[go: up one dir, main page]

JP5105099B2 - Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material - Google Patents

Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material Download PDF

Info

Publication number
JP5105099B2
JP5105099B2 JP2009058995A JP2009058995A JP5105099B2 JP 5105099 B2 JP5105099 B2 JP 5105099B2 JP 2009058995 A JP2009058995 A JP 2009058995A JP 2009058995 A JP2009058995 A JP 2009058995A JP 5105099 B2 JP5105099 B2 JP 5105099B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
liquid epoxy
underfill material
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058995A
Other languages
Japanese (ja)
Other versions
JP2010209266A (en
Inventor
治由 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009058995A priority Critical patent/JP5105099B2/en
Publication of JP2010209266A publication Critical patent/JP2010209266A/en
Application granted granted Critical
Publication of JP5105099B2 publication Critical patent/JP5105099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性に優れた半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置に関するものである。   The present invention relates to a liquid epoxy resin composition for semiconductor encapsulation, which has excellent penetration into gaps between substrates, elements and the like and prevention of chip cracks after curing when encapsulating a flip-chip mounted semiconductor device, and an undercoat thereof. The present invention relates to a flip chip type semiconductor device that is sealed by using as a filling material.

近年の電気機器の小型化、軽量化、高性能化に伴い、プリント配線板上への電子部品の実装密度向上が要求されてきており、半導体の実装形態はピン挿入タイプからQFP(Quad Flat Package)、SOP(Small Outline Package)のような表面実装(パッケージIC)、そしてベアチップ実装へと変遷してきている。更に、ベアチップ実装の中でも一番実装密度の向上が見込まれるフリップチップ(Flip Chip:FC)実装が注目されている。
FC実装とは、ICチップの電極に高さ10〜100μm程度のバンプといわれる半田等で形成される突起を数個から数千個形成し、このバンプを介してICチップの電極と基板の電極を一括接続(ギャングボンディング)させる実装方法で、実装後にアンダーフィル材をICチップと基板の間に流し込んで硬化させることによって完成となる(図2)。
特に、FC実装技術を使用しながらチップをスタックするCoC(Chip on Chip)構造を有するMCP(Multi−Chip Package)では、一般的に下のチップ周辺上より、信号を伝達するためのリード線が基板に向けて張り出されており、このリード線を固定するパッドがチップ上の周辺に設置されると共に、当該チップは軽薄短小が要求される部位に設置されるため、バンプの高さを10μm程度もの狭間隙に設定する必要があり、この狭間隙にアンダーフィル材を流し込んで硬化させなければならない。
従来、このようなアンダーフィル材としては、エポキシ樹脂、硬化剤及び無機充填材からなる液状エポキシ樹脂組成物が使用されている。また、FC実装の信頼性を高めるために、このようなアンダーフィル材に、多量(例えば40質量%以上)の無機充填材配合し、半導体チップ、基板及びバンプ等とこのアンダーフィル材の硬化物の線膨張係数を一致させる試みがなされている。
しかし、従来の無機充填材は、上記CoC構造を有する狭間隙に対して、粒子径が大きすぎたり、また、その配合量とアンダーフィル材の流動性やその硬化後の線膨張係数とのバランスが取れていないという問題があった。
即ち、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性の両方をバランス良く併せ持つ半導体封止用液状エポキシ樹脂組成物が存在していなかった。
なお、本発明に関連する先行技術文献としては、下記のものが挙げられる。
With the recent reduction in size, weight, and performance of electrical devices, it has been required to improve the mounting density of electronic components on a printed wiring board. The semiconductor mounting form is changed from a pin insertion type to a QFP (Quad Flat Package). ), Surface mount (package IC) such as SOP (Small Outline Package), and bare chip mounting. Furthermore, flip chip (FC) mounting, which is expected to have the highest mounting density among bare chip mounting, is attracting attention.
The FC mounting means that several to several thousands of protrusions formed of solder or the like called bumps having a height of about 10 to 100 μm are formed on the electrodes of the IC chip, and the electrodes of the IC chip and the electrodes of the substrate through the bumps. In this mounting method, the underfill material is poured between the IC chip and the substrate and cured after mounting (FIG. 2).
In particular, in an MCP (Multi-Chip Package) having a CoC (Chip on Chip) structure in which chips are stacked while using FC mounting technology, a lead wire for transmitting a signal is generally provided from the lower chip periphery. The pad is extended toward the substrate, and pads for fixing the lead wires are installed on the periphery of the chip, and the chip is installed in a portion where a light, thin and small size is required. It is necessary to set a narrow gap of a certain degree, and an underfill material must be poured into the narrow gap and cured.
Conventionally, as such an underfill material, a liquid epoxy resin composition comprising an epoxy resin, a curing agent and an inorganic filler has been used. In addition, in order to increase the reliability of FC mounting, a large amount (for example, 40% by mass or more) of an inorganic filler is added to such an underfill material, and a semiconductor chip, a substrate, a bump, and the like, and a cured product of this underfill material Attempts have been made to match the linear expansion coefficients of these.
However, the conventional inorganic filler has a particle size that is too large for the narrow gap having the above CoC structure, and the balance between the blending amount and the fluidity of the underfill material and the linear expansion coefficient after curing. There was a problem that was not removed.
That is, when sealing a flip-chip mounted semiconductor device, there exists a liquid epoxy resin composition for semiconductor sealing that has a good balance of both the ability to penetrate gaps between substrates and elements and the prevention of chip cracks after curing. There wasn't.
In addition, the following are mentioned as prior art documents relevant to the present invention.

特開2006−249200号公報JP 2006-249200 A 特開2007−224124号公報JP 2007-224124 A 特開2007−224125号公報JP 2007-224125 A

本発明は、上記事情に鑑みなされたもので、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性に優れた半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances. When sealing a flip-chip mounted semiconductor device, the present invention provides a liquid for semiconductor sealing that is excellent in gap penetration between substrates, elements, etc. and chip crack prevention after curing. It is an object of the present invention to provide an epoxy resin composition and a flip chip type semiconductor device sealed using the epoxy resin composition as an underfill material.

本発明者は、上記目的を達成するため、鋭意検討を行なった結果、(A)液状エポキシ樹脂、(B)特定のシリコーン変性フェノールを含む硬化剤:(A)成分中のエポキシ基に対するフェノール性水酸基の比が0.8〜1.1となる量、(C)平均粒子径が0.1〜1.0μmである無機充填材:(A)、(B)及び(C)成分の合計質量に対して10〜40質量%となる量を含有することを特徴とする半導体封止用液状エポキシ樹脂組成物、及び該エポキシ樹脂組成物をアンダーフィル材として用いて封止したフリップチップ型半導体装置が有用であることを見出し、本発明をなすに至った。
つまり、この組成物は、(C)成分の無機充填材の平均粒子径を適切な範囲にすると共に、その配合量を適切な範囲に抑えることによって、該組成物の流動性を確保し、さらにその硬化後の線膨張係数を低下させるために、(B)成分の特定のシリコーン変性フェノールを含む硬化剤を用いて低弾性化することによって、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性の両方をバランス良く併せ持つようにしたものである。
As a result of intensive studies to achieve the above object, the present inventors have found that (A) a liquid epoxy resin, (B) a curing agent containing a specific silicone-modified phenol: (A) a phenolic property with respect to an epoxy group in the component The amount by which the ratio of hydroxyl groups is 0.8 to 1.1, (C) inorganic filler having an average particle diameter of 0.1 to 1.0 μm: the total mass of components (A), (B) and (C) Liquid epoxy resin composition for semiconductor encapsulation, characterized by containing an amount of 10 to 40% by mass with respect to the above, and a flip chip type semiconductor device encapsulated using the epoxy resin composition as an underfill material Has been found useful, and has led to the present invention.
That is, this composition ensures the fluidity of the composition by keeping the average particle diameter of the inorganic filler of the component (C) in an appropriate range and suppressing the blending amount in an appropriate range. In order to reduce the coefficient of linear expansion after the curing, by using a curing agent containing a specific silicone-modified phenol of the component (B), by reducing the elasticity, a substrate for sealing a flip-chip mounted semiconductor device, It has both a gap penetration between elements and a chip crack prevention after curing in a well-balanced manner.

即ち、本発明は、下記半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置を提供する。
請求項1:
(A)液状エポキシ樹脂、
(B)下記式(1)で示されるシリコーン変性フェノールを含む硬化剤:(A)成分中のエポキシ基に対するフェノール性水酸基の比が0.8〜1.1となる量、
(C)平均粒子径が0.1〜1.0μmである無機充填材:(A)、(B)及び(C)成分の合計質量に対して10〜40質量%となる量
を含有することを特徴とする半導体封止用液状エポキシ樹脂組成物。

Figure 0005105099
請求項2:
(B)成分が、式(1)で示されるシリコーン変性フェノールとジアリル化ビスフェノールとを含む請求項1記載の半導体封止用液状エポキシ樹脂組成物。
請求項3:
(B)成分中に式(1)で示されるシリコーン変性フェノールを67.7〜67.8質量%含有することを特徴とする請求項1又は2記載の半導体封止用液状エポキシ樹脂組成物。
請求項4:
請求項1〜3のいずれか1項記載のエポキシ樹脂組成物をアンダーフィル材として用いて封止したフリップチップ型半導体装置。 That is, this invention provides the following liquid epoxy resin composition for semiconductor sealing, and the flip chip type semiconductor device sealed using it as an underfill material.
Claim 1:
(A) Liquid epoxy resin,
(B) Curing agent containing a silicone-modified phenol represented by the following formula (1): an amount in which the ratio of the phenolic hydroxyl group to the epoxy group in the component (A) is 0.8 to 1.1,
(C) Inorganic filler having an average particle diameter of 0.1 to 1.0 μm: containing an amount of 10 to 40% by mass with respect to the total mass of the components (A), (B) and (C). A liquid epoxy resin composition for semiconductor encapsulation characterized by the above.
Figure 0005105099
Claim 2:
The liquid epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the component (B) comprises a silicone-modified phenol represented by the formula (1) and diallylated bisphenol.
Claim 3:
(B) 67.7-67.8 mass% of silicone modified phenols shown by Formula (1) are contained in a component, The liquid epoxy resin composition for semiconductor sealing of Claim 1 or 2 characterized by the above-mentioned.
Claim 4:
A flip chip type semiconductor device encapsulated using the epoxy resin composition according to any one of claims 1 to 3 as an underfill material.

本発明によれば、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性に優れた半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置を提供することができる。   According to the present invention, a liquid epoxy resin composition for encapsulating a semiconductor excellent in gap penetration between a substrate, an element and the like and chip crack prevention after curing when encapsulating a flip-chip mounted semiconductor device, and the same It is possible to provide a flip-chip type semiconductor device sealed by using as an underfill material.

本発明に係る簡易デバイスの概略斜視図である。It is a schematic perspective view of the simple device which concerns on this invention. 一般的なフィリップチップ実装の概略断面図である。It is a schematic sectional drawing of common Philip chip mounting.

以下、本発明についてより詳細に説明する。
本発明の液状エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機充填材を必須成分として含有している。
(A)液状エポキシ樹脂
エポキシ樹脂としては、一分子あたり2個以上のエポキシ基を持ち、常温で液状のものであればよく、従来から公知のものを全て使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を挙げることができる。
Hereinafter, the present invention will be described in more detail.
The liquid epoxy resin composition of the present invention contains an epoxy resin, a curing agent, and an inorganic filler as essential components.
(A) Liquid epoxy resin The epoxy resin may be any epoxy resin that has two or more epoxy groups per molecule and is liquid at room temperature, and any conventionally known one can be used. For example, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin, dicyclo A pentadiene type epoxy resin etc. can be mentioned.

特に、耐熱性や耐湿性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂が好ましい。この中でも室温(20〜30℃)で液状のエポキシ樹脂が好ましい。   In particular, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, cyclohexane, which are excellent in heat resistance and moisture resistance A pentadiene type epoxy resin is preferred. Among these, a liquid epoxy resin is preferable at room temperature (20 to 30 ° C.).

また、下記構造のエポキシ樹脂も使用することができる。

Figure 0005105099
Moreover, the epoxy resin of the following structure can also be used.
Figure 0005105099

また、エポキシ樹脂には、その合成過程で使用するエピクロルヒドリン由来の塩素が少量含まれるが、エポキシ樹脂における全塩素含有量は、1500ppm以下、好ましくは1000ppm以下である必要がある。特に、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1500ppm以上、抽出塩素が10ppm以上では半導体素子の信頼性、特に耐湿性に悪影響を与える。
以上述べたエポキシ樹脂は、1種単独で又は2種以上組み合わせて使用することができる。
The epoxy resin contains a small amount of epichlorohydrin-derived chlorine used in the synthesis process, but the total chlorine content in the epoxy resin needs to be 1500 ppm or less, preferably 1000 ppm or less. In particular, the extracted water chlorine in 20 hours at 100 ° C. and 50% epoxy resin concentration is preferably 10 ppm or less. If the total chlorine content is 1500 ppm or more and the extracted chlorine is 10 ppm or more, the reliability of the semiconductor element, particularly moisture resistance, is adversely affected.
The epoxy resins described above can be used singly or in combination of two or more.

(B)シリコーン変性フェノールを含む硬化剤
シリコーン変性フェノールを含む硬化剤は、下記式(1)で示されるシリコーン変性フェノールを含むもので、該シリコーン変性フェノールは、両末端にSi−H結合を有する下記式(5)のシリコーンに下記式(4)のジアリル化ビスフェノールを付加反応させて生成される。

Figure 0005105099
(B) Curing agent containing silicone-modified phenol The curing agent containing silicone-modified phenol contains silicone-modified phenol represented by the following formula (1) , and the silicone-modified phenol has Si-H bonds at both ends. It is produced by addition reaction of diallylated bisphenol of the following formula (4) to the silicone of the following formula (5).
Figure 0005105099

このようなシリコーン変性フェノールは、上記式(1)のmの値によって粘度が異なるが、そのようなものを1種単独で又は2種以上を混合して使用することができる。
エポキシ樹脂組成物は、室温における適度な流動性が必要であり、このシリコーン変性フェノールは、常温(20〜30℃)において液状であるものを使用することが好ましく、常温において固形のものを使用する場合は、常温において液状のものに溶解し、当該硬化剤全体で液状のものとするのが好ましい。
よって、シリコーン鎖長もmの値が10を超えると、高粘度化するため、1〜10の整数と限定される。
Such silicone-modified phenol, the above equation (1) the viscosity by the value of the m different, can be used such singly or in combination of two or more of.
Epoxy resin composition, it is necessary to appropriate fluidity at room temperature, the silicone-modified phenol, it is preferred to use those which are liquid at room temperature (20 to 30 ° C.), using those solid at room temperature In this case, it is preferable to dissolve in a liquid at room temperature and to make the entire curing agent liquid.
Accordingly, when the value of m exceeds 10, the silicone chain length is limited to an integer of 1 to 10 in order to increase the viscosity.

このような上記式(1)で示されるシリコーン変性フェノールを含む(B)成分の配合は、(A)成分中のエポキシ基に対する(B)成分のフェノール性水酸基の比が0.8〜1.1となる量が好ましく、より好ましくは0.85〜0.95となる量である。0.8未満であると、弾性率が大きくなり内部応力を吸収できずSiのクラック等が発生することがあり、1.1を超えると、未反応OH基が残存し、樹脂骨格が脆くなるため好ましくない。 In such a blend of the component (B) containing the silicone-modified phenol represented by the above formula (1), the ratio of the phenolic hydroxyl group of the component (B) to the epoxy group in the component (A) is 0.8 to 1. The amount of 1 is preferable, and the amount of 0.85 to 0.95 is more preferable. If it is less than 0.8, the elastic modulus becomes large and internal stress cannot be absorbed and cracks of Si may occur. If it exceeds 1.1, unreacted OH groups remain and the resin skeleton becomes brittle. Therefore, it is not preferable.

(C)無機充填材
無機充填材は、球状シリカを用いる。
この球状シリカの平均粒子径は、遠心沈降法やレーザー回折法等で測定可能であり、0.1〜1.0μm、より好ましくは0.3〜0.8μmにコントロールすることが必要である。平均粒子径が0.1μm未満であると無機充填材の表面積が増大し、組成物の流動性が低下し、平均粒子径が1.0μmを超えると10μm程度の狭間隙のフリップチップ対する侵入性が低下するため好ましくない。
つまり、アンダーフィル材は毛細管現象を利用して半導体装置の狭間隙に注入されるが、狭間隙中の流動性及び無機充填材の沈降を防止するため、無機充填材は、最大粒子径が該狭間隙寸法に対し1/2以下で、且つ平均粒子径は1/10以下に設計される。この寸法を超えると上述の通り、組成物の流動性を低下させることによるボイドが発生したり、無機充填材沈降により半導体チップ界面付近で充填材の少ない層が形成され、その部分の熱膨張率が大きいことによる信頼性の低下といった問題を生じる。従って、球状シリカの平均粒子径は上記の通り0.1〜1.0μm、好ましくは0.3〜0.8μmであることが好適である。
(C) Inorganic filler As the inorganic filler, spherical silica is used.
The average particle diameter of the spherical silica can be measured by a centrifugal sedimentation method, a laser diffraction method, or the like, and needs to be controlled to 0.1 to 1.0 μm, more preferably 0.3 to 0.8 μm. When the average particle size is less than 0.1 μm, the surface area of the inorganic filler increases and the fluidity of the composition decreases, and when the average particle size exceeds 1.0 μm, the penetration into narrow gap flip chips of about 10 μm. Is unfavorable because of lowering.
In other words, the underfill material is injected into the narrow gap of the semiconductor device using the capillary phenomenon, but in order to prevent fluidity in the narrow gap and settling of the inorganic filler, the inorganic filler has a maximum particle size of It is designed to be ½ or less of the narrow gap size and the average particle size is 1/10 or less. If this dimension is exceeded, voids are generated by reducing the fluidity of the composition as described above, or a layer with less filler is formed near the semiconductor chip interface due to inorganic filler sedimentation, and the coefficient of thermal expansion of that part This causes a problem such as a decrease in reliability due to a large value. Therefore, the average particle diameter of the spherical silica is 0.1 to 1.0 μm, preferably 0.3 to 0.8 μm as described above.

また、無機充填材の含有量は、(A)、(B)及び(C)成分の合計質量に対して10〜40質量%が好ましく、より好ましくは15〜30質量部である。10質量%未満では、膨張係数が大きくなり、冷熱テストにおいてクラックの発生を誘発させ、40質量%超過では、粘度が高くなり過ぎ、アンダーフィル材としての流動性が低下するため薄膜侵入性の低下をもたらすため好ましくない。   Moreover, 10-40 mass% is preferable with respect to the total mass of (A), (B) and (C) component, and, as for content of an inorganic filler, More preferably, it is 15-30 mass parts. If it is less than 10% by mass, the expansion coefficient becomes large, and cracks are induced in the cold test, and if it exceeds 40% by mass, the viscosity becomes too high and the fluidity as the underfill material decreases, so that the thin film penetration is reduced. This is not preferable.

無機充填材と上記(A)及び(B)成分等の樹脂との結合強度を強くするため、無機充填材は、シランカップリング剤、チタネートカップリング剤等のカップリング剤で予め表面処理したものを配合することが好ましい。
このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランを用いることが好ましい。
ここで、表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。
In order to strengthen the bond strength between the inorganic filler and the resin such as the above components (A) and (B), the inorganic filler is previously surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent. Is preferably blended.
As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Use of aminosilanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilanes such as γ-mercaptosilane. preferable.
Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

(D)その他の添加剤
液状エポキシ樹脂組成物には、(A)及び(B)成分の硬化反応を促進する硬化促進剤を配合することができる。
硬化促進剤としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール誘導体やトリフェニルフォスフィン等のリン系促進剤をそのまま配合することができるが、組成物の高流動性を維持し、所定の温度で上記硬化反応を促進させることができるよう潜在性を付与させることが好ましく、そのため上記硬化促進剤を(メタ)アクリル系単量体等を用いて重合させたポリマーでマイクロカプセル化したマイクロカプセル型硬化促進剤を配合するのが好ましい。
硬化促進剤の配合量は、(A)及び(B)成分の合計100質量部に対して、1〜10質量部、特に2〜5質量部の範囲で添加することが好適である。添加量が1質量部に満たないと反応性が促進されないことがあり、10質量部を超えると硬化性に優れるが保存性が低下することがあるため好ましくない。
(D) Other additives The liquid epoxy resin composition may contain a curing accelerator that accelerates the curing reaction of the components (A) and (B).
Examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, imidazole derivatives such as 2-phenyl-4,5-dihydroxymethylimidazole, and triphenylphosphine. However, it is preferable to impart a latent potential so that the high fluidity of the composition can be maintained and the curing reaction can be promoted at a predetermined temperature. It is preferable to blend a microcapsule type curing accelerator in which the accelerator is microencapsulated with a polymer obtained by polymerizing the accelerator using a (meth) acrylic monomer or the like.
The blending amount of the curing accelerator is preferably added in the range of 1 to 10 parts by mass, particularly 2 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). If the addition amount is less than 1 part by mass, the reactivity may not be promoted, and if it exceeds 10 parts by mass, the curability is excellent but the storage stability may be deteriorated.

また、液状エポキシ樹脂組成物には、その硬化物の応力を低下させる目的で、シリコーンゴム、シリコーンオイル、液状のポリブタジエンゴム等を配合することができる。   Moreover, silicone rubber, silicone oil, liquid polybutadiene rubber, etc. can be mix | blended with a liquid epoxy resin composition in order to reduce the stress of the hardened | cured material.

更に、液状エポキシ樹脂組成物には、必要に応じて、表面処理剤、接着性向上用のシランカップリング剤、カーボンブラック等の顔料、染料、酸化防止剤等を配合することができる。
例えば、表面処理剤としては、ヘキサメチルジシラザン、テトラエトキシシラン等が挙げられ、その配合によって、無機充填材の表面を疎水化処理し樹脂成分との濡れ性向上に効果を発揮させることができる。
Furthermore, the liquid epoxy resin composition may contain a surface treatment agent, a silane coupling agent for improving adhesion, a pigment such as carbon black, a dye, an antioxidant, and the like, if necessary.
For example, examples of the surface treatment agent include hexamethyldisilazane, tetraethoxysilane, and the like, and by blending the surface treatment agent, the surface of the inorganic filler can be hydrophobized to improve the wettability with the resin component. .

液状エポキシ樹脂組成物の調製
液状エポキシ樹脂組成物の調製は、特に限定されるものではなく、従来から公知の方法を用いることできる。
即ち、上記液状エポキシ樹脂、硬化剤、無機充填材及びその他添加剤を、同時に又は別々に、必要により加熱処理を加えながら、攪拌、溶解、混合又は分散させればよい。
上記攪拌等に用いる装置は、特に限定されないが、攪拌及び加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。これらの装置を適宜組み合わせてもよい。
Preparation of liquid epoxy resin composition The preparation of the liquid epoxy resin composition is not particularly limited, and conventionally known methods can be used.
That is, the liquid epoxy resin, the curing agent, the inorganic filler, and other additives may be stirred, dissolved, mixed, or dispersed simultaneously or separately while heating as necessary.
Although the apparatus used for the said stirring etc. is not specifically limited, A raikai machine provided with stirring and a heating apparatus, 3 rolls, a ball mill, a planetary mixer etc. can be used. You may combine these apparatuses suitably.

このようにして得られる液状エポキシ樹脂組成物は、該組成物の流動性が高く、その硬化後の引張弾性率が低くなる(従来:3000〜5000MPa、本発明:300〜500MPa)ので、フリップチップ実装の半導体装置の封止に際し、基板、素子等の間の隙間侵入性と硬化後のチップクラック防止性の両方をバランス良く併せ持つものである。   The liquid epoxy resin composition thus obtained has a high fluidity and a low tensile elastic modulus after curing (conventional: 3000 to 5000 MPa, the present invention: 300 to 500 MPa). When sealing a mounted semiconductor device, it has both a gap penetration between a substrate and an element and a chip crack prevention after curing in a well-balanced manner.

以下、実施例及び比較例に基づき、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、実施例及び比較例中の粘度は25℃における粘度を示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not restrict | limited to the following Example. In addition, the viscosity in an Example and a comparative example shows the viscosity in 25 degreeC.

[実施例1〜2、比較例1〜4]
液状エポキシ樹脂、硬化剤、無機充填材及びその他添加剤を、表1に基づき配合し均一に混練することにより、各種エポキシ樹脂組成物を得た。このようにして得られた各種エポキシ樹脂組成物を用いて各種評価を行った。得られた結果は表1に併記する。
使用した材料及び評価方法を以下に示す。
[Examples 1-2, Comparative Examples 1-4]
Various epoxy resin compositions were obtained by blending a liquid epoxy resin, a curing agent, an inorganic filler and other additives based on Table 1 and kneading them uniformly. Various evaluations were performed using the various epoxy resin compositions thus obtained. The results obtained are also shown in Table 1.
The materials and evaluation methods used are shown below.

[使用した材料]
(A)液状エポキシ樹脂
エポキシ樹脂a:ビスフェノール型エポキシ樹脂(東都化成(株)製、ZX−1059)
エポキシ樹脂b:ナフタレン型エポキシ樹脂(大日本インキ工業(株)製、HP−4032D)
エポキシ樹脂c:前述式(2)で示される3官能型エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート630LSD)
(B)硬化剤
硬化剤a:シリコーン変性フェノール硬化剤 上記式(1)で、m=9
硬化剤b:ジアリルビスフェノール(小西化学製:DAL−BPA)
硬化剤c:メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸の混合物(新日本理化(株)製、MH−700)
硬化剤d:ジエチルジアミノジフェニルメタン(日本化薬(株)製、カヤハードA−A)
硬化剤c:ジエチルトルエンジアミン(アルベール・コーポレーション(株)製、ETHACURE100)
(C)無機充填材
無機充填材a:平均粒子径0.6μmの球状シリカ((株)アドマテックス製、SE2030−SEE)
無機充填材b:平均粒子径7μmの球状シリカ((株)龍森製、TSS−AH)
(D)その他の添加剤
カップリング剤:γ−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製、KBM403)
リン系マイクロカプセル硬化促進剤:日本化薬製、EPCAT−PS5
イミダゾール系マイクロカプセル硬化促進剤:旭化成ケミカルズ、ノバキュアHX−3741)
[Materials used]
(A) Liquid epoxy resin Epoxy resin a: bisphenol type epoxy resin (ZX-1059, manufactured by Tohto Kasei Co., Ltd.)
Epoxy resin b: Naphthalene type epoxy resin (manufactured by Dainippon Ink and Chemicals, HP-4032D)
Epoxy resin c: Trifunctional epoxy resin represented by the above formula (2) (Japan Epoxy Resin Co., Ltd., Epicoat 630LSD)
(B) Curing agent Curing agent a: Silicone-modified phenol curing agent In the above formula (1), m = 9
Curing agent b: diallyl bisphenol (manufactured by Konishi Chemical: DAL-BPA)
Curing agent c: Mixture of methyltetrahydrophthalic anhydride and hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., MH-700)
Curing agent d: Diethyldiaminodiphenylmethane (manufactured by Nippon Kayaku Co., Ltd., Kayahard AA)
Curing agent c: diethyltoluenediamine (manufactured by Albert Corporation, ETHACURE100)
(C) Inorganic filler Inorganic filler a: spherical silica having an average particle diameter of 0.6 m (SE2030-SEE, manufactured by Admatechs Co., Ltd.)
Inorganic filler b: spherical silica having an average particle diameter of 7 μm (manufactured by Tatsumori Co., Ltd., TSS-AH)
(D) Other additives Coupling agent: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403)
Phosphorus microcapsule curing accelerator: Nippon Kayaku, EPCAT-PS5
Imidazole-based microcapsule curing accelerator: Asahi Kasei Chemicals, Novacure HX-3741)

[評価方法]
粘度
粘度は、ブルックフィールド社製コーンプレート測定器にてNo.51のコーンを用い測定した。
侵入時間
侵入時間は、15μmギャップ(幅10mm)を形成した二枚重ねのガラス板をホットプレートの上に載せ、120℃に加熱し、ガラス端部の隙間から侵入させ、その端部から10mmに到達するまでの時間を測定した。なお、ガラス板は、予め600℃で1時間焼成し、アセトンで拭き取ったものを使用した。
引張弾性率
引張弾性率は、各種エポキシ樹脂組成物を表1の硬化条件で硬化させたものをJIS K 7161に基づき測定した。
チップクラックの有無
下記のように簡易デバイスを作製し、その熱衝撃試験によるチップクラックの有無を評価した。
(i)簡易デバイス1の作製
図1に示すように、寸法20mm(l)×20mm(w)×0.2mm(t)のSi板2をその鏡面を上にして、その上に一対の寸法30mm(l)×5mm(w)×70μm(t)の両面テープ(日東製)4を10mmの間隔で設置し、更にその上に寸法10mm(l)×10mm(w)×0.2mm(t)のSi板3をその鏡面を上にして重ね合わせて、70μm(h)×10mm(w)の隙間を有する構造体を作製し、これにその隙間端部から上記エポキシ樹脂組成物を120℃の条件下で侵入させ、表1の硬化条件下で硬化させることにより簡易デバイス1を作製した。
(ii)チップクラックの評価
上記(ii)の簡易デバイス1を、JIS C0025に基づく、−55〜125℃、500サイクルの熱衝撃試験を行い、チップに見立てたSi板2,3のクラックについて評価した。
[Evaluation method]
Viscosity / viscosity was measured using a Brookfield cone plate measuring instrument. Measurements were made using 51 cones.
Intrusion time The intrusion time is reached by placing a two-ply glass plate with a 15 μm gap (width 10 mm) on a hot plate, heating to 120 ° C., allowing the glass edge to enter through the gap between the glass edges, and reaching 10 mm from the edge. The time until was measured. In addition, the glass plate used previously what was baked at 600 degreeC for 1 hour, and wiped off with acetone.
Tensile modulus Tensile modulus was measured by curing various epoxy resin compositions under the curing conditions shown in Table 1 based on JIS K 7161.
Presence / absence of chip cracks Simple devices were prepared as described below, and the presence or absence of chip cracks was evaluated by a thermal shock test.
(I) Fabrication of Simple Device 1 As shown in FIG. 1, a Si plate 2 having a dimension of 20 mm (l) × 20 mm (w) × 0.2 mm (t) is placed with its mirror surface facing upward, and a pair of dimensions on it. 30 mm (l) × 5 mm (w) × 70 μm (t) double-sided tape (manufactured by Nitto) 4 is installed at an interval of 10 mm, and further dimensions 10 mm (l) × 10 mm (w) × 0.2 mm (t ) Si plate 3 with the mirror surface facing up to produce a structure having a gap of 70 μm (h) × 10 mm (w), and the epoxy resin composition is placed at 120 ° C. from the end of the gap. The simple device 1 was produced by intruding under the conditions of and curing under the curing conditions of Table 1.
(Ii) Evaluation of Chip Cracks The simple device 1 of (ii) above was subjected to a thermal shock test of −55 to 125 ° C. and 500 cycles based on JIS C0025, and evaluated for cracks in the Si plates 2 and 3 assumed to be chips. did.

Figure 0005105099
Figure 0005105099

1 簡易デバイス
2、3 Si板
4 両面テープ
5 ICベアチップ
6 アンダーフィル材
7 バンプ
8 プリント基板(FPC)
DESCRIPTION OF SYMBOLS 1 Simple device 2, 3 Si board 4 Double-sided tape 5 IC bare chip 6 Underfill material 7 Bump 8 Printed circuit board (FPC)

Claims (4)

(A)液状エポキシ樹脂、
(B)下記式(1)で示されるシリコーン変性フェノールを含む硬化剤:(A)成分中のエポキシ基に対するフェノール性水酸基の比が0.8〜1.1となる量、
(C)平均粒子径が0.1〜1.0μmである無機充填材:(A)、(B)及び(C)成分の合計質量に対して10〜40質量%となる量
を含有することを特徴とする半導体封止用液状エポキシ樹脂組成物。
Figure 0005105099
(A) Liquid epoxy resin,
(B) Curing agent containing a silicone-modified phenol represented by the following formula (1): an amount in which the ratio of the phenolic hydroxyl group to the epoxy group in the component (A) is 0.8 to 1.1,
(C) Inorganic filler having an average particle diameter of 0.1 to 1.0 μm: containing an amount of 10 to 40% by mass with respect to the total mass of the components (A), (B) and (C). A liquid epoxy resin composition for semiconductor encapsulation characterized by the above.
Figure 0005105099
(B)成分が、式(1)で示されるシリコーン変性フェノールとジアリル化ビスフェノールとを含む請求項1記載の半導体封止用液状エポキシ樹脂組成物。The liquid epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the component (B) comprises a silicone-modified phenol represented by the formula (1) and diallylated bisphenol. (B)成分中に式(1)で示されるシリコーン変性フェノールを67.7〜67.8質量%含有することを特徴とする請求項1又は2記載の半導体封止用液状エポキシ樹脂組成物。(B) 67.7-67.8 mass% of silicone modified phenols shown by Formula (1) are contained in a component, The liquid epoxy resin composition for semiconductor sealing of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれか1項記載のエポキシ樹脂組成物をアンダーフィル材として用いて封止したフリップチップ型半導体装置。 A flip chip type semiconductor device encapsulated using the epoxy resin composition according to any one of claims 1 to 3 as an underfill material.
JP2009058995A 2009-03-12 2009-03-12 Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material Active JP5105099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058995A JP5105099B2 (en) 2009-03-12 2009-03-12 Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058995A JP5105099B2 (en) 2009-03-12 2009-03-12 Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material

Publications (2)

Publication Number Publication Date
JP2010209266A JP2010209266A (en) 2010-09-24
JP5105099B2 true JP5105099B2 (en) 2012-12-19

Family

ID=42969771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058995A Active JP5105099B2 (en) 2009-03-12 2009-03-12 Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material

Country Status (1)

Country Link
JP (1) JP5105099B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638600B2 (en) * 2016-09-01 2020-01-29 信越化学工業株式会社 Low gloss epoxy resin composition and method for reducing glossiness of cured epoxy resin
CN108250716B (en) * 2016-12-29 2021-07-06 广东生益科技股份有限公司 A polysiloxane-allyl compound modified polyphenylene ether resin composition and its prepreg, laminate and printed circuit board
CN108250746B (en) * 2016-12-29 2021-05-11 广东生益科技股份有限公司 A kind of polysiloxane-allyl compound modified bismaleimide composition and its prepreg, laminate and printed circuit board
CN108250443B (en) * 2016-12-29 2021-07-30 广东生益科技股份有限公司 A kind of polysiloxane-allyl compound flame retardant and its preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384472B2 (en) * 1994-12-26 2003-03-10 住友ベークライト株式会社 Conductive resin paste
JP2006016433A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor encapsulation and flip chip type semiconductor device

Also Published As

Publication number Publication date
JP2010209266A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5598343B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
KR100781040B1 (en) Liquid Epoxy Resin Compositions and Semiconductor Devices
US6225704B1 (en) Flip-chip type semiconductor device
JP6789495B2 (en) Resin composition for underfill, electronic component device and manufacturing method of electronic component device
KR20100129694A (en) Dam material composition of underfill material for multilayer semiconductor device and manufacturing method of multilayer semiconductor device using said dam material composition
US7692318B2 (en) Liquid epoxy resin composition and semiconductor device
JPH10212395A (en) Resin composition and semiconductor device produced by using the same
JP3794349B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5105099B2 (en) Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material
JP2004331908A (en) Liquid epoxy resin composition and flip-chip type semiconductor device
JP3985148B2 (en) Liquid epoxy resin composition and semiconductor device
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
TWI612096B (en) Liquid resin composition, flip chip mounting body and method of producing the same
JP2021024945A (en) Granular semiconductor-sealing resin composition and semiconductor device
JP2006169395A (en) Underfill resin composition
JP4966123B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
JP2005036069A (en) Flip chip mounting side fill material and semiconductor device
JP5445005B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP6388228B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5532582B2 (en) Method for sealing flip-chip type semiconductor device, method for selecting chip-on-chip underfill material, and flip-chip type semiconductor device
JP2007284471A (en) Liquid epoxy resin composition and semiconductor device
WO2005080502A1 (en) Liquid epoxy resin composition for underfill and semiconductor device encapsulated with the composition
JP2006316250A (en) Liquid epoxy resin composition and semiconductor device
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5105099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3