[go: up one dir, main page]

JP5107093B2 - Copper alloy with high strength and high conductivity - Google Patents

Copper alloy with high strength and high conductivity Download PDF

Info

Publication number
JP5107093B2
JP5107093B2 JP2008045872A JP2008045872A JP5107093B2 JP 5107093 B2 JP5107093 B2 JP 5107093B2 JP 2008045872 A JP2008045872 A JP 2008045872A JP 2008045872 A JP2008045872 A JP 2008045872A JP 5107093 B2 JP5107093 B2 JP 5107093B2
Authority
JP
Japan
Prior art keywords
copper alloy
strength
less
conductivity
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008045872A
Other languages
Japanese (ja)
Other versions
JP2009203510A (en
Inventor
久郎 宍戸
康博 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008045872A priority Critical patent/JP5107093B2/en
Publication of JP2009203510A publication Critical patent/JP2009203510A/en
Application granted granted Critical
Publication of JP5107093B2 publication Critical patent/JP5107093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、リレー、スイッチ、ソケットなどの電気・電子部品用材料として使用される高強度および高導電率を備えた銅合金に関する。   The present invention relates to a copper alloy having high strength and high conductivity used as a material for electrical / electronic parts such as connectors, relays, switches, and sockets.

近年のエレクトロニクスの発達により、種々の機械装置の電気配線は複雑化、高集積化が進み、コネクタ等の電気・電子部品は、小型化、軽量化、高信頼性化が進んでいる。このような中、コネクタ用銅合金材料は薄肉化され、また複雑な形状に加工されるため、強度、弾性、導電率、曲げ加工性、プレス成形性が良好であることが求められている。特に、小型化、薄肉化が進むことにより、同一の荷重を受ける材料の断面積が小さくなり、通電量に対する材料の断面積も小さくなるため、高強度および高導電率を兼ね備えることが求められる。また導電率に関しては、これらの薄肉化の進む電子部品の他、自動車用のバスバー等の大電流を通電する部品においても重要な特性になる。   With the recent development of electronics, the electrical wiring of various mechanical devices has become complicated and highly integrated, and electrical and electronic parts such as connectors have been reduced in size, weight, and reliability. Under such circumstances, since the copper alloy material for connectors is thinned and processed into a complicated shape, it is required to have good strength, elasticity, electrical conductivity, bending workability, and press formability. In particular, as the size and thickness are reduced, the cross-sectional area of the material subjected to the same load is reduced, and the cross-sectional area of the material with respect to the amount of current is also reduced. Therefore, both high strength and high electrical conductivity are required. In addition to the electronic parts that are becoming thinner, the electrical conductivity is an important characteristic in parts that conduct a large current such as bus bars for automobiles.

導電性の銅合金のうち、Cu−Ni−Sn−P系合金は、適切な条件で時効処理を施すことにより、Ni−P系化合物が析出し、強度、導電率を同時に向上させることが可能であり、この合金系は耐力、導電率、曲げ加工性のバランスに優れ、更に耐応力緩和特性に優れるという特徴を有しており、自動車用の小型端子やバスバーをはじめとする各種用途に用いられている。   Among conductive copper alloys, Cu-Ni-Sn-P-based alloys can be improved in strength and conductivity at the same time by precipitating Ni-P-based compounds by aging treatment under appropriate conditions. This alloy system has excellent balance of proof stress, electrical conductivity and bending workability, and also has excellent stress relaxation properties, and is used for various applications including small terminals and bus bars for automobiles. It has been.

このような合金として、例えば、下記特許文献1,2には、強度、導電率等の特性をできるだけ同時に高めるために、冷間圧延−熱処理の繰返し、場合によっては溶体化処理とそれに続く高い加工率での冷間圧延と熱処理によりNi−P系化合物を均一かつ微細に析出させたCu−Ni−Sn−P系銅合金が示されている。   As such an alloy, for example, in Patent Documents 1 and 2 listed below, in order to enhance properties such as strength and conductivity as much as possible, cold rolling-heat treatment is repeated, and in some cases, solution treatment and subsequent high processing are performed. A Cu—Ni—Sn—P based copper alloy is shown in which a Ni—P based compound is uniformly and finely precipitated by cold rolling at a rate and heat treatment.

また、下記特許文献3には、析出物サイズや析出物間距離、析出物の個数を厳密に制御することにより、高強度を達成したCu−Ni−Sn−P系銅合金が示されている。   Patent Document 3 below discloses a Cu—Ni—Sn—P-based copper alloy that achieves high strength by strictly controlling the precipitate size, the distance between precipitates, and the number of precipitates. .

さらに、下記特許文献4,5,6にはCu−Ni−Sn−P系合金について、副成分として、りん化合物を生成しやすいFe,Cr,Co,Mn,Mgなどを添加することにより、強度その他の特性を向上させた銅合金が示されている。
特開2001−262255号公報 特開2001−262297号公報 特開2006−291356号公報 特開2000−119779号公報 特開2007−31795号公報 特開平4−311544号公報
Furthermore, in the following Patent Documents 4, 5, and 6, the strength of the Cu—Ni—Sn—P alloy is increased by adding Fe, Cr, Co, Mn, Mg, etc., which are liable to form a phosphorus compound, as an accessory component. A copper alloy with improved other properties is shown.
JP 2001-262255 A JP 2001-262297 A JP 2006-291356 A JP 2000-119779 A JP 2007-31795 A Japanese Patent Laid-Open No. 4-31544

しかしながら、昨今では通電部品の薄肉化、小型化の要求が一層厳しいものとなり、更なる高強度化が求められている。Ni−P系析出物を積極的に利用した上記従来の技術により、強度と導電率について改善が図られてきたが、析出物のサイズは数nm〜数十nm程度、個数密度は500〜5000個/μm2程度にまで達しており、これ以上の改善を図ることが困難な状況にある。
本発明はかかる問題に鑑み、従来材よりも高強度および高導電率を兼備した銅合金を提供することを目的とする。
However, in recent years, the demand for thinner and smaller current-carrying parts has become more severe, and further enhancement of strength is required. Although the strength and electrical conductivity have been improved by the above-described conventional technique that actively uses Ni-P-based precipitates, the size of the precipitates is several nanometers to several tens of nanometers, and the number density is 500 to 5000. It has reached about 1 / μm 2 and it is difficult to make further improvements.
In view of such a problem, an object of the present invention is to provide a copper alloy having higher strength and higher conductivity than conventional materials.

本発明者は、導電性を低下させることなく、材料強度を改善するには、析出物を形成するりん化合物の単位析出量あたりの析出強化量を向上させればよいとの着想の下で、りん化合物の析出強化量を向上させる手段を種々研究した結果、りん化合物の組成を制御し、析出物の周囲の整合ひずみを大きくすることにより、高い強度と電導率を兼備させることを知見した。本発明はかかる知見を基に完成したものである。   Under the idea that the present inventor should improve the precipitation strengthening amount per unit precipitation amount of the phosphorus compound forming the precipitate, in order to improve the material strength without reducing the conductivity, As a result of various studies on means for improving the precipitation strengthening amount of the phosphorus compound, it has been found that by controlling the composition of the phosphorus compound and increasing the matching strain around the precipitate, it has both high strength and conductivity. The present invention has been completed based on such knowledge.

すなわち、本発明の銅合金は、化学組成が質量%(以下、単に「%」と記載する。)で、
Ni:0.010〜3.0%、
P :0.010〜0.3%、
Sn:0.010〜3.0%、
Co,Cr,Ti,Mn,Zr,Fe,Mgのうち1種または2種以上:合計で0.010%〜1.5%
を各々含有し、残部Cuおよび不可避的不純物からなり、りん化合物からなる析出物が分散した組織を有し、前記析出物を形成するりん化合物中に含まれるNiの原子量N(Ni)に対する、Co,Cr,Ti,Mn,Zr,FeおよびMgの各元素の原子量の合計N(M)の比N/N(Ni)が、
0.05≦N(M)/N(Ni)≦30
とされたものである。
That is, the copper alloy of the present invention has a chemical composition of mass% (hereinafter, simply referred to as “%”),
Ni: 0.010 to 3.0%,
P: 0.010-0.3%
Sn: 0.010 to 3.0%,
One or more of Co, Cr, Ti, Mn, Zr, Fe, Mg: 0.010% to 1.5% in total
Each of which contains a balance Cu and inevitable impurities, and has a structure in which precipitates of phosphorus compounds are dispersed, and Co with respect to the atomic weight N (Ni) of Ni contained in the phosphorus compounds forming the precipitates , Cr, Ti, Mn, Zr, Fe, and Mg, the ratio N / N (Ni) of the total N (M) of the atomic weight of each element is
0.05 ≦ N (M) / N (Ni) ≦ 30
It is said that.

また、上記基本成分に、A群(Zn:1.0%以下、Si:0.1%以下)、B群(Ca,Ag,Cd,Be,Au,Ptのうち1種または2種以上:合計で1.0%以下)から1種または2種以上の元素を添加して下記(1) 、(2) の化学組成とすることができる。さらに、これらの化学組成に対して、不純物元素であるHf,Th,Li,Na,K,Sr,Pd,W,S,C,Nb,Al,V,Y,Mo,Pb,In,Ga,Ge,As,Sb,Bi,Te,B,ミッシュメタルは、各元素の合計量で0.1%以下に制限することが好ましい。
(1) 基本成分+A群から1種または2種以上
(2) 基本成分又は上記(1) の成分+B群から1種または2種以上
In addition, the above basic components include Group A (Zn: 1.0% or less, Si: 0.1% or less), Group B (Ca, Ag, Cd, Be, Au, Pt, one or more of: By adding one or more elements from 1.0% or less in total), the following chemical compositions (1) and (2) can be obtained. Furthermore, for these chemical compositions, the impurity elements Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal are preferably limited to 0.1% or less in terms of the total amount of each element.
(1) Basic component + 1 or more from group A
(2) Basic component or component (1) above + one or more from group B

本発明によれば、耐力500Mpa超を達成した上で良好な導電率を備えた銅合金材料、例えば、耐力が500Mpa超のクラスの銅合金で導電率が50%IACS以上、耐力が550MPa以上のクラスの銅合金で導電率が45%IACS以上という高強度および高導電率を同時に具備する銅合金材料を提供することができる。このため、本発明に係る銅合金は、小型化、薄肉化が進む電気・電子部品用材料や、強度と導電率が要求されるバスバー材料などの素材として好適に利用することができる。   According to the present invention, a copper alloy material having good conductivity after achieving a yield strength of over 500 Mpa, for example, a copper alloy of a class with a yield strength of over 500 Mpa, having a conductivity of 50% IACS or more and a yield strength of 550 MPa or more. It is possible to provide a copper alloy material having a high strength and high conductivity of 45% IACS or higher at the same time in a class of copper alloys. For this reason, the copper alloy according to the present invention can be suitably used as a material such as a material for electric / electronic parts that is becoming smaller and thinner and a bus bar material that requires strength and conductivity.

本発明の実施形態に係る銅合金は、マトリックス中にりん化合物からなる析出物が微細に分散したものであり、前記析出物を形成するりん化合物に組成上の特徴があるので、先ず、この点について詳細に説明する。なお、後述する銅合金の化学組成範囲では、前記析出物のサイズは数nm〜50nm程度であり、その個数密度は500〜5000個/μm2程度である。 In the copper alloy according to the embodiment of the present invention, a precipitate composed of a phosphorus compound is finely dispersed in a matrix, and the phosphorus compound forming the precipitate has compositional characteristics. Will be described in detail. In the chemical composition range of the copper alloy described later, the size of the precipitate is about several nm to 50 nm, and the number density is about 500 to 5000 / μm 2 .

前記りん化合物(Ni−M−P)は、その中に含まれるNiの原子量N(Ni)に対する、Co,Cr,Ti,Mn,Zr,FeおよびMg(以下、これらの元素をまとめて「M」で表す。)の各元素の原子量の合計N(M)の比N(M)/N(Ni)が、りん化合物の単位析出量あたりの析出強化量を大きくするように、0.05以上、30以下の範囲に制限される。   The phosphorus compound (Ni-MP) is composed of Co, Cr, Ti, Mn, Zr, Fe and Mg (hereinafter referred to as “M” with respect to the atomic weight N (Ni) of Ni contained therein). The ratio N (M) / N (Ni) of the total N (M) of the atomic weights of the respective elements of 0.05) is 0.05 or more so as to increase the precipitation strengthening amount per unit precipitation amount of the phosphorus compound. , Limited to 30 or less.

りん化合物中のN(M)/N(Ni)比が大きいほど、析出物と母相Cuの格子定数の差が大きくなり、析出物の周囲の整合ひずみが大きくなる。この析出物の周囲の整合ひずみは、転位の運動を妨げ、材料を強化する役目を果たす。従って、Ni−M−P系析出物中のN(M)/N(Ni)比が大きいほど、析出物の周囲の整合ひずみが大きくなり、単位析出量あたりの析出強化量が大きくなる。もっとも、N(M)/N(Ni)比が0.05未満と小さすぎると、Ni−P化合物と格子定数がほとんど同じとなるため、従来よりも大きな強度向上効果が期待できない。一方、N(M)/N(Ni)比が30を超えて大きすぎると、析出物と母相の格子定数の差が大きくなり過ぎるため、析出物が整合性を失い、長範囲の整合ひずみ場がなくなり、大きな析出強化は期待できない。このため析出するりん化合物中のN(M)/N(Ni)比は下限を0.05、上限を30に制限する。好ましくは、下限を0.5、上限を20とする。より好ましくは、下限を2、上限を15とする。   The larger the N (M) / N (Ni) ratio in the phosphorus compound, the greater the difference in lattice constant between the precipitate and the parent phase Cu, and the greater the matching strain around the precipitate. This matched strain around the precipitate serves to hinder the dislocation movement and strengthen the material. Therefore, the larger the N (M) / N (Ni) ratio in the Ni-MP-based precipitate, the greater the alignment strain around the precipitate and the greater the precipitation strengthening amount per unit precipitation amount. However, if the N (M) / N (Ni) ratio is too small as less than 0.05, the lattice constant is almost the same as that of the Ni—P compound, and therefore a greater strength improvement effect than conventional cannot be expected. On the other hand, if the N (M) / N (Ni) ratio exceeds 30 and the difference between the lattice constants of the precipitate and the matrix becomes too large, the precipitate loses its consistency and a long-range matching strain. The field disappears and no significant precipitation strengthening can be expected. For this reason, the lower limit of the N (M) / N (Ni) ratio in the precipitated phosphorus compound is limited to 0.05 and the upper limit to 30. Preferably, the lower limit is 0.5 and the upper limit is 20. More preferably, the lower limit is 2 and the upper limit is 15.

次に、実施形態に係る銅合金の化学組成について説明する。
Ni:0.010〜3.0%
Niは、Pとの間にNi−P化合物を生成して、強度や耐応力緩和特性を向上させるのに必要な元素である。0.010%未満の含有では、最適な条件の下で製造しても、析出するりん化合物量やNiの固溶量の絶対量が不足する。また添加Ni量が少ないほど析出するりん化合物中のN(M)/N(Ni)比は大きくなり、0.010%未満のNi含有量ではN(M)/N(Ni)比が0.05以下となり、析出物の強度への寄与が小さい。かかる理由により、Ni量の下限を0.010%とする。一方、3.0%を超えて過剰に含有させると、粗大な酸化物、晶出物、析出物などが生成し、強度、耐応力緩和特性、曲げ加工性が低下する。また3.0%超の添加では析出するりん化合物中のN(M)/N(Ni)比が30超となり、析出物の強度への寄与が小さくなる。このため、Ni量の上限を3.0%とする。好ましくは、0.1〜2.0%の範囲とする。
Next, the chemical composition of the copper alloy according to the embodiment will be described.
Ni: 0.010 to 3.0%
Ni is an element necessary for generating a Ni—P compound with P to improve strength and stress relaxation resistance. If the content is less than 0.010%, the amount of precipitated phosphorus compound or the absolute amount of Ni solid solution is insufficient even when the production is performed under optimum conditions. Further, the smaller the amount of added Ni, the larger the N (M) / N (Ni) ratio in the precipitated phosphorus compound. When the Ni content is less than 0.010%, the N (M) / N (Ni) ratio is 0.00. The contribution to the strength of the precipitate is small. For this reason, the lower limit of the Ni amount is 0.010%. On the other hand, if the content exceeds 3.0%, coarse oxides, crystallized substances, precipitates, and the like are generated, and strength, stress relaxation resistance, and bending workability deteriorate. On the other hand, if it exceeds 3.0%, the N (M) / N (Ni) ratio in the precipitated phosphorus compound exceeds 30 and the contribution to the strength of the precipitate is reduced. For this reason, the upper limit of Ni amount is set to 3.0%. Preferably, it is 0.1 to 2.0% of range.

P:0.010〜0.3%
Pは、NiやCo,Cr,Ti,Mn,Zr,Fe,Mgとの間にりん化合物を析出させ、強度や耐応力緩和特性を向上させるのに必要な元素である。0.010%未満の含有ではりん化合物の析出量が不足するため、P量の上限を0.010%とする。一方、0.3%を超えて過剰に含有させると、りん化合物析出粒子が粗大化し、強度や耐応力緩和特性だけでなく、熱間加工性も低下する。このため、P量の下限を0.3%とする。好ましくは、0.05〜0.2%の範囲とする。
P: 0.010 to 0.3%
P is an element necessary for precipitating a phosphorus compound between Ni, Co, Cr, Ti, Mn, Zr, Fe, and Mg and improving strength and stress relaxation resistance. If the content is less than 0.010%, the phosphorus compound precipitation amount is insufficient, so the upper limit of the P content is 0.010%. On the other hand, if the content exceeds 0.3%, the phosphorus compound precipitated particles become coarse, and not only the strength and stress relaxation resistance, but also the hot workability deteriorates. For this reason, the lower limit of the amount of P is set to 0.3%. Preferably, it is 0.05 to 0.2% of range.

Sn:0.010〜3.0%
Snは、銅合金中に固溶して強度を向上させる。Sn含有量が少ないと、焼鈍後の最終冷延の圧下率を増加するなどして、高強度化を行う必要がある。この場合には、導電率や耐応力緩和特性の若干の低下を伴う。Sn含有量が0.010%未満では、Snが少なすぎて、焼鈍後の最終冷延の圧下率を増加しても強度が低すぎ、これら特性バランスが所望のレベルに達しない。一方、過剰に添加すると導電率が低下し、また熱間加工性が低下する。このため、Snの含有量の下限を0.010%、上限を3.0%とする。好ましくは0.1〜2.0%の範囲とする。
Sn: 0.010 to 3.0%
Sn is dissolved in the copper alloy to improve the strength. If the Sn content is small, it is necessary to increase the strength by increasing the rolling reduction of the final cold rolling after annealing. In this case, there is a slight decrease in conductivity and stress relaxation resistance. If the Sn content is less than 0.010%, Sn is too little, and even if the rolling reduction of the final cold rolling after annealing is increased, the strength is too low, and the balance of these properties does not reach the desired level. On the other hand, if it is added excessively, the electrical conductivity is lowered and the hot workability is also lowered. For this reason, the lower limit of the Sn content is 0.010%, and the upper limit is 3.0%. Preferably it is 0.1 to 2.0% of range.

Co,Cr,Ti,Mn,Zr,Fe,Mgのうち1種または2種以上:合計で0.010%〜1.5%
これらの元素は、Pとの間にM−P化合物(既述のとおり、MはCo,Cr,Ti,Mn,Zr,Fe,Mgの1種または2種以上をまとめて示す。)またはNiを含めたNi−M−P化合物を生成し、強度や耐応力緩和特性を向上させるのに必要な元素である。またM−P、Ni−M−P化合物はNi−P化合物と比較してCu母相との格子定数の差が大きく、析出物の周囲のひずみを大きくするため、析出強化量を大きくすることが可能である。これらの元素は、Niと同様、合計で0.010%未満の含有では析出するりん化合物の絶対量が不足する。またこれらの元素の添加量が少ないほど、析出するりん化合物中のN(M)/N(Ni)比は小さくなる。0.010%未満の含有ではN(M)/N(Ni)比が0.05未満となり、析出物の強度への寄与が小さい。このため、これらの元素の合計量の下限を0.010%とする。一方、合計量が1.5%を超えて過剰に含有すると、粗大な酸化物、晶出物、析出物などが生成し、強度、耐応力緩和特性、曲げ加工性が低下し、かつ固溶により導電率が低下する。また過剰に添加すると、りん化合物中のN(M)/N(Ni)比が30超となり、析出物の強度への寄与が小さくなる。こんため、これらの元素の合計量の上限を1.5%とする。好ましくは、0.05〜0.8%、より好ましくは0.05〜0.3%の範囲とする。
One or more of Co, Cr, Ti, Mn, Zr, Fe, Mg: 0.010% to 1.5% in total
These elements are an MP compound between P and M (as described above, M represents one or more of Co, Cr, Ti, Mn, Zr, Fe, and Mg) or Ni. It is an element necessary for producing a Ni-MP compound containing N and improving strength and stress relaxation resistance. In addition, the MP and Ni-MP compounds have a larger difference in lattice constant from the Cu matrix than the Ni-P compounds, and increase the strain around the precipitates, so the precipitation strengthening amount must be increased. Is possible. Similar to Ni, if these elements are contained in a total amount of less than 0.010%, the absolute amount of precipitated phosphorus compounds is insufficient. Further, the smaller the amount of these elements added, the smaller the N (M) / N (Ni) ratio in the precipitated phosphorus compound. If the content is less than 0.010%, the N (M) / N (Ni) ratio is less than 0.05, and the contribution to the strength of the precipitate is small. For this reason, the minimum of the total amount of these elements is made into 0.010%. On the other hand, if the total amount exceeds 1.5%, excessive oxides, crystallized substances, precipitates, etc. are formed, and the strength, stress relaxation resistance and bending workability are lowered, and the solid solution. As a result, the conductivity decreases. Moreover, when it adds excessively, N (M) / N (Ni) ratio in a phosphorus compound will exceed 30, and the contribution to the intensity | strength of a precipitate will become small. Therefore, the upper limit of the total amount of these elements is 1.5%. Preferably, it is 0.05 to 0.8%, more preferably 0.05 to 0.3%.

上記基本成分に対して銅合金の機械的性質をより向上させるために、上記基本成分に、A群(Zn:1.0%以下、Si:0.1%以下)、B群(Ca,Ag,Cd,Be,Au,Ptのうち1種または2種以上:合計で1.0%以下)から1種または2種以上の元素を添加して下記(1) または(2) の化学組成とすることができる。さらに、不純物元素であるHf,Th,Li,Na,K,Sr,Pd,W,S,C,Nb,Al,V,Y,Mo,Pb,In,Ga,Ge,As,Sb,Bi,Te,B,ミッシュメタルは、各元素の合計量を0.1%以下に制限することが好ましい。
(1) 基本成分+A群から1種または2種以上
(2) 基本成分又は上記(1) の成分+B群から1種または2種以上
In order to further improve the mechanical properties of the copper alloy with respect to the basic component, the basic component includes the group A (Zn: 1.0% or less, Si: 0.1% or less), the group B (Ca, Ag). , Cd, Be, Au, or Pt, one or more of them: 1.0% or less in total) to which one or more elements are added, and the chemical composition of the following (1) or (2) can do. Further, impurity elements Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal are preferably limited to a total amount of each element of 0.1% or less.
(1) Basic component + 1 or more from group A
(2) Basic component or component (1) above + one or more from group B

Zn:1.0%以下、Si:0.1%以下
Znは、錫めっきの剥離を防止する。しかし、過剰に添加すると導電率が低下し、また応力腐食割れの感受性の増大を招いてしまう。Siには脱酸剤としての効果がある。しかし、多量に加えると、導電率が低下してしまう。このため、Znの含有量は1%以下に止め、Siの含有量は0.1%以下に止める。
Zn: 1.0% or less, Si: 0.1% or less Zn prevents peeling of tin plating. However, if it is added excessively, the conductivity is lowered, and the susceptibility to stress corrosion cracking is increased. Si has an effect as a deoxidizer. However, if it is added in a large amount, the conductivity will decrease. Therefore, the Zn content is limited to 1% or less, and the Si content is limited to 0.1% or less.

B群の1種または2種以上の元素:合計で1.0%以下
B群の各元素は、結晶粒の粗大化を防止する作用があるが、これらの元素を多量に加えると、導電率が低下してしまう。このため、これらの元素は合計で1.0%以下とする。
One or more elements of group B: 1.0% or less in total Each element of group B has the effect of preventing the coarsening of crystal grains. Will fall. For this reason, these elements are made into 1.0% or less in total.

Hf,Th,Li,Na,K,Sr,Pd,W,S,C,Nb,Al,V,Y,Mo,Pb,In,Ga,Ge,As,Sb,Bi,Te,B,ミッシュメタルの各元素:合計で0.1以下
これらの元素は不純物元素であり、少ない程好ましいが、実施形態の成分系では、これらの元素が合計で0.1%以下に止まる限り、機械的性質にさほど影響を与えない。このため、これらの元素は合計量で0.1%以下まで許容される。なお、原料に含まれるこれらの元素の量を管理することにより、常法の製造方法の下で、これらの不純物元素の合計量を0.1%以下に制御することができる。通常の銅合金の原料を使用する場合にはこれらの元素が含まれることは少ないが、原料の一部にこれらの元素を多く含むようなもの、例えばリサイクル品が用いられる場合には取り扱いに注意が必要であり、合計量が0.1%以下となるように成分調整することが肝要である。
Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, Misch Metal These elements are not more than 0.1 in total. These elements are impurity elements and are preferably as small as possible. However, in the component system of the embodiment, as long as these elements remain at 0.1% or less in total, the mechanical properties are improved. Does not affect much. Therefore, these elements are allowed to be 0.1% or less in total amount. Note that, by controlling the amounts of these elements contained in the raw material, the total amount of these impurity elements can be controlled to 0.1% or less under a conventional manufacturing method. When using ordinary copper alloy raw materials, these elements are rarely included, but when the raw material contains a large amount of these elements, for example when recycled products are used, handle with care. It is important to adjust the components so that the total amount is 0.1% or less.

次に、実施形態に係る銅合金板の製造方法について以下に説明する。実施形態の銅合金板は、成分組成を調整した銅合金を溶解、鋳造し、その鋳塊を均質化処理(均熱処理)した後、熱間圧延および冷間粗圧延を行い、さらに溶体化焼鈍、最終仕上げ冷間圧延を行うことにより製造される。また、必要に応じて溶体化焼鈍を施した後に時効処理を施することができる。溶体化焼鈍後、あるいはさらに時効処理後の最終仕上げ圧延は、強度と曲げ加工性などの観点から、常法に従って50%以下の圧下率とすればよい。   Next, the manufacturing method of the copper alloy plate which concerns on embodiment is demonstrated below. The copper alloy plate according to the embodiment is prepared by melting and casting a copper alloy having an adjusted component composition, homogenizing the ingot (soaking treatment), performing hot rolling and cold rough rolling, and further solution annealing. It is manufactured by performing a final finish cold rolling. Moreover, after performing solution annealing as needed, an aging treatment can be performed. The final finish rolling after solution annealing or further after aging treatment may be a reduction rate of 50% or less according to a conventional method from the viewpoint of strength and bending workability.

前記溶解、鋳造、その後の均熱処理、熱間圧延は通常の方法によって行うことができる。熱間圧延については、その入り温度は600℃〜1000℃程度、終了温度は600℃〜850℃程度とされる。熱間圧延後は水冷、または放冷し、その後冷間粗圧延を行う。   The melting, casting, subsequent soaking, and hot rolling can be performed by ordinary methods. For hot rolling, the entry temperature is about 600 ° C. to 1000 ° C., and the end temperature is about 600 ° C. to 850 ° C. After hot rolling, it is cooled with water or allowed to cool, and then cold rough rolling is performed.

前記冷間粗圧延に続いて行う溶体化焼鈍は、700℃〜900℃にて30秒間保持し、その後の冷却速度について650℃までの温度範囲では1℃/sec以上とし、650℃〜300℃の温度範囲では0.1〜1.0℃/secとし、300℃〜室温までの温度範囲では100℃/sec以上の冷却速度にて冷却する。   The solution annealing performed after the cold rough rolling is held at 700 ° C. to 900 ° C. for 30 seconds, and the subsequent cooling rate is set to 1 ° C./sec or more in the temperature range up to 650 ° C., and 650 ° C. to 300 ° C. In the temperature range of 0.1 to 1.0 ° C./sec, cooling is performed at a cooling rate of 100 ° C./sec or more in the temperature range from 300 ° C. to room temperature.

前記溶体化焼鈍後の冷却速度を上記の範囲としたのは、冷却中にりん化合物を析出させるためである。このときM−P化合物の生成温度域はNi−P化合物の生成温度域より高温である。このため、析出物の生成温度が高温であるほど、Ni−M−P化合物中のN(M)/N(Ni)比が大きくなる。
650℃までの温度範囲において1℃/secよりも冷却速度が小さいと、M−P化合物が生成しやすい650℃以上の高温域に銅合金が保持される時間が長くなる。その結果、高温域で生成が進むM−P化合物の割合が多くなって、Ni−M−P析出物のN(M)/N(Ni)比が30より大きくなってしまう。このため650℃までの温度範囲では冷却速度を1℃/sec以上とする。
300℃〜室温までの温度範囲において100℃/secより冷却速度が小さいと、Ni−P化合物のみが生成しやすい300〜250℃程度の温度域に保持される時間が長くなる。その結果、低温域で生成が進むNi−P化合物の割合が多くなって、Ni−M−P析出物中のN(M)/N(Ni)比が0.05よりも小さくなってしまう。このため300℃〜室温までの温度範囲では冷却速度を100℃/sec以上とする。
また650℃〜300℃の温度範囲において0.1〜1.0℃/secとしたのは、M−P化合物およびNi−P化合物の生成のバランスを取り、N(M)/N(Ni)比が0.05〜30であるNi−M−P析出物を生成するようにするためである。
The reason why the cooling rate after the solution annealing is set to the above range is to precipitate the phosphorus compound during cooling. At this time, the generation temperature range of the MP compound is higher than the generation temperature range of the Ni-P compound. For this reason, the N (M) / N (Ni) ratio in the Ni-MP compound increases as the generation temperature of the precipitate increases.
If the cooling rate is lower than 1 ° C./sec in the temperature range up to 650 ° C., the time during which the copper alloy is held in the high temperature region of 650 ° C. or more where the MP compound is easily formed becomes longer. As a result, the proportion of the MP compound that progresses in the high temperature range increases, and the N (M) / N (Ni) ratio of the Ni-MP precipitate becomes larger than 30. For this reason, a cooling rate shall be 1 degree-C / sec or more in the temperature range to 650 degreeC.
When the cooling rate is lower than 100 ° C./sec in the temperature range from 300 ° C. to room temperature, the time that is maintained in the temperature range of about 300 to 250 ° C. at which only the Ni—P compound is easily generated becomes longer. As a result, the proportion of Ni—P compounds that progress in the low temperature region increases, and the N (M) / N (Ni) ratio in the Ni—MP precipitates becomes smaller than 0.05. For this reason, a cooling rate shall be 100 degrees C / sec or more in the temperature range from 300 degreeC to room temperature.
In addition, in the temperature range of 650 ° C. to 300 ° C., 0.1 to 1.0 ° C./sec balances the generation of the MP compound and the Ni—P compound, and N (M) / N (Ni) This is because a Ni-MP precipitate having a ratio of 0.05 to 30 is generated.

ところで、従来の銅合金の製造にあたっては、溶体化焼鈍条件に関しては、溶体化を行う温度条件についての検討がなされることはあっても、その後の冷却についてはほとんど考慮されることがなかった。そのため、単純に放冷されるか、或は考慮されたとしても前記特許文献4の実施例に記載されているように、溶体化焼鈍温度から水冷(急冷)される程度であり、冷却速度をその温度範囲において緻密に制御されることはなかった。因みに溶体化焼鈍温度が上記のように700℃〜900℃であったとしても、単純な放冷であれば、少なくとも300℃〜室温までの温度範囲において100℃/secより冷却速度が小さくなるなどのため、Ni−M−P析出物中のN(M)/N(Ni)比が制御できない。また溶体化焼鈍温度から急冷されると650℃〜300℃の温度範囲における冷却速度が速くなりすぎて、やはりNi−M−P析出物中のN(M)/N(Ni)比が制御できない   By the way, in the manufacture of the conventional copper alloy, regarding the solution annealing conditions, the temperature conditions for performing the solution forming are examined, but the subsequent cooling is hardly considered. Therefore, even if it is simply allowed to cool or is considered, as described in the examples of Patent Document 4, it is only about the degree of water cooling (rapid cooling) from the solution annealing temperature, and the cooling rate is It was not precisely controlled in that temperature range. Incidentally, even if the solution annealing temperature is 700 ° C. to 900 ° C. as described above, the cooling rate is lower than 100 ° C./sec at least in the temperature range from 300 ° C. to room temperature if it is allowed to cool. Therefore, the N (M) / N (Ni) ratio in the Ni-MP precipitate cannot be controlled. In addition, when rapidly cooled from the solution annealing temperature, the cooling rate in the temperature range of 650 ° C. to 300 ° C. becomes too fast, and the N (M) / N (Ni) ratio in the Ni—MP precipitates cannot be controlled.

溶体化焼鈍後においては、強度−導電率バランスを向上させるために時効処理を行うことができる。この際、時効温度および時間には注意が必要である。すなわち時効処理は300℃〜650℃の温度にて2〜10hrの時効を行い、時効後は水冷または放冷を行う。650℃以上の温度で時効を行うと、上記のとおり、M−P化合物の生成のみが顕著に進み、その結果N(M)/N(Ni)比が30よりも大きくなる。また300℃以下の温度の内、250℃以下ではそもそも時効が進まず、300〜250℃の範囲では、Ni−P化合物の生成のみが顕著に進み、その結果N(M)/N(Ni)比が0.05よりも小さくなる。300〜650℃の範囲で時効処理することにより、溶体化処理の冷却時と同様にM−P化合物とNi−P化合物の生成がバランスよく進み、N(M)/N(Ni)比を所望の範囲に制御できる。また時効処理に要する時間は通常の時効処理で採用する2〜10hrでよい。2hrより短すぎると、時効が進まず導電率が低くなり、一方、時効時間が10hrを超えて長すぎると強度が低下するようになる。   After solution annealing, an aging treatment can be performed to improve the strength-conductivity balance. At this time, attention should be paid to the aging temperature and time. That is, the aging treatment is performed at a temperature of 300 ° C. to 650 ° C. for 2 to 10 hours, and after aging, water cooling or standing cooling is performed. When aging is performed at a temperature of 650 ° C. or higher, as described above, only the formation of the MP compound proceeds significantly, and as a result, the N (M) / N (Ni) ratio becomes larger than 30. In addition, the aging does not progress at a temperature of 300 ° C. or lower in the range of 300 ° C. or lower, and only the formation of the Ni—P compound proceeds remarkably in the range of 300 to 250 ° C. The ratio is less than 0.05. By aging in the range of 300 to 650 ° C., the formation of MP compound and Ni—P compound proceeds in a balanced manner as in the case of cooling of the solution treatment, and the N (M) / N (Ni) ratio is desired. Can be controlled within the range. Further, the time required for the aging treatment may be 2 to 10 hours adopted in the normal aging treatment. If it is too short, the aging will not proceed and the conductivity will be low. On the other hand, if the aging time exceeds 10 hours, the strength will decrease.

この様な時効処理を行った実施形態の銅合金は、耐力が500Mpa超のクラスで導電率が55%IACS以上、また耐力が550MPa以上のクラスで導電率が50%IACS以上、また耐力が600MPa以上のクラスで導電率が45%IACS以上という、極めて優れた高強度、高導電率を兼備する銅合金となる。   The copper alloy of the embodiment subjected to such an aging treatment has a proof stress of more than 500 Mpa and a conductivity of 55% IACS or higher, a proof strength of 550 MPa or higher, a conductivity of 50% IACS or higher, and a proof stress of 600 MPa. In the above class, a copper alloy having an extremely excellent high strength and high conductivity of 45% IACS or more is obtained.

上記製造方法により製造された銅合金における析出物のサイズは数nm〜50nm程度で、個数密度は500〜5000個/μm2程度であり、析出物のサイズおよび個数密度については従来の銅合金に比して大差はない。 The size of precipitates in the copper alloy manufactured by the above manufacturing method is about several nm to 50 nm, the number density is about 500 to 5000 / μm 2 , and the size and number density of the precipitates are the same as those of conventional copper alloys. There is no big difference.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

以下に本発明の実施例を説明する。化学組成、組織中の析出物の組成が異なるように種々のCu−Ni−Sn−P系合金からなる銅合金薄板を製造し、強度、導電率の特性を評価した。具体的な製造工程、評価方法は以下のとおりである。   Examples of the present invention will be described below. Copper alloy thin plates made of various Cu-Ni-Sn-P alloys were produced so that the chemical composition and the composition of precipitates in the structure were different, and the strength and conductivity characteristics were evaluated. The specific manufacturing process and evaluation method are as follows.

銅合金をクリプトル炉において大気中にて木炭被覆下で溶解し、鋳造して表1に示す化学組成を有する150mm厚の鋳塊を得た。続いて、965℃で3時間の均熱化処理を行った後、熱間圧延して15mm厚とし、750℃以上で水冷して焼入れた。その後両面を1mmずつ面削して13mm厚とした後、冷間粗圧延を行って厚さ0.8mmとした。   The copper alloy was melted under a charcoal coating in the atmosphere in a kryptor furnace and cast to obtain a 150 mm thick ingot having the chemical composition shown in Table 1. Subsequently, after soaking at 965 ° C. for 3 hours, it was hot-rolled to a thickness of 15 mm, quenched with water at 750 ° C. or higher. Thereafter, both sides were chamfered by 1 mm to a thickness of 13 mm, and then cold rough rolling was performed to a thickness of 0.8 mm.

この銅合金板を硝石炉で表2に示す温度で30秒間保持する溶体化焼鈍を行った後、同表に示す種々の冷却条件にて室温まで冷却し、一部のものを除き、同表に示す条件で時効処理を行った。時効処理後、水冷した後、圧下率50%の最終仕上げ圧延を行い、銅合金薄板を製造した。   This copper alloy plate was solution annealed by holding for 30 seconds at a temperature shown in Table 2 in a glass furnace, then cooled to room temperature under various cooling conditions shown in the same table, except for some, the same table An aging treatment was performed under the conditions shown in FIG. After aging treatment and water cooling, final finish rolling with a reduction rate of 50% was performed to produce a copper alloy sheet.

得られた各試料の銅合金薄板から組織観察片を採取し、以下の要領で析出物中のN(M)/N(Ni)比を求めた。TEM(透過型電子顕微鏡)を用いて100000倍の倍率で観察を行い、観察される析出物の中から無作為に3個の析出物を選択し、EDX(エネルギー分散型X線分析装置)により構成元素の特性X線を検出し、各元素の原子量を測定した。このようにして測定した原子量に基づいて求めたN(M)/N(Ni)比を表2に併せて示す。なお、いずれの試料においても、析出物のサイズおよび個数密度については、TEMにより観察した結果、従来の銅合金と同等のレベルであることが確認された。   A structure observation piece was taken from the obtained copper alloy thin plate of each sample, and the N (M) / N (Ni) ratio in the precipitate was determined in the following manner. Observation using a TEM (transmission electron microscope) at a magnification of 100000 times, randomly selecting three precipitates from the observed precipitates, and using EDX (energy dispersive X-ray analyzer) The characteristic X-rays of the constituent elements were detected, and the atomic weight of each element was measured. The N (M) / N (Ni) ratio obtained based on the atomic weight thus measured is also shown in Table 2. In any sample, the size and number density of precipitates were observed by TEM, and as a result, it was confirmed that they were at the same level as conventional copper alloys.

また、前記各銅合金薄板の機械的特性を以下の要領で測定した。各試料の銅合金薄板から試験片長手方向が板材の圧延方向に対し直角方向となるように、機械加工にてJIS5号引張試験片を作製した。そして、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、機械的な特性を測定した。測定結果を表2に併せて示す。なお、表2中には各試料の耐力のほか、硬さ、引張強度も参考として示した。   The mechanical properties of each copper alloy thin plate were measured as follows. A JIS No. 5 tensile test piece was produced by machining so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the plate material from the copper alloy thin plate of each sample. Then, mechanical characteristics were measured with a 5882 type Instron universal testing machine under the conditions of room temperature, a test speed of 10.0 mm / min, and GL = 50 mm. The measurement results are also shown in Table 2. In Table 2, in addition to the yield strength of each sample, hardness and tensile strength are also shown for reference.

また、前記各銅合金薄板の導電率を以下の要領で測定した。各試料の銅合金薄板からミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により導電率を算出した。この測定結果も表2に併せて示す。   Moreover, the electrical conductivity of each said copper alloy thin plate was measured in the following ways. A strip-shaped test piece of width 10mm x length 300mm is processed from the copper alloy thin plate of each sample by milling, and in accordance with the nonferrous metal material conductivity measurement method stipulated in JIS-H0505, double bridge resistance measurement The electrical resistance was measured with an apparatus, and the conductivity was calculated by the average cross-sectional area method. The measurement results are also shown in Table 2.

表2より、本発明の実施例である試料No. 1〜18(実施例)は、化学組成および製造条件が適正であるので、析出するりん化合物中のN(M)/N(Ni)比が0.05〜30の範囲内に制御されており、その結果、耐力500MPa超の高強度を達成しつつ、優れた導電率を兼備している。もっとも、析出するりん化合物中のN(M)/N(Ni)比が比較的大きい試料No. 3,6,11,18並びに同比が比較的小さいNo. 4,5,10は、同比が2〜15のより好ましい範囲内にある試料No. 1,2,7〜9,12〜17に比べて、耐力または導電率がやや低下している。また、同じ成分系でも時効処理を施した試料No. 1,12に比較して、施していないNo. 2,13では、強度、導電率が幾分低下している。また、試料No. 7〜9は、適正成分ではあるものの、PまたはSnが規定範囲の境界付近にあるため、耐力または導電率がやや低下している。   From Table 2, since sample Nos. 1 to 18 (Examples), which are examples of the present invention, have appropriate chemical compositions and production conditions, the N (M) / N (Ni) ratio in the precipitated phosphorus compound Is controlled in the range of 0.05 to 30, and as a result, it achieves high strength exceeding 500 MPa in proof stress and also has excellent conductivity. However, sample Nos. 3, 6, 11, and 18 in which the ratio of N (M) / N (Ni) in the precipitated phosphorus compound is relatively large and samples No. 4, 5, and 10 in which the ratio is relatively small have the same ratio of 2. As compared with Sample Nos. 1, 2, 7 to 9, 12 to 17 in a more preferable range of ˜15, the proof stress or the conductivity is slightly lowered. Moreover, compared with sample Nos. 1 and 12 that were subjected to aging treatment even in the same component system, the strength and conductivity were somewhat lowered in Nos. 2 and 13 that were not subjected to aging treatment. Moreover, although sample No. 7-9 is an appropriate component, since P or Sn exists in the vicinity of the boundary of a regulation range, yield strength or electrical conductivity has fallen a little.

一方、比較例である試料No. 21〜26は本発明組成内の合金組成であるにもかかわらず、No. 21〜24は溶体化後の冷却速度が不適当で、No. 25,26は時効温度が不適当であるため、析出するりん化合物のN(M)/N(Ni)比が0.05未満、または30超となり、耐力または導電率が実施例に比較して低下している。また、比較例の試料No. 27,28,33,34はNiまたはM(Co、Cr、Ti、Mn、Zr、Fe、Mg)の添加量が本発明の範囲外となっているため、製造条件が適正であるにもかかわらず、析出するりん化合物中のN(M)/N(Ni)比が0.05未満、または30超となり、耐力または導電率が低下している。また、No. 29〜32は析出するりん化合物中のN(M)/N(Ni)比が0.05〜30の範囲を満足するものの、PまたはSnの添加量が本発明範囲外であるため、耐力または導電率が低下している。   On the other hand, although Sample Nos. 21 to 26 which are comparative examples are alloy compositions in the composition of the present invention, Nos. 21 to 24 have an inappropriate cooling rate after solution treatment. Since the aging temperature is inappropriate, the N (M) / N (Ni) ratio of the phosphorus compound to be precipitated is less than 0.05 or more than 30, and the proof stress or conductivity is reduced as compared with the examples. . Samples Nos. 27, 28, 33, and 34 of the comparative examples are manufactured because the amount of Ni or M (Co, Cr, Ti, Mn, Zr, Fe, Mg) is out of the scope of the present invention. Although the conditions are appropriate, the N (M) / N (Ni) ratio in the precipitated phosphorus compound is less than 0.05 or more than 30, and the proof stress or conductivity is reduced. In Nos. 29 to 32, the ratio of N (M) / N (Ni) in the precipitated phosphorus compound satisfies the range of 0.05 to 30, but the addition amount of P or Sn is outside the range of the present invention. For this reason, the proof stress or conductivity is reduced.

Figure 0005107093
Figure 0005107093

Figure 0005107093
Figure 0005107093

Claims (4)

化学組成が質量%で、
Ni:0.010〜3.0%、
P :0.010〜0.3%、
Sn:0.010〜3.0%、
Co,Cr,Ti,Mn,Zr,Fe,Mgのうち1種または2種以上:合計で0.01%〜1.5%
を各々含有し、残部Cuおよび不可避的不純物からなり、りん化合物からなる析出物が分散した組織を有し、
前記析出物を形成するりん化合物中に含まれるNiの原子量N(Ni)に対する、Co,Cr,Ti,Mn,Zr,FeおよびMgの各元素の原子量の合計N(M)の比N(M)/N(Ni)が、
0.05≦N(M)/N(Ni)≦30
である、高強度および高導電率を備えた銅合金。
Chemical composition is mass%,
Ni: 0.010 to 3.0%,
P: 0.010-0.3%
Sn: 0.010 to 3.0%,
One or more of Co, Cr, Ti, Mn, Zr, Fe, Mg: 0.01% to 1.5% in total
Each of which contains a balance Cu and inevitable impurities, and has a structure in which precipitates made of a phosphorus compound are dispersed,
The ratio N (M) of the total atomic weight N (M) of each element of Co, Cr, Ti, Mn, Zr, Fe and Mg to the atomic weight N (Ni) of Ni contained in the phosphorus compound forming the precipitate ) / N (Ni)
0.05 ≦ N (M) / N (Ni) ≦ 30
A copper alloy with high strength and high electrical conductivity.
化学組成が、更に質量%で、Zn:1.0%以下、Si:0.1%以下を含む、請求項1に記載した銅合金。   The copper alloy according to claim 1, wherein the chemical composition further includes, in mass%, Zn: 1.0% or less and Si: 0.1% or less. 化学組成が、更に質量%で、Ca,Ag,Cd,Be,Au,Ptのうち1種または2種以上:合計で1.0%以下を含む、請求項1または2に記載した銅合金。   The copper alloy according to claim 1 or 2, wherein the chemical composition further comprises 1% or more of Ca, Ag, Cd, Be, Au, and Pt: 1.0% or less in total in terms of mass%. 化学組成中のHf,Th,Li,Na,K,Sr,Pd,W,S,C,Nb,Al,V,Y,Mo,Pb,In,Ga,Ge,As,Sb,Bi,Te,B,ミッシュメタルの各元素の合計量が質量%で0.1%以下に制限された、請求項1から3のいずれか1項に記載した銅合金。   Hf, Th, Li, Na, K, Sr, Pd, W, S, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, in the chemical composition The copper alloy according to any one of claims 1 to 3, wherein a total amount of each element of B and Misch metal is limited to 0.1% or less by mass%.
JP2008045872A 2008-02-27 2008-02-27 Copper alloy with high strength and high conductivity Expired - Fee Related JP5107093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045872A JP5107093B2 (en) 2008-02-27 2008-02-27 Copper alloy with high strength and high conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045872A JP5107093B2 (en) 2008-02-27 2008-02-27 Copper alloy with high strength and high conductivity

Publications (2)

Publication Number Publication Date
JP2009203510A JP2009203510A (en) 2009-09-10
JP5107093B2 true JP5107093B2 (en) 2012-12-26

Family

ID=41146069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045872A Expired - Fee Related JP5107093B2 (en) 2008-02-27 2008-02-27 Copper alloy with high strength and high conductivity

Country Status (1)

Country Link
JP (1) JP5107093B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207927B2 (en) * 2008-11-19 2013-06-12 株式会社神戸製鋼所 Copper alloy with high strength and high conductivity
CN104046817B (en) * 2014-06-05 2016-07-06 锐展(铜陵)科技有限公司 A kind of preparation method of auto industry high property copper alloy line
CN105714146A (en) * 2016-02-29 2016-06-29 欧士玺 Copper alloy valve
CN107034381B (en) * 2017-04-26 2019-03-19 江西理工大学 A kind of Cu-Ni-Co-Sn-P copper alloy and preparation method thereof
CN107090553B (en) * 2017-04-26 2018-06-22 宝鸡文理学院 A kind of high-strength high elasticity copper alloy and preparation method thereof
CN111593228B (en) * 2020-05-25 2021-09-03 有研工程技术研究院有限公司 Champagne golden copper alloy material and preparation method thereof
CN113088755A (en) * 2021-04-01 2021-07-09 江西中晟金属有限公司 Copper wire with good conductivity and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036341A (en) * 1989-06-02 1991-01-11 Dowa Mining Co Ltd High strength and high conductivity copper-base alloy
JP4630025B2 (en) * 2004-09-03 2011-02-09 Dowaホールディングス株式会社 Method for producing copper alloy material
JP5098096B2 (en) * 2005-03-22 2012-12-12 Dowaメタルテック株式会社 Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4984108B2 (en) * 2005-09-30 2012-07-25 Dowaメタルテック株式会社 Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same

Also Published As

Publication number Publication date
JP2009203510A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
WO2013073412A1 (en) Copper alloy and copper alloy forming material
WO2006106939A1 (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCTION THEREOF
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5107093B2 (en) Copper alloy with high strength and high conductivity
JP4887851B2 (en) Ni-Sn-P copper alloy
JP2011012321A (en) Copper alloy material and production method therefor
JP5802150B2 (en) Copper alloy
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
US20150348665A1 (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
US20160111179A1 (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5952726B2 (en) Copper alloy
US20160300634A1 (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Ref document number: 5107093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees