JP5102568B2 - Display control device - Google Patents
Display control device Download PDFInfo
- Publication number
- JP5102568B2 JP5102568B2 JP2007235668A JP2007235668A JP5102568B2 JP 5102568 B2 JP5102568 B2 JP 5102568B2 JP 2007235668 A JP2007235668 A JP 2007235668A JP 2007235668 A JP2007235668 A JP 2007235668A JP 5102568 B2 JP5102568 B2 JP 5102568B2
- Authority
- JP
- Japan
- Prior art keywords
- gradation
- gradation signal
- supplied
- signal
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 101100152304 Caenorhabditis elegans tap-1 gene Proteins 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010187 selection method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
本発明は、液晶パネル等の表示手段に階調信号を印加して表示を制御する表示制御装置に関するものである。 The present invention relates to a display control device that controls display by applying a gradation signal to display means such as a liquid crystal panel.
一般的な液晶表示装置では、液晶パネルの走査線を駆動するゲートドライバと信号線を駆動するソースドライバが液晶パネルの駆動回路として接続されている。このうち、ソースドライバの駆動方式としては、アナログの表示データをスイッチの開閉により信号線に書き込むアナログサンプルホールド方式のほか、デジタルの表示データに対応する階調信号を選択して信号線に書き込む階調信号選択方式が知られている(例えば、特許文献1参照。)。 In a general liquid crystal display device, a gate driver for driving scanning lines of a liquid crystal panel and a source driver for driving signal lines are connected as a driving circuit for the liquid crystal panel. Of these, the source driver drive method is an analog sample-and-hold method in which analog display data is written to the signal line by opening and closing a switch, and a gradation signal corresponding to digital display data is selected and written to the signal line. A modulation signal selection method is known (for example, see Patent Document 1).
ここで、図4に階調信号選択方式を使った従来のソースドライバの構成例を示す。ここでは、説明のために、ソースドライバ出力端子数を960個とし、階調数を64個と仮定する。 Here, FIG. 4 shows a configuration example of a conventional source driver using the gradation signal selection method. Here, for explanation, it is assumed that the number of source driver output terminals is 960 and the number of gradations is 64.
まず、回路構成について説明する。抵抗分圧回路(ガンマ回路)100にて高電位側電源電圧Vrhと低電位側電源電圧Vrlの2つの電圧を抵抗分圧回路100に設けられた複数のガンマ曲線抵抗102で分圧し、ソースドライバの出力端子S1〜S960に出力する基準電圧が作られる。これが基準電圧信号tap64〜tap1である。これらは、64個の階調アンプAP1〜AP64でそれぞれ駆動されて、K1〜K64の階調信号として階調信号バス配線104に出力される。出力端子S1〜S960に対応して設けられた960個のDAC(デジタルアナログコンバータ)回路106は、階調信号バス配線104の各々にバス型接続され、64個の階調信号の各々が該960個のDAC回路106に入力される。各DAC回路106には、別途外部のコントローラから入力されたデジタルの階調表示データが入力される。DAC回路106は、この階調表示データに基づいて、上記64階調レベルの階調信号うち任意のレベルの階調信号Knを選択し、ソースドライバ出力端子S1〜S960に出力する。
First, the circuit configuration will be described. The resistance voltage dividing circuit (gamma circuit) 100 divides the two voltages, the high potential side power supply voltage Vrh and the low potential side power supply voltage Vrl, by a plurality of
なお、図5に、階調信号K1〜K64の波形の一例を示す。ここでは、K1からK64に行くに従って、階調レベルが低くなる。また、各階調信号は、液晶の劣化を防ぐために周期的に極性を反転させる交流波形となっている。図5に示すように、最上位の階調レベルである階調信号K1と、最下位の階調レベルである階調信号K64は、振幅も大きく、遷移レベルの差が大きい。また、階調信号が中間の階調レベルになるに従って振幅が小さくなり、遷移レベル差も小さくなっている。そして、最上位の階調レベルから中間の階調レベルまでの階調信号と、中間の階調レベルから最下位の階調レベルまでの階調信号とでは位相が逆になっている。 FIG. 5 shows an example of waveforms of the gradation signals K1 to K64. Here, the gradation level decreases as it goes from K1 to K64. In addition, each gradation signal has an alternating waveform in which the polarity is periodically reversed in order to prevent deterioration of the liquid crystal. As shown in FIG. 5, the gradation signal K1 that is the highest gradation level and the gradation signal K64 that is the lowest gradation level have a large amplitude and a large difference in transition level. Further, the amplitude becomes smaller and the transition level difference becomes smaller as the gradation signal becomes an intermediate gradation level. The phase of the gradation signal from the highest gradation level to the intermediate gradation level and the gradation signal from the intermediate gradation level to the lowest gradation level are reversed.
ソースドライバのレイアウト構成であるが、複数のDAC回路106は出力端子S1〜S960に対応して設けられているため、出力端子S1〜S960の順に並んでいる。そして、DAC回路106の並び方向に平行して階調信号K1〜K64が供給される階調信号バス配線104が最小間隔で並設されている。階調信号バス配線104には、その配列順に、階調信号がK1からK64まで順に供給される。また、階調信号K1及びK64が供給される階調信号バス配線104の外側には、通常、Vss等の電源配線が並設されている。
Although the layout configuration of the source driver is provided, the plurality of
また、階調信号バス配線104と階調アンプAP1〜AP64とは、通常、ソースドライバのほぼ中央付近で接続される。これは、階調アンプAP1〜AP64から遠端のソースドライバ出力端子S1、S960までの距離を考えたときに、階調信号K1を出力する階調アンプAP1から出力端子S960、または階調信号K64を出力する階調アンプAP64から出力端子S1までの距離がほぼ等しく、距離を最も短くでき、遅延時間も最小にできる位置となるからである。
Further, the gradation
しかしながら、逆に、階調信号K1を出力する階調アンプAP1から出力端子S960、階調信号K64を出力する階調アンプAP64から出力端子S1までの配線距離が非常に長く、かつ階調信号K1、K64は、前述したように遷移のレベル差が大きいため、波形が鈍り、遅延時間が大きくなる、という問題があった。
本発明は、上述した課題を解決するために提案されたものであり、表示手段に印加する階調信号の波形鈍りを抑え遅延時間を短くすることができる表示制御装置を提供することを目的とする。 The present invention has been proposed to solve the above-described problems, and an object of the present invention is to provide a display control device that can suppress the waveform dullness of the gradation signal applied to the display means and shorten the delay time. To do.
上記目的を達成するために、本発明の請求項1に係る表示制御装置は、所定方向に並設され複数の階調レベルに応じた複数の階調信号が供給される複数の階調信号線であって、前記複数の階調レベルのうち最上位の階調レベルに対応する最上位階調信号が供給される階調信号線が該最上位階調信号と同相の階調信号が供給される2本の階調信号線間に並設され、前記複数の階調レベルのうち最下位の階調レベルに対応する最下位階調信号が供給される階調信号線が該最下位階調信号と同相の階調信号が供給される2本の階調信号線間に並設された複数の階調信号線と、前記複数の階調信号線の各々に接続され、該接続された複数の階調信号線に供給された複数の階調信号から表示手段に印加する階調信号を選択する複数の選択手段と、を含んで構成されている。
In order to achieve the above object, a display control apparatus according to
また、請求項2に係る表示制御装置は、複数の階調レベルに応じた複数の階調信号を発生して出力する階調信号発生手段と、所定方向に並設され、複数の階調レベルに応じた複数の階調信号が供給される複数の階調信号線と、前記複数の階調信号線の各々に接続され、該接続された複数の階調信号線に供給された複数の階調信号から表示手段に印加する階調信号を選択する複数の選択手段と、前記複数の階調信号に対応して設けられ、前記階調信号発生手段で発生した複数の階調信号の各々が前記複数の階調信号線の各々に供給されるように前記階調信号発生手段の出力端と前記複数の階調信号線とを接続する複数の接続配線であって、前記階調信号発生手段の前記複数の階調レベルのうち最上位の階調レベルに対応する最上位階調信号を出力する出力端と該最上位階調信号と同相の階調信号が供給される2本の階調信号線間に並設された階調信号線とを接続する接続配線、および前記階調信号発生手段の前記複数の階調レベルのうち最下位の階調レベルに対応する最下位階調信号を出力する出力端と該最下位階調信号と同相の階調信号が供給される2本の階調信号線間に並設された階調信号線とを接続する接続配線を含む複数の接続配線と、を含んで構成されている。 According to a second aspect of the present invention, there is provided a display control apparatus, wherein the display control device is arranged in parallel in a predetermined direction with gradation signal generating means for generating and outputting a plurality of gradation signals corresponding to a plurality of gradation levels. A plurality of gradation signal lines to which a plurality of gradation signals are supplied, and a plurality of gradation signals lines connected to each of the plurality of gradation signal lines and supplied to the plurality of gradation signal lines connected thereto. A plurality of selection means for selecting a gradation signal to be applied to the display means from the gradation signal, and a plurality of gradation signals generated corresponding to the plurality of gradation signals and generated by the gradation signal generation means; A plurality of connection wirings connecting the output terminals of the gradation signal generating means and the plurality of gradation signal lines to be supplied to each of the plurality of gradation signal lines, the gradation signal generating means; The highest gradation signal corresponding to the highest gradation level among the plurality of gradation levels is output. A connection wiring for connecting an output terminal to the gradation signal line provided in parallel between two gradation signal lines to which a gradation signal in phase with the highest gradation signal is supplied, and generation of the gradation signal An output terminal for outputting the lowest gray level signal corresponding to the lowest gray level among the plurality of gray levels, and two levels to which a gray level signal in phase with the lowest gray level signal is supplied. And a plurality of connection wirings including connection wirings for connecting the gradation signal lines arranged in parallel between the modulation signal lines.
請求項1及び2に係る発明では、最上位階調信号及び最下位階調信号が供給される階調信号線の各々が、各々と同相の2つの階調信号が供給される階調信号線に挟まれた状態で配設される。従って、最上位階調信号及び最下位階調信号が供給される階調信号線の各々は、電源電圧線や逆相の階調信号が供給される階調信号線の隣に並設されることが無い。これにより、両側に配置された配線とのカップリング容量に対する充放電量を小さくでき、特に振幅が大きな最上位階調信号及び最下位階調信号の波形鈍りを抑え、遅延時間も短くできる。 In the first and second aspects of the invention, each of the gradation signal lines to which the highest gradation signal and the lowest gradation signal are supplied is supplied with two gradation signals in phase with each other. It is arrange | positioned in the state pinched | interposed into. Accordingly, each of the gradation signal lines to which the highest gradation signal and the lowest gradation signal are supplied is arranged next to the power supply voltage line and the gradation signal line to which the reverse-phase gradation signal is supplied. There is nothing. As a result, the amount of charge / discharge with respect to the coupling capacitance with the wirings arranged on both sides can be reduced, the waveform dullness of the highest-order gradation signal and the lowest-order gradation signal having particularly large amplitude can be suppressed, and the delay time can be shortened.
請求項3に係る発明は、請求項1または請求項2に記載の表示制御装置において、前記最上位階調信号と同相の階調信号が供給される2本の階調信号線は、前記複数の階調レベルのうち2番目及び3番目に高い階調レベルの階調信号が供給される階調信号線であり、前記最下位階調信号と同相の階調信号が供給される2本の階調信号線は、前記複数の階調レベルのうち2番目及び3番目に低い階調レベルの階調信号が供給される階調信号線である。 According to a third aspect of the present invention, in the display control device according to the first or second aspect, the two gradation signal lines to which the gradation signal in phase with the most significant gradation signal is supplied are the plurality of gradation signal lines. The gradation signal lines to which the gradation signals having the second and third highest gradation levels are supplied, and two gradation signals having the same phase as the lowest gradation signal are supplied. The gradation signal line is a gradation signal line to which a gradation signal having a second and third lowest gradation level among the plurality of gradation levels is supplied.
最上位階調信号と階調レベルが近い階調信号は、最上位階調信号と同相であるだけでなく、振幅の大きさが近く、極性の遷移レベル差も近い。従って、最上位階調信号が供給される階調信号線が、階調レベルが最も近い2番目に階調レベルが高い階調信号、及びその次に階調レベルが高い3番目の階調信号が供給される階調信号線に挟まれた状態で配設されれば、それ以外の階調信号が供給される階調信号線に挟まれるよりも、波形の遷移が速まり、遅延時間も短くなる。また、最下位階調信号が供給される階調信号線も同様に、2番目、3番目に低い階調レベルの階調信号が供給される階調信号線に挟まれた状態で配設されることにより、他の階調信号線に挟まれるよりも、波形の遷移が速まり、遅延時間も短くなる。 A gradation signal having a gradation level close to that of the most significant gradation signal is not only in phase with the most significant gradation signal, but also has a close amplitude and a close difference in polarity transition level. Therefore, the gradation signal line to which the highest gradation signal is supplied is the second gradation signal having the second highest gradation level and the third gradation signal having the second highest gradation level. Is placed between the gradation signal lines to be supplied, the waveform transitions faster and the delay time is longer than that between the gradation signal lines to which other gradation signals are supplied. Shorter. Similarly, the gradation signal line to which the lowest gradation signal is supplied is also disposed between the gradation signal lines to which the gradation signals having the second and third lowest gradation levels are supplied. As a result, the transition of the waveform is accelerated and the delay time is shorter than that between the other gradation signal lines.
以上説明したように本発明によれば、表示手段に印加する階調信号の波形鈍りを抑え遅延時間を短くすることができる、という効果を奏する。 As described above, according to the present invention, it is possible to suppress the waveform dullness of the gradation signal applied to the display means and to shorten the delay time.
以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施の形態] [First Embodiment]
本実施の形態では、液晶パネルの走査線を駆動するゲートドライバと信号線を駆動するソースドライバが液晶パネルの駆動回路として接続された液晶表示装置のソースドライバについて説明する。本実施の形態のソースドライバは、デジタルの階調表示データに対応する階調信号を選択して信号線に書き込む階調信号選択方式のドライバである。 In this embodiment, a source driver of a liquid crystal display device in which a gate driver that drives a scanning line of a liquid crystal panel and a source driver that drives a signal line are connected as a driving circuit of the liquid crystal panel will be described. The source driver of this embodiment is a grayscale signal selection type driver that selects a grayscale signal corresponding to digital grayscale display data and writes it to a signal line.
図1は、本実施の形態のソースドライバの回路構成図である。ここでは、ソースドライバ出力端子数が960個、階調数が64個の場合を例に挙げて説明するが、本発明は、出力端子や階調数をこれに限定するものではない。 FIG. 1 is a circuit configuration diagram of a source driver according to the present embodiment. Here, a case where the number of source driver output terminals is 960 and the number of gradations is 64 will be described as an example. However, the present invention is not limited to this.
このソースドライバには、抵抗分圧回路(ガンマ回路)10と、64個の階調アンプAPn(nは1〜64の整数)と、64本の階調信号バス配線12と、DAC(デジタルアナログコンバータ)14と、960個の出力端子Sm(mは1〜960の整数)とを備えている。
The source driver includes a resistance voltage dividing circuit (gamma circuit) 10, 64 gradation amplifiers APn (n is an integer of 1 to 64), 64 gradation
このソースドライバでは、まず、抵抗分圧回路(ガンマ回路)10にて高電位側電源電圧Vrhと低電位側電源電圧Vrlの2つの電圧を抵抗分圧回路10に設けられた複数のガンマ曲線抵抗20で分圧し、ソースドライバの出力端子S1〜S960に出力する基準電圧が作られる。これが基準電圧信号tap64〜tap1である。より詳述すると、抵抗分圧回路10を構成する各ガンマ曲線抵抗20は直列に接続されており、直列接続された抵抗分圧回路10の端部に、高電位側電源電圧Vrhと低電位側電源電圧Vrlの2つの電圧が与えられる。そして、各ガンマ曲線抵抗20間のノードN1〜N64から基準電圧信号tap64〜tap1が得られる。なお、ノードN1からN64に行くに従って高電位側から遠くなるため、基準電圧信号も徐々に小さくなる。
In this source driver, first, a resistance voltage dividing circuit (gamma circuit) 10 generates a plurality of gamma curve resistors provided in the resistance
ノードN1〜N64には、それぞれ階調アンプAP1〜AP64のいずれかが接続線22を介して接続されている。また、各階調アンプAP1〜AP64の出力端には、接続線24の一端が接続され、接続線24の他端には、階調信号バス配線12のいずれかの線が接続されている。基準電圧信号tap64〜tap1は、64個の階調アンプAP1〜AP64でそれぞれ駆動されて、各階調アンプAP1〜AP64の出力端からK1〜K64の階調信号として階調信号バス配線12に出力される。なお、本実施の形態の抵抗分圧回路10、及び階調アンプAP1〜64により構成された回路が本発明の階調信号発生手段に相当する。
Any one of the gradation amplifiers AP1 to AP64 is connected to the nodes N1 to N64 via the
出力端子S1〜S960に対応して設けられた960個のDAC回路14は、接続線26により64本の階調信号バス配線12及び2本の電源配線16の各々にバス型接続され、64個の階調信号の各々が該960個のDAC回路14に入力される。各DAC回路14には、別途外部のコントローラから入力されたデジタルの階調表示データが入力される。DAC回路14は、この階調表示データに基づいて、上記64階調レベルの階調信号うち任意のレベルの階調信号Knを選択し、ソースドライバ出力端子S1〜S960に出力する。すなわち、DAC回路14によりデジタルの階調表示データがアナログの階調信号Knに変換される。
The 960
図5に、階調信号K1〜K64の波形の一例を示す。ここでは、K1からK64に行くに従って、階調レベルが低くなる。図5に示すように、最上位の階調レベルである階調信号K1、および最下位の階調レベルである階調信号K64は、振幅も大きく、遷移レベルの差が大きい。また、階調信号が中間の階調レベルになるに従って振幅が小さくなり、遷移レベル差も小さくなっている。さらにまた、最上位の階調レベルから中間の階調レベルまでの階調信号と、中間の階調レベルから最下位の階調レベルまでの階調信号とでは位相が逆になっている。 FIG. 5 shows an example of waveforms of the gradation signals K1 to K64. Here, the gradation level decreases as it goes from K1 to K64. As shown in FIG. 5, the gradation signal K1 which is the highest gradation level and the gradation signal K64 which is the lowest gradation level have a large amplitude and a large difference in transition level. Further, the amplitude becomes smaller and the transition level difference becomes smaller as the gradation signal becomes an intermediate gradation level. Furthermore, the phase of the gradation signal from the highest gradation level to the intermediate gradation level and the gradation signal from the intermediate gradation level to the lowest gradation level are reversed.
なお、複数のDAC回路14は出力端子S1〜S960に対応して設けられており、出力端子S1〜S960の並び順に並んでいる。そして、DAC回路14の並び方向に平行に、64本の階調信号バス配線12が最小間隔で並設されている。また、64本の階調信号バス配線12の外側には、Vss等の電源配線16が並設されている。また、階調アンプAP1〜AP64は、階調信号バス配線12における出力端子S480に対応するDAC回路14の接続位置と、出力端子S481に対応するDAC回路14の接続位置との間の領域に接続されている。本実施の形態において、出力端子数はちょうど960個であるため、出力端子S480及びS481に対応する各DAC回路14の階調信号バス配線12における接続位置は、全DAC回路14の接続領域のちょうど中央付近にあたる。
The plurality of
従来では、階調信号バス配線12の各々には、その配列順に、K1からK64までの階調信号が順に供給されていたが、本実施の形態では、図2に示すように階調信号が供給される。 Conventionally, gradation signals from K1 to K64 are sequentially supplied to each of the gradation signal bus wirings 12 in the order of arrangement. In the present embodiment, gradation signals are supplied as shown in FIG. Supplied.
図2は、階調信号バス配線12のレイアウト(階調信号K1〜K64の出力レイアウト)を示す図である。図2(A)は従来の配置関係を示し、図2(B)が本実施の形態の配置状態を示す。本実施の形態では、最上位の階調レベルに対応する階調信号K1が供給される階調信号バス配線12の外側に、3番目に高い階調レベルに対応する階調信号K3が供給される階調信号バス配線12を配置し、最下位の階調レベルに対応する階調信号K64が供給される階調信号バス配線12の外側に、3番目に低い階調レベルに対応する階調信号K62が供給される階調信号バス配線12を配置するようにした。
FIG. 2 is a diagram showing a layout of the gradation signal bus wiring 12 (output layout of gradation signals K1 to K64). FIG. 2A shows a conventional arrangement relationship, and FIG. 2B shows the arrangement state of the present embodiment. In the present embodiment, the gradation signal K3 corresponding to the third highest gradation level is supplied outside the gradation
図5に示すように、階調信号K2,K3と階調信号K1とは同相であり、階調信号K62,K63と階調信号K64とは同相である。 As shown in FIG. 5, the gradation signals K2 and K3 and the gradation signal K1 are in phase, and the gradation signals K62 and K63 and the gradation signal K64 are in phase.
従って、本実施の形態では、最上位の階調レベルに対応する階調信号K1が供給される階調信号バス配線12は、該階調信号K1と同相の階調信号K2、K3が供給される2本の階調信号バス配線12間に並設され、最下位の階調レベルに対応する階調信号K64は、供給される階調信号バス配線12が該階調信号K64と同相の階調信号K62、K63が供給される2本の階調信号バス配線12間に並設される。
Therefore, in this embodiment, the gradation
なお、K1〜K3の階調信号、及びK62〜K64の階調信号以外の中間レベルの階調信号K4〜K61が供給される階調信号バス配線12については、従来と同様に、階調信号K1〜K3の階調信号が供給される階調信号バス配線12側から、階調信号K62〜K64の階調信号が供給される階調信号バス配線12側に向かって、順に階調レベルが低くなるように配列される。
Note that the gradation
ここで、上記構成を階調アンプAPnと階調信号バス配線12との接続関係に着目して本実施の形態のソースドライバの構成を説明する。
Here, the configuration of the source driver according to the present embodiment will be described focusing attention on the connection relationship between the gradation amplifier APn and the gradation
階調アンプAPnと階調信号バス配線12とは、接続線24を介して以下のように接続される。
The gradation amplifier APn and the gradation
図1の向かって上側の電源配線16のすぐ隣(図1において上側の電源配線16のすぐ下)に配設された階調信号バス配線12には、階調アンプAP3の出力端が接続され、3番目に階調レベルが高い階調信号K3が供給される。さらにその隣に配列された階調信号バス配線12には、階調アンプAP1の出力端が接続され、最上位の階調信号K1が供給される。さらにその隣に配列された階調信号バス配線12には、階調アンプAP2の出力端が接続され、2番目に階調レベルが高い階調信号K2が供給される。これにより、階調信号K2、K3が供給される2本の階調信号バス配線12に挟み込まれた階調信号バス配線12に階調信号K1が供給される。
The output terminal of the gradation amplifier AP3 is connected to the gradation
一方、図1の向かって下側の電源配線16のすぐ隣(図1において下側の電源配線16のすぐ上)に配設された階調信号バス配線12には、階調アンプAP62の出力端が接続され、3番目に階調レベルが低い階調信号K62が供給される。さらにその隣に配列された階調信号バス配線12には、階調アンプAP64の出力端が接続され、最下位の階調信号K64が供給される。さらにその隣に配列された階調信号バス配線12には、階調アンプAP63の出力端が接続され、2番目に階調レベルが低い階調信号K63が供給される。これにより、階調信号K62、K63が供給される2本の階調信号バス配線12に挟み込まれた階調信号バス配線12に階調信号K64が供給される。
On the other hand, the output of the gradation amplifier AP62 is connected to the gradation
なお、K1〜K3の階調信号、及びK62〜K64の階調信号以外の中間レベルの階調信号K4〜K61が供給される階調信号バス配線12については、従来と同様に、階調信号K1〜K3の階調信号が供給される階調信号バス配線12側から、階調信号K62〜K64の階調信号が供給される階調信号バス配線12側に向かって、階調アンプAP4〜AP61の出力端が順次接続される。
Note that the gradation
このように、振幅の大きな階調信号K1が供給される階調信号バス配線12を、階調信号K1と同相の階調信号K2、K3が供給される2本の階調信号バス配線12で挟み込むように配置したため、階調信号K1が供給される階調信号バス配線12の隣に極性変化の無い電源電圧Vssが供給される電源配線16を配置するよりも、両端の配線とのカップリング容量に対する充放電量を小さくでき、階調信号K1の遷移が速くなり、波形の鈍りが抑えられ、遅延時間を短くできる。
As described above, the gradation
同様に、振幅の大きな階調信号K64が供給される階調信号バス配線12を、階調信号K64と同相の階調信号K62、K63が供給される2本の階調信号バス配線12で挟み込むように配置したため、階調信号K64が供給される階調信号バス配線12の隣に極性変化の無い電源電圧Vssが供給される電源配線16を配置するよりも、両側の配線とのカップリング容量に対する充放電量を小さくでき、階調信号K64の遷移が速くなり、波形の鈍りが抑えられ、遅延時間を短くできる。
Similarly, the gradation
なお、上記では階調信号K1を、階調信号K2、K3で挟み込むようにしたが、階調信号K4、K5で挟み込んでもある程度の効果がある。しかしながら、振幅の大きさがK1に近い階調信号K2、K3の方が効果が大きい。階調信号K64についても同様である。また、階調信号K3、K62については、その隣が固定レベルの電源電圧信号となるが、階調信号K3、K62は階調信号K1、K64に比べると信号の振幅が小さく遷移レベル差が小さいので、階調信号K1、K64よりも遅くはならない。 In the above description, the gradation signal K1 is sandwiched between the gradation signals K2 and K3. However, even if sandwiched between the gradation signals K4 and K5, there are some effects. However, the gradation signals K2 and K3 whose amplitude is close to K1 are more effective. The same applies to the gradation signal K64. The gradation signals K3 and K62 are adjacent to a fixed-level power supply voltage signal. The gradation signals K3 and K62 have a smaller signal amplitude and a smaller transition level difference than the gradation signals K1 and K64. Therefore, it is not slower than the gradation signals K1 and K64.
以上説明したように、従来の回路では、最上位、最下位の階調信号が供給される階調信号バス配線の片側に配列された配線(電源配線)に固定レベルの信号が流れていたため、固定レベル信号とのカップリング容量の充放電が行なわれて波形が鈍り遅延時間が長くなっていたが、本実施の形態では、同相信号が供給される階調信号バス配線により最上位、最下位の階調信号が供給される階調信号バス配線が挟み込まれるように構成したため、充放電量が削減されて波形の鈍りを抑え、遅延時間を短くできる。 As described above, in the conventional circuit, a fixed level signal flows through the wiring (power supply wiring) arranged on one side of the gradation signal bus wiring to which the highest and lowest gradation signals are supplied. The charging and discharging of the coupling capacitance with the fixed level signal was performed, and the waveform became dull and the delay time was long. However, in this embodiment, the highest level and the highest level are provided by the grayscale signal bus wiring to which the common mode signal is supplied. Since the gradation signal bus wiring to which the lower gradation signal is supplied is sandwiched, the amount of charge / discharge is reduced, the waveform dullness is suppressed, and the delay time can be shortened.
[第2の実施の形態] [Second Embodiment]
図3は、本実施の形態のソースドライバの回路構成図である。図3において、図1と同一もしくは同等の部分には同じ記号を付し、その説明を省略する。また、階調信号を発生させて出力する動作も第1の実施の形態と同様であるため説明を省略し、第1の実施の形態と異なる構成について詳細に説明する。 FIG. 3 is a circuit configuration diagram of the source driver of this embodiment. 3, parts that are the same as or equivalent to those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted. The operation for generating and outputting the grayscale signal is also the same as that in the first embodiment, so that the description thereof is omitted, and a configuration different from that in the first embodiment will be described in detail.
抵抗分圧回路(ガンマ回路)30は、第1の実施の形態と同様に、各ガンマ曲線抵抗20が直列に接続されて構成されているが、本実施の形態では、振幅の大きさが等しい或いは近い基準階調電圧が得られるノード同士の距離が近くなるように、抵抗分圧回路30の中間のノードN32及びN33の間を折り曲げて配線する。これにより、各ノードN1〜64に接続される階調アンプAP1〜AP64についても、振幅の大きさが等しい或いは近い階調信号を出力する階調アンプAPn同士の距離が近くなるように配置することができる。
As in the first embodiment, the resistance voltage dividing circuit (gamma circuit) 30 is configured by connecting the
本実施の形態では、階調信号バス配線12と階調アンプAP1〜AP64との接続関係は、従来のソースドライバの場合と変わらない。すなわち、64本の階調信号バス配線12には、その配列順に、K1からK64までの階調信号が順に供給されるように接続される。従って、階調信号バス配線12の配置状態(伝送される階調信号の位置関係)は、図2(A)に示す状態に等しい。
In the present embodiment, the connection relationship between the gradation
しかしながら、本実施の形態では、図3に示すように、振幅が最も大きい階調信号K1及びK64を出力する階調アンプAP1及びAP64を、階調信号バス配線12におけるDAC回路14の接続位置の領域全体の中央付近に配置して、階調アンプAP1、AP64の出力端の各々と階調信号バス配線12との接続位置が、階調信号バス配線12におけるDAC回路14の接続位置の領域全体の中央付近となるようにレイアウト構成している。
However, in the present embodiment, as shown in FIG. 3, the gradation amplifiers AP1 and AP64 that output the gradation signals K1 and K64 having the largest amplitude are connected to the connection positions of the
また、2番目に振幅が大きい階調信号K2、K63を出力する階調アンプAP2,AP63の出力端の各々の階調信号バス配線12における接続位置は、階調信号K1、K64を出力する階調アンプAP1,AP64に比べて中央から若干遠い位置となり、3番目に振幅が大きい階調信号K3、K62を出力する階調アンプAP3,AP62の出力端の各々の接続位置は、それよりも更に中央から遠い位置となる。このように、本実施の形態では、階調信号の振幅が小さくなるに従って、徐々にその接続位置が中央から離れていくようにレイアウト構成している。
The connection positions of the output terminals of the gradation amplifiers AP2 and AP63 that output the gradation signals K2 and K63 having the second largest amplitude in the gradation
通常、振幅が大きく遷移レベル差が大きい信号ほど遅延時間が長くなる。従って、本実施の形態で説明したように、振幅の大きな階調信号を出力する階調アンプほど中央付近に配置して、階調信号バス配線12に対するその接続位置が中央付近になるように階調アンプと階調信号バス配線12とを接続することにより、振幅の大きな階調信号については階調アンプの接続位置から最遠端の両側のDAC回路14までの距離を、ほぼ左右均等に短くすることができる。特に、振幅が最も大きい階調信号K1,K64については、階調アンプAP1,AP64から最遠端のDAC回路14までの距離を左右ほぼ均等に最短とすることができるため、波形の鈍りを抑え、遅延時間を短くすることができる。
Normally, the delay time becomes longer as the signal has a larger amplitude and a larger transition level difference. Therefore, as described in this embodiment, the gradation amplifier that outputs a gradation signal having a large amplitude is arranged near the center, and the connection position with respect to the gradation
なお、このような構成により、結果的に、階調信号K32、K33を出力する階調アンプAP32,AP33の接続位置と、階調信号バス配線12において最遠端に接続された2つのDAC回路14の一方との距離が長くなってしまうが、階調信号K32、K33は、階調信号K1、K64に比べると信号の振幅が小さいので、その距離が長くなったとしてもそれほど遅くはならない。
With this configuration, as a result, the connection positions of the gradation amplifiers AP32 and AP33 that output the gradation signals K32 and K33 and the two DAC circuits connected to the farthest end in the gradation
[応用例] [Application example]
なお、上記実施の形態では、抵抗分圧回路の後段に階調アンプを設けて階調信号を生成し、さらにその後段のDAC回路で階調表示データに応じた階調信号を選択する階調アンプ方式のソースドライバについて説明したが、本発明はこれに限定されず、例えば、ソースアンプ方式のソースドライバにも適用可能である。 In the above embodiment, a gradation amplifier is provided at the subsequent stage of the resistance voltage dividing circuit to generate a gradation signal, and the gradation signal is selected by the DAC circuit at the subsequent stage according to the gradation display data. Although an amplifier type source driver has been described, the present invention is not limited to this, and is applicable to, for example, a source amplifier type source driver.
ソースアンプ方式とは、階調アンプ方式の階調アンプを削除し、DAC回路の後段に駆動アンプを配置した構成の回路方式であり、アンプの数はソースドライバ出力端子本数分必要なので面積が大きくなるが、負荷の重いソース端子の負荷を直接駆動できるのでスピード的には有利な方式である。 The source amplifier method is a circuit method in which the gradation amplifier type gradation amplifier is deleted and a drive amplifier is arranged after the DAC circuit. The number of amplifiers is the same as the number of source driver output terminals, so the area is large. However, since the load of the heavy source terminal can be directly driven, this is an advantageous method in terms of speed.
また、階調アンプと階調信号バス配線12とを、第1の実施の形態で例示したように接続して、最上位及び最下位の階調信号K1,K64が出力される階調信号バス配線12の位置を調整すると共に、第2の実施の形態で例示したように、振幅の大きな階調信号を出力する階調アンプAPnほど中央付近に配置して、階調信号バス配線12に対するその接続位置が中央部に近くなるように階調アンプAPnと階調信号バス配線12とを接続するようにしてもよい。このような構成により、より波形の鈍りを抑え、遅延時間を短くすることができる。
Further, the gradation signal bus is connected to the gradation amplifier and the gradation
10、30 抵抗分圧回路
12 階調信号バス配線
14 DAC回路
16 電源配線
20 ガンマ曲線抵抗
22、24、26 接続線
AP1〜AP64 階調アンプ
K1〜K64 階調信号
N1〜N64 ノード
S1〜S960 出力端子
10, 30 Resistance
Claims (3)
前記複数の階調信号線の各々に接続され、該接続された複数の階調信号線に供給された複数の階調信号から表示手段に印加する階調信号を選択する複数の選択手段と、
を含む表示制御装置。 A plurality of gradation signal lines arranged in parallel in a predetermined direction and supplied with a plurality of gradation signals corresponding to a plurality of gradation levels, corresponding to the highest gradation level among the plurality of gradation levels. A gradation signal line to which the highest gradation signal is supplied is juxtaposed between two gradation signal lines to which a gradation signal in phase with the highest gradation signal is supplied, and the plurality of gradation levels are Among them, the gradation signal line to which the lowest gradation signal corresponding to the lowest gradation level is supplied is parallel between the two gradation signal lines to which the gradation signal in phase with the lowest gradation signal is supplied. A plurality of gradation signal lines provided;
A plurality of selection means connected to each of the plurality of gradation signal lines and selecting a gradation signal to be applied to the display means from the plurality of gradation signals supplied to the connected plurality of gradation signal lines;
A display control device.
所定方向に並設され、複数の階調レベルに応じた複数の階調信号が供給される複数の階調信号線と、
前記複数の階調信号線の各々に接続され、該接続された複数の階調信号線に供給された複数の階調信号から表示手段に印加する階調信号を選択する複数の選択手段と、
前記複数の階調信号に対応して設けられ、前記階調信号発生手段で発生した複数の階調信号の各々が前記複数の階調信号線の各々に供給されるように前記階調信号発生手段の出力端と前記複数の階調信号線とを接続する複数の接続配線であって、前記階調信号発生手段の前記複数の階調レベルのうち最上位の階調レベルに対応する最上位階調信号を出力する出力端と該最上位階調信号と同相の階調信号が供給される2本の階調信号線間に並設された階調信号線とを接続する接続配線、および前記階調信号発生手段の前記複数の階調レベルのうち最下位の階調レベルに対応する最下位階調信号を出力する出力端と該最下位階調信号と同相の階調信号が供給される2本の階調信号線間に並設された階調信号線とを接続する接続配線を含む複数の接続配線と、
を含む表示制御装置。 Gradation signal generating means for generating and outputting a plurality of gradation signals corresponding to a plurality of gradation levels;
A plurality of gradation signal lines arranged in parallel in a predetermined direction and supplied with a plurality of gradation signals according to a plurality of gradation levels;
A plurality of selection means connected to each of the plurality of gradation signal lines and selecting a gradation signal to be applied to the display means from the plurality of gradation signals supplied to the connected plurality of gradation signal lines;
The gradation signal generation is provided so as to correspond to the plurality of gradation signals, and each of the plurality of gradation signals generated by the gradation signal generation means is supplied to each of the plurality of gradation signal lines. A plurality of connection lines connecting the output terminals of the means and the plurality of gradation signal lines, the highest level corresponding to the highest gradation level among the plurality of gradation levels of the gradation signal generating means A connection wiring for connecting an output terminal for outputting a gradation signal and a gradation signal line provided in parallel between two gradation signal lines to which a gradation signal having the same phase as that of the uppermost gradation signal is supplied; An output terminal for outputting the lowest gradation signal corresponding to the lowest gradation level among the plurality of gradation levels of the gradation signal generating means and a gradation signal in phase with the lowest gradation signal are supplied. A plurality of contacts including a connection wiring for connecting the gradation signal lines arranged in parallel between the two gradation signal lines. And wiring,
A display control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007235668A JP5102568B2 (en) | 2007-09-11 | 2007-09-11 | Display control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007235668A JP5102568B2 (en) | 2007-09-11 | 2007-09-11 | Display control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009069287A JP2009069287A (en) | 2009-04-02 |
JP5102568B2 true JP5102568B2 (en) | 2012-12-19 |
Family
ID=40605648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007235668A Expired - Fee Related JP5102568B2 (en) | 2007-09-11 | 2007-09-11 | Display control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5102568B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7446800B2 (en) | 2019-12-06 | 2024-03-11 | ラピスセミコンダクタ株式会社 | Display driver and display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703617A (en) * | 1993-10-18 | 1997-12-30 | Crystal Semiconductor | Signal driver circuit for liquid crystal displays |
JP2000156639A (en) * | 1998-11-20 | 2000-06-06 | Fujitsu Ltd | Selection circuit, semiconductor device including the same, D / A conversion circuit, and liquid crystal display device |
JP3562706B2 (en) * | 1999-06-23 | 2004-09-08 | 関西日本電気株式会社 | Integrated circuit device |
JP3833043B2 (en) * | 2000-04-06 | 2006-10-11 | 富士通株式会社 | Gradation wiring for display, driver for liquid crystal display, and stress test method thereof |
JP3955298B2 (en) * | 2003-12-25 | 2007-08-08 | 松下電器産業株式会社 | Resistive voltage dividing circuit, and liquid crystal driving device and liquid crystal display device using this resistive voltage dividing circuit |
-
2007
- 2007-09-11 JP JP2007235668A patent/JP5102568B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009069287A (en) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6509895B2 (en) | Voltage generating circuit, and common electrode drive circuit, signal line drive circuit and gray-scale voltage generating circuit for display devices | |
CN100552764C (en) | Improvement of Inverted Drive LCD | |
US9275595B2 (en) | Output buffer circuit and source driving circuit including the same | |
KR100986040B1 (en) | Display driving circuit | |
JP6272712B2 (en) | Drive device for display device | |
JP3942595B2 (en) | LCD panel drive circuit | |
US8063896B2 (en) | Liquid crystal display device, source driver, and method of driving a liquid crystal display panel | |
US7551111B2 (en) | Decoder circuit, driving circuit for display apparatus and display apparatus | |
JP2012008197A (en) | Drive circuit, driving method, and display device | |
JPH0887251A (en) | Liquid crystal drive circuit and liquid crystal display device | |
US20140292409A1 (en) | Amplification circuit, source driver, electrooptical device, and electronic device | |
JP2011059380A (en) | Display device and drive circuit used therefor | |
US20160322011A1 (en) | Liquid crystal display and a driving method thereof | |
JP6021927B2 (en) | Display panel driving device and display device | |
JP2008134496A (en) | Gradation potential generation circuit, data driver of display device and display device having the same | |
JP2005215052A (en) | Liquid crystal driving power supply circuit, liquid crystal driving device and liquid crystal display apparatus | |
JP6917178B2 (en) | Output circuit, data line driver and display device | |
JP2006267675A (en) | Device and method for driving display device | |
US11356113B2 (en) | Digital-to-analog conversion circuit and data driver | |
JP2020008675A (en) | Display driver, electro-optic device and electronic apparatus | |
JP2010226591A (en) | Display device drive circuit | |
JP5102568B2 (en) | Display control device | |
JP2014052535A (en) | Data line driver and liquid crystal display device | |
JP4456190B2 (en) | Liquid crystal panel drive circuit and liquid crystal display device | |
CN112927657A (en) | Display driver and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20081224 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100830 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20111220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5102568 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |