can be prevented. As a result, when the shift speeds FLP1 and FLP2 of the auxiliary transmission mechanism 59 are changed to the high speed side, the vehicle speed selected by the main transmission lever 36 is slower than before the shift speeds FLP1 and FLP2 of the auxiliary transmission mechanism 59 are changed. Never become. On the other hand, when the shift speeds FLP2 and FLP3 of the auxiliary transmission mechanism 59 are changed to the low speed side, the vehicle speed selected by the main transmission lever 36 becomes faster than before the shift speeds FLP2 and FLP3 of the auxiliary transmission mechanism 59 are changed. There is nothing. Therefore, in the same manner as the conventional gear mission (a structure in which both the main transmission mechanism and the sub-transmission mechanism are configured by a plurality of gears) that does not use the hydraulic pump 63 for transmission, the hydraulic motor 64, and the like, A smooth speed-up operation or speed-down operation can be easily executed by the sub-shift lever 42.

また、高速で移動する路上走行等において、主変速レバー36を低速側に操作することにより、主変速レバー36が中立位置に移行する前に、エンジン5からの動力が走行部としての後車輪4に伝わらなくなるのを阻止できる。そのため、路上走行中、エンジン5が作動していて、主変速レバー36が変速位置に操作されているにも係わらず、走行機体2が停止したり、坂道等で逆進するのを、簡単に防止できる。   Further, when the main speed change lever 36 is operated to the low speed side during road travel that moves at a high speed, the power from the engine 5 is used as the rear wheel 4 as the travel portion before the main speed change lever 36 shifts to the neutral position. Can be prevented from being transmitted to. Therefore, while traveling on the road, it is easy for the traveling machine body 2 to stop or reversely travel on a slope even though the engine 5 is operating and the main speed change lever 36 is operated to the speed change position. Can be prevented.

上記の記載及び図3、図6から明らかなように、副変速機構59の変速比が低速段FLP1,FLP2側のときの最高車速FLP1Vmax,FLP2Vmaxよりも、副変速機構59の変速比が高速段FLP2,FLP3側のときの最低車速FLP2Vmin,FLP3Vminが速くなるように構成したものであるから、副変速機構59の複数の変速段FLP1,FLP2,FLP3において、車速Vが重複するのを防止できる。副変速機構59の変速段を高速側FLP2,FLP3(低速側FLP1,FLP2)に変更しても、副変速機構の変速段を変更する前よりも、主変速レバー36にて選択した車速が遅く(速く)なるのを防止できる。主変速レバー36及び副変速レバー42によってスムーズな増速操作又は減速操作を簡単に実行できる。   As is apparent from the above description and FIGS. 3 and 6, the speed ratio of the auxiliary transmission mechanism 59 is higher than the maximum vehicle speed FLP1Vmax and FLP2Vmax when the transmission ratio of the auxiliary transmission mechanism 59 is on the low speed stage FLP1 and FLP2 side. Since the minimum vehicle speeds FLP2Vmin and FLP3Vmin on the FLP2 and FLP3 side are increased, the vehicle speed V can be prevented from overlapping in the plurality of shift speeds FLP1, FLP2 and FLP3 of the auxiliary transmission mechanism 59. Even if the gear position of the subtransmission mechanism 59 is changed to the high speed side FLP2, FLP3 (low speed side FLP1, FLP2), the vehicle speed selected by the main transmission lever 36 is slower than before the gear stage of the subtransmission mechanism is changed. (Fast) can be prevented. A smooth speed increase operation or speed reduction operation can be easily executed by the main speed change lever 36 and the sub speed change lever 42.

上記の記載及び図5、図6から明らかなように、無段変速機25の複数の変速比パターンを記憶するパターン記憶手段としての変速用コントローラ80と、無段変速機25の変速比パターンを選択するパターン設定器としての低速用設定器85及び中速用設定器86及び高速用設定器87とを備え、主変速レバー36の操作量に応じて、各設定器85,86,87にて選択された変速比パターンに基づいて無段変速機25の出力回転数を制御するものであるから、オペレータが各設定器85,86,87にて変速比パターンを設定した後は、主変速レバー36を操作するだけで、環境の変化や作業車両の走行負荷の変動により、現実の変速比の値が目標値からずれたときに、自動的に目標変速比の値に近づくように自動制御できる。   As apparent from the above description and FIGS. 5 and 6, the speed change controller 80 serving as a pattern storage means for storing a plurality of speed ratio patterns of the continuously variable transmission 25 and the speed ratio pattern of the continuously variable transmission 25 are shown. A low-speed setting device 85, a medium-speed setting device 86, and a high-speed setting device 87 are provided as pattern setting devices to be selected, and the setting devices 85, 86, 87 are used according to the operation amount of the main transmission lever 36. Since the output rotational speed of the continuously variable transmission 25 is controlled based on the selected gear ratio pattern, after the operator sets the gear ratio pattern with the setting devices 85, 86, 87, the main speed change lever By simply operating 36, when the actual gear ratio value deviates from the target value due to environmental changes or fluctuations in the work vehicle's running load, it can be automatically controlled so as to automatically approach the target gear ratio value. .

本発明の実施例に係る農作業用トラクタの側面図である。It is a side view of the agricultural tractor which concerns on the Example of this invention. 同平面図である。It is the same top view. 同走行駆動系統図である。It is the traveling drive system diagram. 油圧回路図である。It is a hydraulic circuit diagram. 走行変速用の制御回路図である。FIG. 6 is a control circuit diagram for traveling speed change. 主変速出力と車速の関係を表した線図である。It is a diagram showing the relationship between the main transmission output and the vehicle speed. 変速比適応制御のフローチャートである。It is a flowchart of gear ratio adaptive control.

2 走行機体
5 エンジン
25 無段変速機
36 主変速レバー(主変速操作具)
42 副変速レバー(副変速操作具)
80 変速用コントローラ(パターン記憶手段)
82 車速センサ(変速出力部回転センサ)
83 主変速センサ
84 副変速センサ
85 低速用設定器(パターン設定器)
86 中速用設定器(パターン設定器)
87 高速用設定器(パターン設定器)
2 traveling machine body 5 engine 25 continuously variable transmission 36 main transmission lever (main transmission operating tool)
42 Sub-shift lever (sub-shift control tool)
80 Speed change controller (pattern storage means)
82 Vehicle speed sensor (shift output sensor rotation sensor)
83 Main transmission sensor 84 Sub transmission sensor 85 Low-speed setting device (pattern setting device)
86 Medium speed setting device (Pattern setting device)
87 High-speed setting device (pattern setting device)

Claims (1)

走行機体に搭載されたエンジンからの動力を変速する無段変速機と、前記無段変速機の変速比を変更する主変速操作具と、前記無段変速機からの変速駆動出力を伝達する多段変速用の副変速機構と、前記副変速機構の変速比を変更する副変速操作具とを備えてなる作業車両の走行装置において、
前記主変速操作具の操作位置を検出する主変速センサと、前記無段変速機の変速駆動出力回転数を検出する変速出力部回転センサと、前記副変速操作具の操作位置を検出する副変速センサとを備え、
前記主変速操作具の中立操作によって、前記無段変速機からの主変速出力を車速零にし、
前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を、前記副変速操作具の変速段操作が高速段側のものほど速くし、
更に、前記副変速操作具の変速段操作が低速段側の状態で、前記主変速操作具の最高車速操作によって決定される前記無段変速機からの最高主変速出力よりも、前記副変速操作具の変速段操作が高速段側の状態で、前記主変速操作具の最低車速操作によって決定される前記無段変速機からの最低主変速出力を速くするように構成している、
作業車両の走行装置。
A continuously variable transmission that shifts power from an engine mounted on a traveling machine body, a main transmission operating tool that changes a transmission ratio of the continuously variable transmission, and a multi-stage that transmits a shift drive output from the continuously variable transmission. In a traveling apparatus for a work vehicle, comprising: a sub-transmission mechanism for shifting; and a sub-transmission operation tool that changes a gear ratio of the sub-transmission mechanism.
A main transmission sensor that detects an operation position of the main transmission operation tool, a transmission output portion rotation sensor that detects a transmission drive output rotational speed of the continuously variable transmission, and a sub transmission that detects an operation position of the auxiliary transmission operation tool. With a sensor,
By the neutral operation of the main transmission operating tool, the main transmission output from the continuously variable transmission is made zero vehicle speed,
The minimum main transmission output from the continuously variable transmission determined by the minimum vehicle speed operation of the main transmission operation tool is increased as the speed operation of the auxiliary transmission operation tool is on the high speed side,
Further, the sub-shift operation is more effective than the maximum main shift output from the continuously variable transmission, which is determined by the maximum vehicle speed operation of the main shift operation tool, when the shift speed operation of the sub-shift operation tool is on the low speed stage side. In a state where the gear shift operation of the tool is on the high speed side, the minimum main shift output from the continuously variable transmission determined by the minimum vehicle speed operation of the main shift operation tool is configured to be faster.
A traveling device for a work vehicle.
JP2007012655A 2007-01-23 2007-01-23 Travel device for work vehicle Expired - Fee Related JP5107583B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007012655A JP5107583B2 (en) 2007-01-23 2007-01-23 Travel device for work vehicle
PCT/JP2007/069818 WO2008090650A1 (en) 2007-01-23 2007-10-11 Working vehicle with hst
EP07829556.5A EP2106951B1 (en) 2007-01-23 2007-10-11 Working vehicle with a hydraulic stepless transmission
US12/523,925 US8261543B2 (en) 2007-01-23 2007-10-11 Working vehicle with HST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012655A JP5107583B2 (en) 2007-01-23 2007-01-23 Travel device for work vehicle

Publications (2)

Publication Number Publication Date
JP2008179198A JP2008179198A (en) 2008-08-07
JP5107583B2 true JP5107583B2 (en) 2012-12-26

Family

ID=39723445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012655A Expired - Fee Related JP5107583B2 (en) 2007-01-23 2007-01-23 Travel device for work vehicle

Country Status (1)

Country Link
JP (1) JP5107583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333462B1 (en) 2015-08-07 2021-03-24 Yanmar Power Technology Co., Ltd. Work vehicle
JP7330144B2 (en) * 2020-06-29 2023-08-21 株式会社クボタ work machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256958A (en) * 1989-03-30 1990-10-17 Kubota Ltd Transmission of working vehicle
JPH0882363A (en) * 1995-09-11 1996-03-26 Iseki & Co Ltd Gear shift operation device for work vehicle
JP2001193830A (en) * 2000-01-07 2001-07-17 Kanzaki Kokyukoki Mfg Co Ltd Traveling control device for vehicle
JP4262301B2 (en) * 2000-03-31 2009-05-13 本田技研工業株式会社 Transmission
JP2004009998A (en) * 2002-06-11 2004-01-15 Iseki & Co Ltd Automatic transmission operation device for tractor

Also Published As

Publication number Publication date
JP2008179198A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
KR100849748B1 (en) Load control structure and method of work vehicle
KR101224751B1 (en) Speed control structure for work vehicle, information display structure therefor, and speed shift manipulating structure therefor
JP4528238B2 (en) Speed control structure of work vehicle
KR102050679B1 (en) Work vehicle
KR20140066712A (en) A system for operating a hydraulic drive work machine and a drive control method
US20110186361A1 (en) Differential steering control for a continuously variable transmission machine
JP5163151B2 (en) Continuously variable work vehicle
JP5406744B2 (en) Speed control structure of work vehicle
JP2014029215A (en) Working vehicle
JP5107583B2 (en) Travel device for work vehicle
JP5745227B2 (en) Shifting operation structure of work vehicle
JP4838072B2 (en) Automatic transmission structure of tractor
JP4479325B2 (en) PTO control device for tractor
JP4568669B2 (en) Work vehicle load control structure
JP2008196600A (en) Travel control device for work vehicle
JP2005036921A (en) Drive mechanism of working vehicle
JPH04271704A (en) Controlling apparatus for working vehicle
JP2002331956A (en) Automatic transmission mechanism for working vehicle
JP5351784B2 (en) Speed control structure of work vehicle
JP4245280B2 (en) Transmission device for hydraulically driven vehicle
JP4585495B2 (en) Work vehicle load control structure
JP2009018685A (en) Working vehicle
JP3891171B2 (en) Shift control device for powered vehicle
JP5261407B2 (en) Information display structure of work vehicle
JP4140613B2 (en) Work vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Ref document number: 5107583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees