[go: up one dir, main page]

JP5097289B1 - Battery charger and charging device for electric vehicle charging - Google Patents

Battery charger and charging device for electric vehicle charging Download PDF

Info

Publication number
JP5097289B1
JP5097289B1 JP2011118801A JP2011118801A JP5097289B1 JP 5097289 B1 JP5097289 B1 JP 5097289B1 JP 2011118801 A JP2011118801 A JP 2011118801A JP 2011118801 A JP2011118801 A JP 2011118801A JP 5097289 B1 JP5097289 B1 JP 5097289B1
Authority
JP
Japan
Prior art keywords
charging
value
current
control data
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011118801A
Other languages
Japanese (ja)
Other versions
JP2012249409A (en
Inventor
敏之 藤田
全良 尾崎
正樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011118801A priority Critical patent/JP5097289B1/en
Priority to PCT/JP2012/060324 priority patent/WO2012165072A1/en
Application granted granted Critical
Publication of JP5097289B1 publication Critical patent/JP5097289B1/en
Publication of JP2012249409A publication Critical patent/JP2012249409A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 電気自動車の蓄電池を脈流充電方式により安価で安全に充電する充電器を提供する。
【解決手段】 充電対象の電気自動車との間で充電制御に使用する制御データの通信を行う第1通信部13と、電気自動車に搭載されている蓄電池21に脈流の充電電流を供給する充電回路部11と、充電回路部11の電流供給を制御データに基づいて制御する制御回路部12を備え、第1通信部13が、充電開始前に、少なくとも充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値の目標値である目標電流指標値を含む制御データを、電気自動車から取得し、制御回路部12が、制御データに基づいて充電電流の電流指標値が目標電流指標値となるように制御する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a charger for charging a storage battery of an electric vehicle inexpensively and safely by a pulsating charging method.
A first communication unit that performs communication of control data used for charging control with an electric vehicle to be charged, and charging that supplies a pulsating charging current to a storage battery that is mounted on the electric vehicle. The circuit unit 11 and the control circuit unit 12 that controls the current supply of the charging circuit unit 11 based on the control data are provided, and the first communication unit 13 includes at least an integrated value of the charging current for each predetermined time unit before starting charging. Alternatively, control data including a target current index value that is a target value of the current index value given as an average value is acquired from the electric vehicle, and the control circuit unit 12 determines that the current index value of the charging current is the target current based on the control data. Control to be an index value.
[Selection] Figure 1

Description

本発明は、電池式の電気自動車に搭載される蓄電池(2次電池)に充電電流を供給する充電器であって、電気自動車から分離して設けられた充電スタンド等で使用される電気自動車充電用の充電器、及び、当該充電器から充電電流の供給を受け付けて車載蓄電池への充電を電気自動車側において行う充電装置に関する。   The present invention is a charger for supplying a charging current to a storage battery (secondary battery) mounted on a battery-powered electric vehicle, and charging the electric vehicle used in a charging stand provided separately from the electric vehicle. The present invention relates to a battery charger and a charging device that accepts a supply of charging current from the battery charger and charges an in-vehicle storage battery on the electric vehicle side.

電池式の電気自動車に搭載された蓄電池の充電方式としては、定電流定電圧(CVCC:Constant Voltage Constant Current)方式が一般的である。当該CVCC方式では、通常、1)定電流充電(急速充電)、2)定電圧充電、3)満充電判定、というシーケンスで充電制御が行われる。定電流充電開始後、電池電圧が満充電電圧付近まで上昇すると、定電圧充電に切り替える。定電圧充電では、蓄電池の充電容量が上昇するに従い充電電流が減少する。当該充電電流の電流値が所定の閾値まで減少すると満充電であると判定し充電を終了する。   As a charging system for a storage battery mounted on a battery-type electric vehicle, a constant voltage constant voltage (CVCC) system is generally used. In the CVCC method, charge control is normally performed in the sequence of 1) constant current charge (rapid charge), 2) constant voltage charge, and 3) full charge determination. When the battery voltage rises to near the full charge voltage after starting the constant current charge, switching to the constant voltage charge is performed. In constant voltage charging, the charging current decreases as the charging capacity of the storage battery increases. When the current value of the charging current decreases to a predetermined threshold, it is determined that the battery is fully charged, and charging is terminated.

また、車載型の充電器ではなく、充電スタンド等で使用する電気自動車から分離して設けられた充電器を用いて、不特定多数の電気自動車を対象として上記CVCC方式での急速充電を行うために、一例として、チャデモ協議会では、標準規格としてチャデモ・プロトコルを取り決めている。当該チャデモ・プロトコルでは、急速充電器と電気自動車間でCAN(Contoroller Area Network)通信を用い、急速充電器側から電気自動車側へ動作ステータスを送信し、引き続き、電気自動車側から急速充電器側へ、充電許可信号と電流指示値を送信し、急速充電器は受信した電流指示値に基づき、電気自動車に対して定電流で直流充電を行う。これにより、当該規格に準拠した急速充電器であれば、当該規格に準拠した如何なる電気自動車に対しても急速充電が可能となり、電気自動車の普及に資することとなる。   Also, in order to perform rapid charging with the above-mentioned CVCC method for a large number of unspecified electric vehicles using a charger provided separately from an electric vehicle used at a charging stand or the like instead of an in-vehicle charger. As an example, the CHAdeMO Association has decided on the CHAdeMO protocol as a standard. In the CHAdeMO protocol, CAN (Controller Area Network) communication is used between the quick charger and the electric vehicle, and the operation status is transmitted from the quick charger side to the electric vehicle side, and then from the electric vehicle side to the quick charger side. Then, the charging permission signal and the current instruction value are transmitted, and the quick charger performs DC charging with a constant current on the electric vehicle based on the received current instruction value. Thereby, if it is a quick charger based on the said standard, quick charge will be attained with respect to any electric vehicle based on the said standard, and it will contribute to the spread of an electric vehicle.

充電スタンド等で使用される直流充電用の急速充電器では、短時間で急速充電を行う必要から大電力充電が行われる。当該急速充電器は、商用交流電源(例えば、三相200V)の交流入力を直流に変換するAC/DCコンバータを備えるが、大電流且つ定電流・定電圧の直流電流を出力する必要性から、AC/DCコンバータの後段に更に出力電流または出力電圧を一定に維持するためのDC/DCコンバータを備える構成が一般的に採用されている。しかし、急速充電器は50kWの大容量の出力が可能なAC/DCコンバータと、DC/DCコンバータの制御によって、充電電流のリップルを抑制するため、大容量のDC/DCコンバータを搭載することが必要であり、急速充電器が高コストとなるため、急速充電器を使用する充電スタンドの普及に対する一つの阻害要因となる。   In a quick charger for DC charging used in a charging stand or the like, high power charging is performed because it is necessary to perform quick charging in a short time. The quick charger includes an AC / DC converter that converts an AC input of a commercial AC power supply (for example, three-phase 200V) into DC, but from the necessity of outputting a DC current of a large current and a constant current / constant voltage, In general, a configuration including a DC / DC converter for maintaining the output current or the output voltage constant at the subsequent stage of the AC / DC converter is employed. However, the quick charger is equipped with an AC / DC converter that can output a large capacity of 50 kW and a DC / DC converter with a large capacity in order to suppress charging current ripple by controlling the DC / DC converter. This is necessary and the cost of the quick charger is high, which is an obstacle to the spread of charging stations using the quick charger.

一方、下記の特許文献1及び2等において、AC/DCコンバータとDC/DCコンバータを各々、別々に備えず、DC/DCコンバータを削減し、脈流により蓄電池の充電を行う充電装置が提案されている。特許文献1では、充電装置を電気自動車に搭載する場合、平滑コンデンサに使用する電解コンデンサの耐環境性の問題により、特性安定性や寿命特性を満足できないことから、大容量且つ高耐圧のフィルムコンデンサを使用すると、充電装置が大型化してしまう点が指摘され、脈流充電を採用することで、耐環境性を担保しつつ小型の充電装置が提供できることが記載されている。特許文献2に開示されている充電器は、充電器側と電気自動車側が誘導性結合器を介して接続し、電気自動車側は、誘導性結合器の2次コイルにより充電器側から交流電力を受け取り、全波整流して得られた脈流で蓄電池を充電する構成となっている。従って、充電器は電気自動車から分離して用いられることが想定されているものの、充電器から電気自動車の蓄電池に脈流の充電電流を直接供給する構成とはなっていない。   On the other hand, the following Patent Documents 1 and 2 propose a charging device that does not include an AC / DC converter and a DC / DC converter separately, reduces the DC / DC converter, and charges the storage battery by pulsating current. ing. In Patent Document 1, when a charging device is mounted on an electric vehicle, a film capacitor having a large capacity and a high withstand voltage cannot be satisfied due to environmental resistance problems of an electrolytic capacitor used as a smoothing capacitor. It is pointed out that the use of the battery increases the size of the charging device, and it is described that the use of pulsating charging can provide a small charging device while ensuring environmental resistance. In the charger disclosed in Patent Document 2, the charger side and the electric vehicle side are connected via an inductive coupler, and the electric vehicle side receives AC power from the charger side by the secondary coil of the inductive coupler. The storage battery is charged with a pulsating flow obtained by receiving and full-wave rectifying. Therefore, although it is assumed that the charger is used separately from the electric vehicle, the charging current is not directly supplied from the charger to the storage battery of the electric vehicle.

特開2009−247101号公報JP 2009-247101 A 特開2001−103685号公報Japanese Patent Laid-Open No. 2001-103585

電気自動車から分離して設けられた充電スタンド等で使用される電気自動車充電用の充電器の充電方式として、CVCC方式の直流充電ではなく、充電器側から脈流の充電電流を直接供給する脈流充電方式を採用する場合、蓄電池に入力する充電電流の電流値が周期的に変化し、当該充電電流によって蓄電池に印加される電圧も周期的に変化するため、以下に示す課題を解決する必要がある。   As a charging method for a charger for charging an electric vehicle used in a charging stand or the like provided separately from the electric vehicle, a pulse current that directly supplies a pulsating charging current from the charger side is used instead of the CVCC DC charging. When the direct current charging method is adopted, the current value of the charging current input to the storage battery changes periodically, and the voltage applied to the storage battery also changes periodically due to the charging current, so it is necessary to solve the following problems There is.

第1に、車載充電器でない場合、つまり、充電器と電気自動車が相互に分離独立している場合、不特定多数の充電器と不特定多数の電気自動車の間で脈流充電を行う必要が生じるため、充電器から供給される脈流充電電流の特性、電気自動車に搭載されている蓄電池の種類、充電状態等も様々であるため、充電器から供給される充電電流を、電気自動車側の蓄電池の種類、充電状態等に適合させる必要が生じる。第2に、充電器の仕様、電気自動車側の蓄電池の種類、充電状態等に応じて充電電力が変動し、更に、充電電流が交流成分(リップル)を含むため、充電電流の所定時間単位毎の積算値または平均値が不明であると、充電電力を正確に把握できない。充電電力を正確に把握できないと、蓄電池の充電終了時間の予測が困難となる。更には、蓄電池の充電状態を正確に把握することが困難となり、電気自動車の走行可能距離の算出において誤差が生じる可能性がある。第3に、充電器から供給される充電電力と電気自動車で受け取る充電電力の間に齟齬があると、充電電力に対して従量課金ができなくなる可能性がある。更に、充電器と電気自動車間で充電電力に齟齬がある場合、短絡電流が発生している可能性があり、当該短絡電流による発熱更には発火等の危険性がある。   First, when it is not an in-vehicle charger, that is, when the charger and the electric vehicle are separated and independent from each other, it is necessary to perform pulsating charging between an unspecified number of chargers and an unspecified number of electric vehicles. Therefore, the characteristics of the pulsating charging current supplied from the charger, the type of storage battery mounted on the electric vehicle, the charging state, etc. are various, so the charging current supplied from the charger is It is necessary to adapt to the type of storage battery, the state of charge, etc. Secondly, the charging power varies depending on the specifications of the charger, the type of storage battery on the electric vehicle side, the charging state, and the charging current includes an AC component (ripple). If the integrated value or the average value is unknown, the charge power cannot be accurately grasped. If the charging power cannot be accurately grasped, it is difficult to predict the charging end time of the storage battery. Furthermore, it becomes difficult to accurately grasp the state of charge of the storage battery, and an error may occur in the calculation of the travelable distance of the electric vehicle. Third, if there is a discrepancy between the charging power supplied from the charger and the charging power received by the electric vehicle, there is a possibility that the metered charge for the charging power cannot be made. Furthermore, when there is a flaw in the charging power between the charger and the electric vehicle, there is a possibility that a short circuit current has occurred, and there is a risk of heat generation and ignition due to the short circuit current.

上記特許文献1及び2では、脈流により蓄電池の充電を行う充電装置が開示されているが、何れも、充電器から不特定多数の電気自動車に対して脈流の充電電流を直接供給する構成とはなっていないため、上記課題及びその解決策については、何らの記載も示唆もされていない。   Patent Documents 1 and 2 disclose a charging device that charges a storage battery by a pulsating current, but both are configured to directly supply a pulsating charging current from a charger to an unspecified number of electric vehicles. Therefore, there is no description or suggestion about the above problem and its solution.

本発明は、上記課題に鑑みてなされたものであり、その目的は、車載蓄電池の種類及び充電状態に適合した充電電流を供給可能で、且つ、正確な充電電力が把握可能な脈流充電方式の安価な充電器を提供し、更に、当該脈流充電に適合した電気自動車側の充電装置を提供することになる。   The present invention has been made in view of the above problems, and the purpose thereof is a pulsating charging method capable of supplying a charging current suitable for the type and state of charge of an in-vehicle storage battery and capable of grasping accurate charging power. In addition, an electric vehicle-side charging device suitable for the pulsating charging is provided.

上記目的を達成するため、本発明は、充電対象の電気自動車との間で充電制御に使用する制御データの通信を行う第1通信部と、前記電気自動車に搭載されている蓄電池に脈流の充電電流を供給する充電回路部と、前記充電回路部の電流供給を前記制御データに基づいて制御する制御回路部と、を備え、前記第1通信部が、充電開始前に、少なくとも前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値の目標値である目標電流指標値を含む前記制御データを、前記電気自動車から取得し、前記制御回路部は、前記制御データに基づいて前記充電電流の前記電流指標値を前記目標電流指標値となるように制御することを特徴とする電気自動車充電用の充電器を提供する。   In order to achieve the above object, the present invention provides a first communication unit that communicates control data used for charging control with an electric vehicle to be charged, and a pulsating current in a storage battery mounted on the electric vehicle. A charging circuit unit that supplies a charging current; and a control circuit unit that controls the current supply of the charging circuit unit based on the control data, and the first communication unit includes at least the charging current before starting charging. The control data including a target current index value, which is a target value of a current index value given as an integrated value or an average value for each predetermined time unit, is acquired from the electric vehicle, and the control circuit unit adds the control data to the control data. A charger for charging an electric vehicle is provided that controls the current index value of the charging current to be the target current index value.

上記特徴の充電器によれば、不特定多数の電気自動車に対して、不特定多数の充電器を任意に組み合わせて接続しても、何れの充電器においても、電流指標値が電気自動車から指示された充電対象の蓄電池の種類、充電状態等に適合した目標電流指標値となるように制御された充電電流による車載蓄電池への充電が可能となる。これにより、充電器及び電気自動車側において充電電力の把握が可能となり、充電終了時間の正確な予測、走行可能距離の正確な算出等が可能となる。   According to the charger having the above characteristics, the current index value is instructed from the electric vehicle in any charger regardless of whether the charger is connected in any combination to an unspecified number of electric vehicles. The vehicle-mounted storage battery can be charged with the charging current controlled to be the target current index value suitable for the type of storage battery to be charged, the state of charge, and the like. As a result, the charging power can be grasped on the charger and the electric vehicle side, and the charging end time can be accurately predicted, the driving distance can be accurately calculated, and the like.

尚、上記特徴の充電器が適応可能な電気自動車は、蓄電池に充電された電力によりモータを駆動して走行する電池式電動車両であって、外部からの充電電流の供給により蓄電池の充電が可能な全ての電動車両が対象となり、例えば、プラグイン・ハイブリッドカーが含まれる。また、上記特徴の充電器が適応可能な電気自動車は、必ずしも4輪自動車に限定されるものではなく、例えば、2輪自動車であっても良く、また、公道を走行する電気自動車に限定されるものではなく、例えば、軌道上を走行する電動車両であっても良い。   The electric vehicle to which the charger having the above characteristics can be applied is a battery-powered electric vehicle that runs by driving a motor with electric power charged in the storage battery, and the storage battery can be charged by supplying a charging current from the outside. All electric vehicles such as plug-in hybrid cars are included. The electric vehicle to which the charger having the above characteristics can be applied is not necessarily limited to a four-wheeled vehicle, and may be, for example, a two-wheeled vehicle or limited to an electric vehicle traveling on a public road. For example, it may be an electric vehicle that travels on a track.

更に好ましくは、上記特徴の充電器は、充電開始後に、前記第1通信部が、前記蓄電池の充電の進行に伴い更新される前記制御データを前記電気自動車から順次取得し、前記制御回路部が、前記電流指標値を順次取得した前記制御データに含まれる前記目標電流指標値となるように制御する。これにより、蓄電池の充電の進行に伴い電池電圧が上昇した場合でも、電気自動車側から電池電圧の上昇に応じた適正な目標電流指標値の指示値を受信するため、常に充電電流の電流指標値を適正な目標電流指標値に維持して充電を継続することができる。結果として、蓄電池の充電の進行に伴い電池電圧が上昇しても、蓄電池に過度な充電電圧や充電電流が印加されるのを防止でき、蓄電池の寿命低下及び発火等の危険性のない脈流充電方式による充電が可能となる。   More preferably, in the charger having the above characteristics, after the start of charging, the first communication unit sequentially acquires the control data updated as the storage battery progresses from the electric vehicle, and the control circuit unit The current index value is controlled so as to be the target current index value included in the control data obtained sequentially. As a result, even when the battery voltage increases with the progress of charging of the storage battery, an appropriate target current index value indicating value according to the increase of the battery voltage is received from the electric vehicle side. Can be maintained at an appropriate target current index value and charging can be continued. As a result, even if the battery voltage increases with the progress of charging of the storage battery, it is possible to prevent an excessive charging voltage or charging current from being applied to the storage battery, and there is no risk such as a decrease in the life of the storage battery and ignition. Charging by a charging method is possible.

更に好ましくは、上記特徴の充電器は、前記第1通信部が、充電開始前に、前記充電回路部が脈流の充電電流を供給する脈流充電である旨の情報を前記電気自動車に送信した後、前記制御データを前記電気自動車から受信する。これにより、脈流の充電電流を受け付ける電気自動車側では、接続する充電器が、脈流充電方式で充電を行うのか、或いは、例えばCVCC方式で充電を行うかが事前に分かるので、接続する充電器の充電方式に適した制御データを、CVCC方式の制御データと区別して充電器側に送信することができる。   More preferably, in the charger having the above characteristics, before the start of charging, the first communication unit transmits information to the electric vehicle that the charging circuit unit is pulsating charging for supplying a pulsating charging current. Then, the control data is received from the electric vehicle. As a result, on the side of the electric vehicle that accepts the charging current of the pulsating current, it can be known in advance whether the charger to be connected is charged by the pulsating charging method or is charged by, for example, the CVCC method. The control data suitable for the charging method of the charger can be transmitted to the charger side separately from the control data of the CVCC method.

更に好ましくは、上記特徴の充電器は、前記制御回路部が、充電開始直後の一定期間において、前記充電電流の電流指標値を前記目標電流指標値に向けて徐々に増加させる制御を行う。蓄電池の充電状態が満充電に近い場合等において、いきなり、充電電流の電流指標値が目標電流指標値となる充電電流を供給すると、充電電流が脈流であるため、充電電流のピーク値(リップルの繰り返し周期毎の極大値)が、充電電流の瞬時値に対して許容される最大電流上限値を超える可能性、或いは、脈流の充電電流が蓄電池に供給されることで、蓄電池に印加される充電電圧のピーク値が、充電電圧の上限値を超える可能性があるが、充電電流の電流指標値を目標電流指標値に向けて徐々に増加させる制御を行うことで、斯かる事態を未然に回避することができる。   More preferably, in the charger having the above characteristics, the control circuit unit performs control to gradually increase the current index value of the charging current toward the target current index value in a certain period immediately after the start of charging. When the charging state of the storage battery is almost fully charged, suddenly, if a charging current is supplied in which the current index value of the charging current becomes the target current index value, the charging current is pulsating, so the peak value of the charging current (ripple (The maximum value for each repetition period) may exceed the maximum allowable upper limit value for the instantaneous value of the charging current, or the pulsating charging current is supplied to the storage battery and applied to the storage battery. The peak value of the charging voltage may exceed the upper limit value of the charging voltage, but by controlling the charging current index value gradually toward the target current index value, such a situation can be prevented. Can be avoided.

更に好ましくは、上記特徴の充電器は、前記充電回路部が、最終段にLC型の低域通過フィルタを備える。これにより、充電電流に含まれている高周波域の交流成分が除去されるため、充電電流のボトム値(極小値)が0まで低下せず、常に計測誤差以上の電流値(瞬時値)が確保されるようになるため、充電電流の測定精度が向上し、その結果として、充電電流の制御精度が向上する。また、電気自動車側においても、充電電流の測定精度が向上することで、充電電流の電流指標値の算出結果の精度が向上することから、充電終了時間の予測精度や走行可能距離の計算精度が向上する。   More preferably, in the charger having the above characteristics, the charging circuit unit includes an LC type low-pass filter in the final stage. As a result, the AC component in the high frequency range included in the charging current is removed, so the bottom value (minimum value) of the charging current does not decrease to 0, and a current value (instantaneous value) that is always greater than the measurement error is ensured. Therefore, the measurement accuracy of the charging current is improved, and as a result, the control accuracy of the charging current is improved. Also on the electric vehicle side, the accuracy of charging current measurement is improved by improving the charging current measurement accuracy, so the charging end time prediction accuracy and travelable distance calculation accuracy are improved. improves.

更に好ましくは、上記特徴の充電器は、前記制御回路部が、前記充電電流の測定値に基づいて前記電流指標値を算出し、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記電流指標値が前記目標電流指標値を所定の誤差範囲を超えて超過する場合は、前記電流指標値が低下するように前記制御値を調整するフィードバック制御を行う。これにより、充電電流の電流指標値を目標電流指標値となるようにする制御が前記制御値を調整するフィードバック制御によって実現される。   More preferably, in the charger having the above characteristics, the control circuit unit calculates the current index value based on the measured value of the charging current, and the charging circuit is controlled by a control value adjusted based on the control data. Configured to control an on / off duty ratio of a switching element constituting a booster circuit provided in a section, and when the current index value exceeds the target current index value beyond a predetermined error range, the current Feedback control is performed to adjust the control value so that the index value decreases. As a result, control for making the current index value of the charging current become the target current index value is realized by feedback control for adjusting the control value.

更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流の最大電流上限値を含み、前記制御回路部が、前記制御データに基づいて前記充電電流を前記最大電流上限値以下となるように制御する。これにより、不特定多数の電気自動車に対して、不特定多数の充電器を任意に組み合わせて接続しても、何れの充電器においても、充電器側の給電能力に応じて、また、充電対象の蓄電池の種類及び充電状態に応じて、電気自動車から指示された最大電流上限値以下に制御された充電電流による車載蓄電池への充電が可能となる。結果として、脈流充電に起因する蓄電池の寿命低下及び発火等の危険性が防止され、安全且つ安価な脈流充電方式の充電器を提供することができる。   More preferably, in the charger having the above characteristics, the control data includes a maximum current upper limit value of the charging current, and the control circuit unit sets the charging current to be equal to or less than the maximum current upper limit value based on the control data. Control to be. As a result, regardless of the unspecified number of electric vehicles, any number of unspecified chargers can be connected in any combination, and in any charger, depending on the power supply capacity on the charger side, The on-vehicle storage battery can be charged with the charging current controlled to be equal to or lower than the maximum current upper limit value instructed by the electric vehicle according to the type and the charging state of the storage battery. As a result, it is possible to provide a safe and inexpensive pulsating charging method charger, which prevents the life of the storage battery from being shortened and the risk of ignition due to pulsating charging.

更に好ましくは、上記特徴の充電器は、前記制御回路部が、前記充電電流の測定値に基づいて前記充電電流のピーク値及び前記電流指標値を算出し、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記電流指標値が前記目標電流指標値を所定の誤差範囲を超えて超過する場合は前記電流指標値が低下するように、更に、前記充電電流のピーク値が前記最大電流上限値と所定の誤差範囲内で等しいか、或いは、超過する場合は、前記ピーク値が低下するように、前記制御値を調整するフィードバック制御を行う。これにより、充電電流の電流指標値を目標電流指標値となるようにする制御と充電電流を最大電流上限値以下とする制御が前記制御値を調整するフィードバック制御によって同時に実現される。
More preferably, in the charger having the above characteristics, the control circuit unit calculates the peak value of the charging current and the current index value based on the measured value of the charging current, and is adjusted based on the control data. The control value is configured to control an on / off duty ratio of a switching element constituting a booster circuit provided in the charging circuit unit, and the current index value exceeds the target current index value beyond a predetermined error range. Further, the peak value of the charging current is equal to the maximum current upper limit value within a predetermined error range, or the peak value is decreased when exceeding, so that the current index value decreases when exceeding. to so, perform to that feedback control adjusts the control value. As a result, the control for setting the current index value of the charging current to be the target current index value and the control for setting the charging current to the maximum current upper limit value or less are simultaneously realized by feedback control for adjusting the control value.

更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流の前記電流指標値の指示値を含み、前記制御回路部が、前記充電電流の測定値から前記電流指標値を算出し、前記電流指標値の算出値が前記電流指標値の指示値から所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する制御を行う。脈流充電の場合、充電器側から供給された充電電力と、電気自動車側で受電した充電電力が同じかどうかの正確な判定が困難であるが、上記のように、電流指標値の算出値と指示値を比較することで、両者の充電電力が同じか否かの正確な確認が行えるようになる。また、両者の充電電力の差が生じている場合には、充電器側または電気自動車側において短絡電流が発生している可能性があり、当該短絡電流による発火等の事故が生じる可能性があるが、当該事故の発生を未然に防止することができる。また、電気料金の請求に関しても、実際の受電電力と、供給電力に差があった場合、不当な支払いを強いられる可能性があるが、本発明により、防ぐことができる。   More preferably, in the charger having the above characteristics, the control data includes an indication value of the current index value of the charging current, and the control circuit unit calculates the current index value from the measured value of the charging current. When the calculated value of the current index value deviates from the indicated value of the current index value beyond a predetermined error range, control for stopping the supply of the charging current is performed. In the case of pulsating charge, it is difficult to accurately determine whether the charging power supplied from the charger side and the charging power received on the electric vehicle side are the same, but as described above, the calculated value of the current index value By comparing the indicated values with each other, it is possible to accurately check whether or not the charging powers of both are the same. Further, when there is a difference between the charging powers of the two, there is a possibility that a short-circuit current has occurred on the charger side or the electric vehicle side, and an accident such as ignition due to the short-circuit current may occur. However, the occurrence of the accident can be prevented in advance. In addition, regarding the billing of the electricity bill, if there is a difference between the actual received power and the supplied power, there is a possibility that unreasonable payment may be forced, but this can be prevented by the present invention.

更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流の最大電流上限値を含み、前記制御回路部が、前記充電電流の測定値から前記充電電流のピーク値を算出し、前記ピーク値が、前記最大電流上限値より所定の誤差範囲を超えて大きい場合に、前記充電電流の供給を停止する制御を行う。これにより、充電電流の電流指標値を目標電流指標値となるようにする制御下において、仮に、充電電流が最大電流上限値を超過する事態が生じたとしても、当該過剰な充電電流に起因する蓄電池の寿命低下及び発火等の危険性が防止され、安全且つ安価な脈流充電方式の充電器を提供することができる。   More preferably, in the charger having the above characteristics, the control data includes a maximum current upper limit value of the charging current, and the control circuit unit calculates a peak value of the charging current from the measured value of the charging current, When the peak value is larger than the maximum current upper limit value exceeding a predetermined error range, control is performed to stop the supply of the charging current. As a result, even if a situation occurs in which the charging current exceeds the maximum current upper limit value under the control of setting the current index value of the charging current to the target current index value, it is caused by the excessive charging current. It is possible to provide a pulsating charging system charger that is safe and inexpensive and that can prevent dangers such as a decrease in the life of the storage battery and ignition.

更に好ましくは、上記特徴の充電器は、前記制御データが、前記充電電流のピーク値、ボトム値、或いは、所定時間単位毎の積算値または平均値で与えられる電流判定値に対する充電停止下限値を含み、前記制御回路部が、前記充電電流の測定値から前記電流判定値を算出し、前記電流判定値が、前記充電停止下限値以下である場合に、前記充電電流の供給を停止して充電動作を終了する制御を行う。脈流充電の場合、CVCC方式と異なり、蓄電池が満充電に近付いても、定電圧充電とはならないが、電気自動車側で、蓄電池に印加される電圧のピーク値が所定の上限値を超過しないように、目標電流指標値を逐次低下しながら充電器側に送信すると、充電器側では、電気自動車側から指示された目標電流指標値となるように充電電流の電流指標値を制御するため、満充電に近付くに従い充電電流は減少するため、充電電流の上記電流判定値をモニタすることで、満充電判定がCVCC方式と同様に可能となる。   More preferably, in the charger having the above characteristics, the control data includes a charge stop lower limit value with respect to a current determination value given as a peak value, a bottom value, or an integrated value or an average value for each predetermined time unit. The control circuit unit calculates the current determination value from the measured value of the charging current, and when the current determination value is less than or equal to the charging stop lower limit value, the supply of the charging current is stopped and charging is performed. Control to end the operation. In the case of pulsating charge, unlike the CVCC method, even if the storage battery approaches full charge, it does not become constant voltage charge, but the peak value of the voltage applied to the storage battery does not exceed the predetermined upper limit value on the electric vehicle side. As described above, when the target current index value is transmitted to the charger side while sequentially decreasing, the charger side controls the current index value of the charging current so as to be the target current index value instructed from the electric vehicle side. Since the charging current decreases as it approaches full charge, the full charge determination can be performed in the same manner as in the CVCC method by monitoring the current determination value of the charge current.

更に好ましくは、上記特徴の充電器は、前記第1通信部が前記電気自動車から充電停止指示を受信すると、前記制御回路部が前記充電電流の供給を停止する制御を行う。上述の電流指標値の算出値と指示値の比較判定、充電電流のピーク値と最大電流上限値の比較判定、或いは、満充電判定は、充電器側ではなく、電気自動車側で行うこともできるため、例えば、電気自動車側で当該判定を行った場合は、充電器側では、当該判定に基づく充電停止指示を電気自動車から受信することで、充電器側で当該判定を行った場合と同様に、充電電流の供給を停止することができる。尚、充電停止指示は、上記の3つの判定以外の異常判定の結果として発生しても良い。   More preferably, in the charger having the above characteristics, when the first communication unit receives a charge stop instruction from the electric vehicle, the control circuit unit performs control to stop the supply of the charging current. The comparison determination between the calculated value of the current index value and the instruction value, the comparison determination between the peak value of the charging current and the maximum current upper limit value, or the full charge determination can be performed not on the charger side but on the electric vehicle side. Therefore, for example, when the determination is performed on the electric vehicle side, the charger side receives a charge stop instruction based on the determination from the electric vehicle, and the same as when the determination is performed on the charger side. The supply of charging current can be stopped. The charge stop instruction may be generated as a result of abnormality determination other than the above three determinations.

上記目的を達成するため、本発明は、上記特徴の充電器から供給される充電電流により、電気自動車側において車載蓄電池の充電を行う車載充電装置であって、前記充電器と前記制御データの通信を行う第2通信部と、充電開始前に前記蓄電池の電気的仕様と内部状態の少なくとも何れか一方に基づき前記制御データに含まれる設定値を設定し、充電開始後に前記内部状態の変化に応じて逐次前記設定値を更新する制御データ設定部と、を備えることを特徴とする充電装置を提供する。   In order to achieve the above object, the present invention provides an in-vehicle charging device for charging an in-vehicle storage battery on the electric vehicle side by a charging current supplied from the charger having the above characteristics, and communication of the control data with the charger. A setting value included in the control data is set based on at least one of an electrical specification and an internal state of the storage battery before starting charging, and according to a change in the internal state after starting charging And a control data setting unit that sequentially updates the set value.

上記特徴の充電装置によれば、蓄電池の電気的仕様と内部状態の少なくとも何れか一方に応じた少なくとも充電電流の目標電流指標値を含む制御データを上記特徴の充電器に対して送信できるため、充電器側では、充電電流の電流指標値を蓄電池の電気的仕様或いは内部状態に応じた目標電流指標値となるように制御できる。この結果、電気自動車側において充電電力の把握が可能となり、充電終了時間の正確な予測、走行可能距離の正確な算出等が可能となる。   According to the charging device of the above feature, since control data including at least a target current index value of the charging current according to at least one of the electrical specifications and the internal state of the storage battery can be transmitted to the charger of the above feature, On the charger side, the current index value of the charging current can be controlled to be a target current index value corresponding to the electrical specification or internal state of the storage battery. As a result, it is possible to grasp the charging power on the electric vehicle side, and it is possible to accurately predict the charging end time, accurately calculate the travelable distance, and the like.

更に好ましくは、上記特徴の充電装置は、前記制御データ設定部が、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、前記第2通信部が、充電開始前及び充電開始後において順次、算出された前記制御データを前記充電器に送信する。これにより、蓄電池の充電の進行に伴い目標電流指標値が低下した場合でも、充電器側へ適正な目標電流指標値を送信できるため、充電器側から常に電流指標値が適正な目標電流指標値に維持された充電電流を受け付け、蓄電池に対して過剰な負荷が掛かるのを防止できる。よって、蓄電池の寿命低下及び発火等の危険性のない脈流充電方式がより確実に実行可能となる。   More preferably, in the charging device having the above characteristics, the control data setting unit sequentially acquires the latest internal state of the storage battery before and after the start of charging, and is included in the control data based on the internal state. The set value to be calculated is calculated, and the second communication unit sequentially transmits the calculated control data to the charger before and after the start of charging. As a result, even when the target current index value decreases with the progress of charging of the storage battery, an appropriate target current index value can be transmitted to the charger side. It is possible to receive the charging current maintained in the battery and prevent an excessive load from being applied to the storage battery. Therefore, the pulsating charging method without danger such as a reduction in the life of the storage battery and ignition can be more reliably performed.

更に好ましくは、上記特徴の充電装置は、前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、前記制御データ設定部が、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の少なくとも前記目標電流指標値の設定値を低下させる。更に好ましくは、上記特徴の充電装置は、前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、前記制御データ設定部が、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の前記最大電流上限値の設定値を低下させる。これらにより、充電電圧のピーク値が充電電圧の上限値を超えないようにする制御がより確実になる。   More preferably, the charging device of the above feature includes a voltmeter that measures a charging voltage applied to the storage battery by the charging current, and the control data setting unit sets a peak value of the charging voltage to a predetermined threshold value. When exceeding, at least the set value of the target current index value among the set values included in the control data is lowered. More preferably, the charging device of the above feature includes a voltmeter that measures a charging voltage applied to the storage battery by the charging current, and the control data setting unit sets a peak value of the charging voltage to a predetermined threshold value. When exceeding, the set value of the maximum current upper limit value among the set values included in the control data is lowered. As a result, the control for preventing the peak value of the charging voltage from exceeding the upper limit value of the charging voltage becomes more reliable.

更に好ましくは、上記特徴の充電装置は、前記制御データ設定部が、前記蓄電池の内部状態である電池電圧と内部インピーダンスに基づいて、前記最大電流上限値と前記内部インピーダンスの積と前記電池電圧の和が、前記電池電圧の上限値を超えないように、且つ、前記最大電流上限値が前記蓄電池の許容最大電流値を超えないように、前記最大電流上限値を設定する。   More preferably, in the charging device having the above characteristics, the control data setting unit is configured to calculate the product of the maximum current upper limit value and the internal impedance and the battery voltage based on the battery voltage and the internal impedance which are internal states of the storage battery. The maximum current upper limit value is set so that the sum does not exceed the upper limit value of the battery voltage and the maximum current upper limit value does not exceed the allowable maximum current value of the storage battery.

蓄電池の電池電圧が一定レベルを超えて上昇した場合、CVCC方式では、定電流充電から定電圧充電に切り替えることで、内部インピーダンスでの電圧降下を定電圧の充電電圧値と電池電圧の差として制御することで、充電電流の電流値を抑制することができる。つまり、電池電圧の上昇とともに充電電流は減少する。一方、脈流充電方式の場合、充電器側で定電圧制御を行わないため、電気自動車側で、電池電圧と内部インピーダンスに基づいて最大電流上限値を設定することで、電池電圧の上昇とともに充電電流のピーク値が低下するように制御し、蓄電池に印加される電圧のピーク値を電池電圧の上限値以下に制御可能となり、CVCC方式における定電圧充電期間と同様の作用効果を得ることができる。   When the battery voltage of the storage battery rises above a certain level, the CVCC method controls the voltage drop at the internal impedance as the difference between the charging voltage value of the constant voltage and the battery voltage by switching from constant current charging to constant voltage charging. By doing so, the current value of the charging current can be suppressed. That is, the charging current decreases as the battery voltage increases. On the other hand, in the case of the pulsating charging method, constant voltage control is not performed on the charger side. Control is performed so that the peak value of the current decreases, and the peak value of the voltage applied to the storage battery can be controlled to be equal to or lower than the upper limit value of the battery voltage, and the same effect as the constant voltage charging period in the CVCC method can be obtained. .

更に好ましくは、上記特徴の充電装置は、前記制御データ設定部は、充電開始前に、前記充電器が脈流の充電電流を供給する脈流充電方式の充電器であること確認した後、前記制御データの設定値を算出して、前記第2通信部を介して前記充電器に送信する。これにより、接続する充電器が脈流充電方式の充電器であることを確認して、脈流充電方式に適した制御データを充電器側に送信することができる。従って、接続する充電器がCVCC方式の充電器である場合は、CVCC方式の制御データを脈流充電方式の制御データと区別して充電器側に送信することができる。   More preferably, in the charging device having the above characteristics, the control data setting unit confirms that the charger is a pulsating charging type charger that supplies a pulsating charging current before starting charging, A set value of control data is calculated and transmitted to the charger via the second communication unit. Thereby, it can confirm that the charger to connect is a charger of a pulsating charge system, and can transmit the control data suitable for a pulsating charge system to the charger side. Therefore, when the charger to be connected is a CVCC charger, the CVCC control data can be transmitted to the charger side separately from the pulsating charge control data.

更に好ましくは、上記特徴の充電装置は、前記充電器側から供給される前記充電電流を測定する電流計を備え、前記制御データ設定部が、前記充電電流の測定値に基づいて、前記電流指標値を算出し、前記第2通信部が、前記制御データ設定部が算出した前記電流指標値を、前記電流指標値の指示値として、前記充電器に送信する。   More preferably, the charging device having the above characteristics includes an ammeter that measures the charging current supplied from the charger side, and the control data setting unit is configured to measure the current index based on the measured value of the charging current. A value is calculated, and the second communication unit transmits the current index value calculated by the control data setting unit to the charger as an instruction value of the current index value.

更に好ましくは、上記特徴の充電装置は、前記充電器側から供給される前記充電電流を測定する電流計を備え、前記第2通信部が、前記充電器側において前記充電電流の測定値に基づいて算出された前記電流指標値を受信し、前記制御データ設定部が、電気自動車側で測定した前記充電電流に基づいて、前記電流指標値を算出し、前記充電器側で算出された前記電流指標値と比較し、両者の前記電流指標値が所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信する。   More preferably, the charging device having the above characteristics includes an ammeter that measures the charging current supplied from the charger side, and the second communication unit is based on the measured value of the charging current on the charger side. The current index value calculated by the control data setting unit calculates the current index value based on the charging current measured on the electric vehicle side, and the current calculated on the charger side Compared with an index value, when the current index values of both deviate beyond a predetermined error range, a charge stop instruction to stop the supply of the charging current is sent via the second communication unit, Send to charger.

脈流充電の場合、充電電力を正確に把握できないため、充電終了時間の予測や充電途中で充電を停止した場合の走行可能距離の算出等が困難となる。制御データ設定部が電流指標値を算出することで、充電終了時間の予測や走行可能距離の算出等が可能となる。更に、電流指標値の算出値を指示値として充電器側に送信するか、或いは、充電器側で算出された電流指標値を受信することで、充電器側或いは電気自動車側で、両者で夫々算出した電流指標値の比較が可能となる。比較結果に齟齬が生じている場合には、充電器側または電気自動車側において短絡電流が発生している可能性があり、当該短絡電流による発火等の事故が生じる可能性がある。従って、当該比較結果に基づいて充電動作を停止することで、当該事故の発生を未然に防止することができる。   In the case of pulsating charging, the charging power cannot be accurately grasped, so that it is difficult to predict the charging end time or to calculate the travelable distance when charging is stopped during charging. When the control data setting unit calculates the current index value, it is possible to predict the charging end time, calculate the travelable distance, and the like. Furthermore, the calculated value of the current index value is transmitted to the charger side as an instruction value, or the current index value calculated on the charger side is received, so that both on the charger side or on the electric vehicle side, respectively. It is possible to compare the calculated current index values. If there is a flaw in the comparison result, a short-circuit current may have occurred on the charger side or the electric vehicle side, and an accident such as ignition due to the short-circuit current may occur. Therefore, the occurrence of the accident can be prevented in advance by stopping the charging operation based on the comparison result.

更に好ましくは、上記特徴の充電装置は、前記充電器側から供給される前記充電電流を測定する電流計を備え、前記制御データ設定部は、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記充電電流の最大電流上限値を算出し、電気自動車側で測定した前記充電電流に基づいて、前記充電電流のピーク値を算出し、前記ピーク値と前記最大電流上限値と比較し、前記ピーク値が所定の誤差範囲を超えて前記最大電流上限値を超過している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信する。これにより、充電電流が最大電流上限値を超過する事態が生じたとしても、当該事態が継続するのを防止できるため、当該過剰な充電電流に起因する蓄電池の寿命低下及び発火等の危険性が防止され、安全且つ安価な脈流充電方式の充電器を提供することができる。   More preferably, the charging device having the above-described characteristics includes an ammeter that measures the charging current supplied from the charger side, and the control data setting unit sequentially sets the storage battery before and after the start of charging. Obtaining the latest internal state, calculating the maximum current upper limit value of the charging current based on the internal state, calculating the peak value of the charging current based on the charging current measured on the electric vehicle side, Compared with a peak value and the maximum current upper limit value, when the peak value exceeds a predetermined error range and exceeds the maximum current upper limit value, a charge stop instruction to stop the supply of the charging current, It transmits to the said charger via a 2nd communication part. As a result, even if a situation in which the charging current exceeds the maximum current upper limit value can be prevented, the situation can be prevented from continuing, so there is a risk of a decrease in the life of the storage battery and ignition due to the excessive charging current. It is possible to provide a pulsating charging charger that is prevented, safe and inexpensive.

上記特徴の充電器及び充電装置によれば、車載蓄電池の種類及び充電状態に適合した充電電流を充電器から充電装置に供給可能で、且つ、正確な充電電力が把握可能な脈流充電方式の安価な充電器の提供し、更に、当該脈流充電に適合した車載充電装置の提供が実現できる。これにより、充電器及び電気自動車側において充電電力の把握が可能となり、充電終了時間の正確な予測、走行可能距離の正確な算出等が可能となる。   According to the charger and the charging device having the above characteristics, a pulsating charging method that can supply a charging current suitable for the type and charging state of the in-vehicle storage battery from the charger to the charging device and that can accurately grasp the charging power. It is possible to provide an inexpensive charger and further to provide an in-vehicle charging device suitable for the pulsating charge. As a result, the charging power can be grasped on the charger and the electric vehicle side, and the charging end time can be accurately predicted, the driving distance can be accurately calculated, and the like.

本発明に係る充電器と充電装置の一実施形態の概略構成を示すブロック図The block diagram which shows schematic structure of one Embodiment of the charger and charging device which concern on this invention 本発明に係る充電器の充電回路部と制御回路部の回路構成の一例を示す回路ブロック図The circuit block diagram which shows an example of the circuit structure of the charging circuit part and control circuit part of the charger which concerns on this invention 本発明に係る充電器と充電装置における充電制御のシーケンスを示すフローチャートThe flowchart which shows the sequence of the charge control in the charger and charging device which concern on this invention 充電回路部に低域通過フィルタ回路を設ける場合と設けない場合の充電電流の違いを説明する電流波形図Current waveform diagram explaining the difference in charging current with and without the low-pass filter circuit in the charging circuit section

本発明に係る電気自動車充電用の充電器(以下、適宜「充電器」という。)及び本発明に係る車載充電装置(以下、適宜「充電装置」という。)の実施の形態につき、図面に基づいて説明する。   An embodiment of a charger for charging an electric vehicle according to the present invention (hereinafter referred to as “charger” as appropriate) and an in-vehicle charging device according to the present invention (hereinafter referred to as “charger” as appropriate) are based on the drawings. I will explain.

図1は、充電器10と充電装置20の概略構成を示すブロック図である。図1に示すように、充電器10は、充電回路部11、制御回路部12、第1通信部13、電流計14,15、及び、電圧計16を備えて構成され、充電装置20は、電気自動車に搭載され、蓄電池21、第2通信部22、制御データ設定部23、電流計24、及び、電圧計25を備えて構成される。また、充電器10には、充電ケーブル17とその先端に接続する充電コネクタ18が設けられており、電気自動車には、充電ソケット26が設けられている。充電ケーブル17内には、充電回路部11から出力される充電電流を、蓄電池21に供給する電源ケーブル17a、及び、第1通信部13と第2通信部22間のデータ通信を行うための通信ケーブル17bが設けられている。充電コネクタ18が充電ソケット26に挿入されて接続することで、充電回路部11と蓄電池21が電気的に接続し、第1通信部13と第2通信部22が相互に通信可能に接続する。   FIG. 1 is a block diagram illustrating a schematic configuration of the charger 10 and the charging device 20. As shown in FIG. 1, the charger 10 includes a charging circuit unit 11, a control circuit unit 12, a first communication unit 13, ammeters 14 and 15, and a voltmeter 16. It is mounted on an electric vehicle and includes a storage battery 21, a second communication unit 22, a control data setting unit 23, an ammeter 24, and a voltmeter 25. Further, the charger 10 is provided with a charging cable 17 and a charging connector 18 connected to the tip thereof, and the electric vehicle is provided with a charging socket 26. In the charging cable 17, a power supply cable 17 a that supplies the charging current output from the charging circuit unit 11 to the storage battery 21, and communication for performing data communication between the first communication unit 13 and the second communication unit 22. A cable 17b is provided. When the charging connector 18 is inserted into the charging socket 26 and connected, the charging circuit unit 11 and the storage battery 21 are electrically connected, and the first communication unit 13 and the second communication unit 22 are connected to be communicable with each other.

先ず、充電器10側の構成について説明する。充電回路部11は、一例として、図2に示すような力率改善AC/DCコンバータで構成される。図2に示す構成例では、充電回路部11は、図2に示すように、高周波ノイズ除去用と力率改善用チョッパ回路として用いるチョークコイル31,32、スイッチング素子34、4つのダイオードのブリッジ回路で構成される全波整流回路35、平滑コンデンサ36、及び、コイル37とコンデンサ38で構成される低域通過フィルタ回路を備えて構成される。1対のチョークコイル31,32の各入力端には、商用交流電源30が接続する。図1及び図2では、単相3線式200Vが接続している場合を例示している。図2に示す充電回路部11では、全波整流回路34を通過した電流は、低域通過フィルタ回路で高周波域の交流成分(リップル)は除去されるが、交流入力の2分の1の周期Tmの脈流のままで出力される。コイル37とコンデンサ38の各回路定数は、リップル率、フィルタ回路の大きさやコストを勘案して決定される。本実施形態では、充電電流は脈流として出力されるため、充電回路部11の後段に、充電電流を定電流或いは定電圧に制御するためのDC/DCコンバータ及び大容量の平滑コンデンサを設ける必要がない。   First, the configuration on the charger 10 side will be described. As an example, the charging circuit unit 11 includes a power factor improving AC / DC converter as shown in FIG. In the configuration example shown in FIG. 2, the charging circuit unit 11 includes a choke coil 31 and 32, a switching element 34, and a bridge circuit of four diodes used as a chopper circuit for high frequency noise removal and power factor improvement, as shown in FIG. A full-wave rectifier circuit 35, a smoothing capacitor 36, and a low-pass filter circuit including a coil 37 and a capacitor 38. A commercial AC power supply 30 is connected to each input terminal of the pair of choke coils 31 and 32. 1 and 2 illustrate a case where a single-phase three-wire system 200V is connected. In the charging circuit unit 11 shown in FIG. 2, the current that has passed through the full-wave rectifier circuit 34 is removed from the high-frequency AC component (ripple) by the low-pass filter circuit, but has a period that is half that of the AC input. It is output with the pulsating flow of Tm. The circuit constants of the coil 37 and the capacitor 38 are determined in consideration of the ripple rate, the size and cost of the filter circuit. In this embodiment, since the charging current is output as a pulsating current, it is necessary to provide a DC / DC converter and a large-capacity smoothing capacitor for controlling the charging current to a constant current or a constant voltage after the charging circuit unit 11. There is no.

制御回路部12は、充電回路部11から出力される充電電流の周期Tm毎の積算値Ia1(電流指標値に相当)が、充電装置20側から指示された目標電流積算値Ima1(目標電流指標値に相当)となるように、スイッチング素子34のオン及びオフ時間のデューティ比を制御する。制御回路部12は、図2に示すように、絶対値演算部41,42、制御値設定部43、乗算器44、減算器45、PI演算部46、制御パルス信号出力部47、電流積算器48、及び、比較器49を備えて構成される。また、図1に示すように、制御回路部12は、充電器10に設置されたユーザの操作入力を受け付ける操作部19aとユーザに必要な情報を表示するための表示部19bを備えたユーザインターフェース部19と接続している。   In the control circuit unit 12, the integrated value Ia1 (corresponding to the current index value) for each cycle Tm of the charging current output from the charging circuit unit 11 is the target current integrated value Ima1 (target current index) instructed from the charging device 20 side. The duty ratio of the ON / OFF time of the switching element 34 is controlled so as to be equivalent to the value. As shown in FIG. 2, the control circuit unit 12 includes absolute value calculation units 41 and 42, a control value setting unit 43, a multiplier 44, a subtracter 45, a PI calculation unit 46, a control pulse signal output unit 47, and a current integrator. 48 and a comparator 49. As shown in FIG. 1, the control circuit unit 12 includes a user interface that includes an operation unit 19 a that is installed in the charger 10 and receives a user operation input, and a display unit 19 b that displays information necessary for the user. The unit 19 is connected.

電流計14は、例えば、チョークコイル31とスイッチング素子34の接続ノードN1の間に設けられ、入力電流の瞬時値Iinを測定する。当該瞬時値Iinは、所定のサンプリング周期でAD(アナログ・ディジタル)変換されて、絶対値演算部41に入力する。当該AD変換機能は、後述するディジタル演算処理装置(例えば、ディジタルシグナルプロセッサ等)に内蔵されており、アナログ信号をディジタル演算処理装置のAD変換ポートに入力して行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。   The ammeter 14 is provided between the connection node N1 of the choke coil 31 and the switching element 34, for example, and measures the instantaneous value Iin of the input current. The instantaneous value Iin is AD (analog / digital) converted at a predetermined sampling period and input to the absolute value calculation unit 41. The AD conversion function is built in a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to an AD conversion port of the digital arithmetic processing device. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.

電流計15は、例えば、正極側の出力端子T1とコイル37の間に設けられ、出力電流の瞬時値Ioutを測定する。当該瞬時値Ioutは、所定のサンプリング周期でAD変換されて、制御値設定部43及び電流積算器48に入力する。当該AD変換は、例えば、電流計15で行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。   The ammeter 15 is provided, for example, between the positive output terminal T1 and the coil 37, and measures the instantaneous value Iout of the output current. The instantaneous value Iout is AD-converted at a predetermined sampling period and input to the control value setting unit 43 and the current integrator 48. The AD conversion is performed by, for example, an ammeter 15. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.

電圧計16は、商用交流電源30の2本の電圧線の間の入力電圧の瞬時値Vinを測定する。当該瞬時値Vinは、所定のサンプリング周期でAD変換されて、絶対値演算部42に入力する。当該AD変換機能は、例えば、電圧計16または後述するディジタル演算処理装置(例えば、ディジタルシグナルプロセッサ等)に内蔵されており、アナログ信号をディジタル演算処理装置のAD変換ポートに入力して行われる。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。   The voltmeter 16 measures the instantaneous value Vin of the input voltage between the two voltage lines of the commercial AC power supply 30. The instantaneous value Vin is AD-converted at a predetermined sampling period and input to the absolute value calculation unit 42. The AD conversion function is built in, for example, the voltmeter 16 or a digital arithmetic processing device (for example, a digital signal processor) described later, and is performed by inputting an analog signal to the AD conversion port of the digital arithmetic processing device. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.

絶対値演算部41,42は、夫々に入力される瞬時値Iin,Vinの絶対値|Iin|,|Vin|を演算する。   The absolute value calculators 41 and 42 calculate the absolute values | Iin | and | Vin | of the instantaneous values Iin and Vin respectively input.

制御値設定部43は、後述する要領で制御値Aの設定及び調整を行う。乗算器44は、絶対値演算部42で演算された入力電圧の瞬時値Vinの絶対値|Vin|と制御値Aの乗算を行い、その積B(=|Vin|×A)を出力する。   The control value setting unit 43 sets and adjusts the control value A in the manner described later. The multiplier 44 multiplies the absolute value | Vin | of the instantaneous value Vin of the input voltage calculated by the absolute value calculator 42 and the control value A, and outputs the product B (= | Vin | × A).

減算器45は、乗算器44から出力された積Bから、絶対値演算部41で演算された入力電流の瞬時値Iinの絶対値|Iin|を減算して、誤差C(=B−|Iin|)をPI演算部46に出力する。   The subtracter 45 subtracts the absolute value | Iin | of the instantaneous value Iin of the input current calculated by the absolute value calculation unit 41 from the product B output from the multiplier 44 to obtain an error C (= B− | Iin |) Is output to the PI calculation unit 46.

PI演算部46は、以下の数1に示す演算式に基づいて、入力した誤差Cに対しPI補償演算を施して、デューティ比Dを演算する。尚、以下の演算式において、Pは定数、Tiは積分期間である。   The PI calculation unit 46 calculates the duty ratio D by performing PI compensation calculation on the input error C based on the calculation formula shown in the following formula 1. In the following arithmetic expression, P is a constant and Ti is an integration period.

(数1)

Figure 0005097289
(Equation 1)
Figure 0005097289

PI演算部46で算出したデューティ比Dは、DA変換され電圧値Vdとして制御パルス信号出力部47に入力される。制御パルス信号出力部47は、ノコギリ波発生器47aと比較器47bで構成され、電圧値Vdは比較器47bの非反転入力に入力し、ノコギリ波発生器47aのノコギリ波は比較器47bの反転入力に入力する。ノコギリ波(または三角波)は、所定のスイッチング周波数で、電圧値が、デューティ比Dが0の時の電圧値Vd0とデューティ比Dが1の時の電圧値Vd1の間で線形に変化するように設定されている。スイッチング周波数は可聴周波数以上に設定する。但し、EMC(電磁環境適合性)によるノイズ規制の観点から、スイッチング周波数は20〜50kHzの範囲内で設定するのが好ましく、図2に示す構成例では、一例として50kHzを想定している。   The duty ratio D calculated by the PI calculation unit 46 is D / A converted and input to the control pulse signal output unit 47 as a voltage value Vd. The control pulse signal output unit 47 includes a sawtooth wave generator 47a and a comparator 47b. The voltage value Vd is input to the non-inverting input of the comparator 47b, and the sawtooth wave of the sawtooth wave generator 47a is inverted by the comparator 47b. Enter in the input. The sawtooth wave (or triangular wave) is such that the voltage value changes linearly between a voltage value Vd0 when the duty ratio D is 0 and a voltage value Vd1 when the duty ratio D is 1 at a predetermined switching frequency. Is set. Set the switching frequency to an audible frequency or higher. However, from the viewpoint of noise regulation by EMC (electromagnetic environment compatibility), it is preferable to set the switching frequency within a range of 20 to 50 kHz. In the configuration example illustrated in FIG. 2, 50 kHz is assumed as an example.

斯かる構成により、比較器47bからは、当該スイッチング周波数及びデューティ比Dでオンオフを繰り返す制御パルス信号Sが出力され、当該制御パルス信号Sをゲート入力とするスイッチング素子34のスイッチング動作が制御される。   With this configuration, the comparator 47b outputs a control pulse signal S that repeatedly turns on and off at the switching frequency and the duty ratio D, and the switching operation of the switching element 34 that uses the control pulse signal S as a gate input is controlled. .

次に、制御値設定部43による制御値Aの設定及び調整方法について説明する。後述するシーケンスで充電動作が開始すると、制御値Aは、初期値0から出発して、例えば、所定の時間間隔で、例えば、1,2,3…と順番に増加させるソフトスタート動作を実行する。ソフトスタート動作の開始後、充電回路部11から出力される脈流の充電電流が徐々に上昇する。電流積算器48は、電流計15で測定された充電電流(充電回路部11の出力電流)の瞬時値Ioutを脈流の周期Tm(例えば、入力交流電圧のゼロクロスからゼロクロスまでの半周期)毎の積算値Ia1を算出する。第1通信部13は、後述する要領で充電装置20から逐次送信される最新の目標積算値Ima1を受信する。制御値設定部43は、積算値Ia1と目標積算値Ima1を比較して、積算値Ia1が目標積算値Ima1を下回っている(Ia1<Ima1)の間は、制御値Aを上記要領で徐々に増加させる。積算値Ia1が目標積算値Ima1の例えば97%まで到達した時点で、ソフトスタート動作を終了し、制御値Aの増加を停止する。ソフトスタート動作の終了後は、積算値Ia1が目標積算値Ima1の例えば97%〜103%の範囲内となるように、制御値Aを調整する。具体的には、例えば、積算値Ia1が目標積算値Ima1の例えば100%値を超過した場合は、その時点で設定されている制御値Aに、例えば、(Ima1/Ia1)で表わされる縮小率を乗じて制御値Aの設定値を低下させて、制御値Aの更新を行う。斯かるフィードバック制御により、充電電流の積算値Ia1が最新の目標積算値Ima1となるようにする制御が可能となる。尚、ソフトスタート動作期間は、1秒から数秒程度を想定している。   Next, a method for setting and adjusting the control value A by the control value setting unit 43 will be described. When the charging operation starts in a sequence to be described later, the control value A starts from the initial value 0, and executes, for example, a soft start operation that sequentially increases, for example, 1, 2, 3,... At a predetermined time interval. . After the start of the soft start operation, the pulsating charging current output from the charging circuit unit 11 gradually increases. The current integrator 48 calculates the instantaneous value Iout of the charging current (output current of the charging circuit unit 11) measured by the ammeter 15 for each pulsating current cycle Tm (for example, a half cycle from zero cross to zero cross of the input AC voltage). The integrated value Ia1 is calculated. The first communication unit 13 receives the latest target integrated value Ima1 that is sequentially transmitted from the charging device 20 in the manner described later. The control value setting unit 43 compares the integrated value Ia1 with the target integrated value Ima1, and while the integrated value Ia1 is below the target integrated value Ima1 (Ia1 <Ima1), the control value A is gradually increased as described above. increase. When the integrated value Ia1 reaches, for example, 97% of the target integrated value Ima1, the soft start operation is terminated and the increase of the control value A is stopped. After the soft start operation is finished, the control value A is adjusted so that the integrated value Ia1 falls within the range of 97% to 103% of the target integrated value Ima1, for example. Specifically, for example, when the integrated value Ia1 exceeds, for example, a 100% value of the target integrated value Ima1, the reduction rate represented by, for example, (Ima1 / Ia1) is set to the control value A set at that time. Is used to decrease the set value of the control value A, and the control value A is updated. Such feedback control makes it possible to perform control so that the integrated value Ia1 of the charging current becomes the latest target integrated value Ima1. The soft start operation period is assumed to be about 1 second to several seconds.

また、制御回路部12では、数1に示すデューティ比制御が行われて充電電流が制御されるため、交流入力電圧Vinと交流入力電流Iinは同位相及び同波形が得られるようになり、交流入力電流Iinに含まれる高調波成分が低減され、力率が改善される。   Further, in the control circuit unit 12, the duty ratio control shown in Equation 1 is performed to control the charging current, so that the alternating current input voltage Vin and the alternating current input current Iin have the same phase and the same waveform. The harmonic component contained in the input current Iin is reduced, and the power factor is improved.

比較器49は、電流積算器48で算出された電流積算値Ia1と、充電装置20側から送信される制御データに含まれる充電装置20側で算出した充電電流の周期Tm毎の電流積算値Ia2を比較して、所定の誤差(例えば3%)以上の不一致が存在する場合に、充電停止信号S1を出力する。   The comparator 49 includes the current integrated value Ia1 calculated by the current integrator 48 and the current integrated value Ia2 for each cycle Tm of the charging current calculated on the charging device 20 side included in the control data transmitted from the charging device 20 side. And a charge stop signal S1 is output when there is a discrepancy greater than or equal to a predetermined error (eg, 3%).

本実施形態では、制御回路部12の絶対値演算部41,42、制御値設定部43、乗算器44、減算器45、PI演算部46、電流積算器48、及び、比較器49は、マイクロプロセッサやディジタルシグナルプロセッサ等のディジタル演算処理装置で構成され、各部の機能は、ディジタル演算処理により実現される。   In the present embodiment, the absolute value calculation units 41 and 42, the control value setting unit 43, the multiplier 44, the subtractor 45, the PI calculation unit 46, the current integrator 48, and the comparator 49 of the control circuit unit 12 It comprises a digital arithmetic processing device such as a processor or a digital signal processor, and the functions of each part are realized by digital arithmetic processing.

第1通信部13は、充電装置20側の第2通信部22と、通信ケーブル17bを介して接続することにより、例えば、CAN通信により、脈流充電に必要な制御データの授受を行う。通信プロトコルは、CANプロトコルに限定されるものではない。   The first communication unit 13 is connected to the second communication unit 22 on the charging device 20 side via the communication cable 17b, so as to exchange control data necessary for pulsating charge, for example, by CAN communication. The communication protocol is not limited to the CAN protocol.

充電ケーブル17、充電コネクタ18及び充電ソケット26としては、例えば、財団法人日本自動車研究所で規格化された標準品(JEVS G105)や、SAE J1772、IEC62196−2 Type1で規格化された標準品等を利用できる。   Examples of the charging cable 17, the charging connector 18, and the charging socket 26 include a standard product (JEVS G105) standardized by the Japan Automobile Research Institute, a standard product standardized by SAE J1772, IEC62196-2 Type1, and the like. Can be used.

次に、充電装置20側の構成について説明する。蓄電池21は、特に限定されるものではないが、例えば、リチウムイオン2次電池等の使用を想定する。第2通信部22は、充電器10のと、通信ケーブル17bを介して接続することにより、例えば、CAN通信により、脈流充電に必要な制御データの授受を行う。   Next, the configuration on the charging device 20 side will be described. Although the storage battery 21 is not specifically limited, For example, use of a lithium ion secondary battery etc. is assumed. The second communication unit 22 is connected to the charger 10 via the communication cable 17b, thereby transferring control data necessary for pulsating charge by, for example, CAN communication.

制御データ設定部23は、例えば、電気自動車に搭載される電子制御ユニット内に構成され、蓄電池21の電気的仕様(公称電流容量、最適充電電流値、充電電圧上限値、等)、或いは、充電開始前の充電状態(充電率または充電容量)、電池電圧及び内部インピーダンス等の内部状態を取得し、当該電気的仕様、内部状態或いはその両方に基づき、ディジタル演算処理により充電器10側に送信する制御データに含まれる設定値を算出する。尚、電気的仕様の各データ値は、予め制御データ設定部23の記憶装置内に格納されているデータ値を読み出して使用する。   The control data setting unit 23 is configured in, for example, an electronic control unit mounted on an electric vehicle, and the electrical specifications (nominal current capacity, optimum charging current value, charging voltage upper limit value, etc.) of the storage battery 21 or charging Acquire the internal state such as the charging state (charging rate or charging capacity), battery voltage and internal impedance before starting, and transmit to the charger 10 side by digital arithmetic processing based on the electrical specification, internal state or both A setting value included in the control data is calculated. For each data value of the electrical specification, a data value stored in advance in the storage device of the control data setting unit 23 is read and used.

制御データ設定部23は、充電開始前に、蓄電池21の公称電流容量または蓄電池メーカが推奨する最適充電電流値に基づいて目標電流積算値Ima1を設定する。具体的には、公称電流容量が50Ahの蓄電池の場合に、公称電流容量の値(単位:アンペア時)に所定の割合(例えば、40%〜60%程度)を乗じた値(単位:アンペア)と充電電流の周期Tm(単位:秒)の積を目標電流積算値Ima1(単位:アンペア秒)として算出する。或いは、最適充電電流値が公称電流容量50Ahに対して25Aとなっている場合は、最適充電電流値(単位:アンペア)と充電電流の周期Tm(単位:秒)の積を周期Tm毎の目標電流積算値Ima1(単位:アンペア秒)として算出する。尚、目標電流積算値Ima1は、充電開始とともに設定値が逐次見直されるため、充電開始前の設定値は、初期設定値に過ぎない。   The control data setting unit 23 sets the target current integrated value Ima1 based on the nominal current capacity of the storage battery 21 or the optimum charging current value recommended by the storage battery manufacturer before the start of charging. Specifically, in the case of a storage battery with a nominal current capacity of 50 Ah, a value (unit: ampere) obtained by multiplying a value (unit: ampere hour) of the nominal current capacity by a predetermined ratio (for example, about 40% to 60%) And the charging current cycle Tm (unit: second) is calculated as a target current integrated value Ima1 (unit: ampere second). Alternatively, when the optimum charging current value is 25 A with respect to the nominal current capacity 50 Ah, the product of the optimum charging current value (unit: ampere) and the charging current cycle Tm (unit: second) is the target for each cycle Tm. Calculated as a current integrated value Ima1 (unit: ampere second). In addition, since the set value of the target current integrated value Ima1 is sequentially reviewed at the start of charging, the set value before the start of charging is only an initial set value.

制御データ設定部23は、充電開始後は所定の時間間隔(例えば、100m秒)で、目標電流積算値Ima1を以下の要領で逐次更新する。電圧計25で測定される瞬時値からピーク電圧を算出し、当該算出値Vcpkと蓄電池21の充電電圧上限値Vcmaxとを比較し、例えば、当該算出値Vcpkが上限値Vcmaxの97%値を超過する場合に、それ以前に算出または更新した目標電流積算値Ima1に、例えば、((Vcmax×0.97)/Vcpk)で表わされる縮小率を乗じて、新たな目標電流積算値Ima1とする。   The control data setting unit 23 sequentially updates the target current integrated value Ima1 in the following manner at a predetermined time interval (for example, 100 milliseconds) after the start of charging. The peak voltage is calculated from the instantaneous value measured by the voltmeter 25, and the calculated value Vcpk is compared with the charge voltage upper limit value Vcmax of the storage battery 21, for example, the calculated value Vcpk exceeds 97% of the upper limit value Vcmax. In this case, the target current integrated value Ima1 calculated or updated before is multiplied by, for example, a reduction ratio represented by ((Vcmax × 0.97) / Vcpk) to obtain a new target current integrated value Ima1.

更に、本実施形態では、制御データ設定部23は、充電開始前に、電池温度、開路電池電圧Vb、及び電池の劣化度に基づいて、蓄電池21の内部インピーダンスZiを推定する。例えば、充電装置20は内部インピーダンス測定装置を備えていても良く、所定時間毎に測定し、その結果を保存して演算するようにして良い。また、前回の充電時のインピーダンスデータ、自動車駆動時の放電のデータから内部インピーダンスを測定し、保存しておいて使用しても良い。簡単には内部インピーダンスは開路電池電圧から、所定の充電電流時に増加した電圧を、その時の所定の充電電流で割った値である。電池の劣化度は、充電開始前までの累積充電電気量等により算定する。開路電池電圧は、充電開始前の充電電流の入力がなく、且つ、蓄電池21が負荷に接続されていない状態で、電圧計25によって測定される。電圧計25は、蓄電池21の端子間の電圧を測定する。そして、制御データ設定部23は、充電開始前、及び、充電開始後には所定の時間間隔(例えば、100m秒)で、充電電流の最大電流上限値Imax0を、以下の数2に示す要領で、開回路時の電池電圧Vb及び内部インピーダンスZiに基づいて算出する。数2の右辺のVbmaxは電池電圧Vbの上限値である。   Further, in the present embodiment, the control data setting unit 23 estimates the internal impedance Zi of the storage battery 21 based on the battery temperature, the open circuit battery voltage Vb, and the degree of battery deterioration before starting charging. For example, the charging device 20 may be provided with an internal impedance measuring device, and may be measured every predetermined time, and the result may be stored and calculated. Further, the internal impedance may be measured from the impedance data at the time of previous charging and the discharge data at the time of driving the vehicle, and stored for use. In brief, the internal impedance is a value obtained by dividing a voltage increased at a predetermined charging current from an open circuit battery voltage by a predetermined charging current at that time. The degree of deterioration of the battery is calculated based on the accumulated amount of charge before the start of charging. The open circuit battery voltage is measured by the voltmeter 25 in the state where there is no input of the charging current before the start of charging and the storage battery 21 is not connected to the load. The voltmeter 25 measures the voltage between the terminals of the storage battery 21. Then, the control data setting unit 23 sets the maximum current upper limit value Imax0 of the charging current at a predetermined time interval (for example, 100 milliseconds) before the start of charging and after the start of charging, as shown in the following equation 2. Calculation is based on the battery voltage Vb and the internal impedance Zi during open circuit. Vbmax on the right side of Equation 2 is the upper limit value of the battery voltage Vb.

(数2)

Imax0×Zi+Vb≦Vbmax
(Equation 2)

Imax0 × Zi + Vb ≦ Vbmax

上記要領で算出された最大電流上限値Imax0が、蓄電池21に固有の許容最大電流値Ibmaxを超えている場合は、当該許容最大電流値Ibmaxを最大電流上限値の設定値Imaxとし、許容最大電流値Ibmaxを超えていない場合は、算出された最大電流上限値Imax0を最大電流上限値の設定値Imaxとする。尚、電池電圧Vbは、充電の進行とともに上昇するが、閉路状態での電圧値は、電流計24で測定される蓄電池21に流入する充電電流の瞬時値(或いは、ピーク値)と、電圧計25で測定される蓄電池21の端子間の充電電圧の瞬時値(或いは、ピーク値)と、充電開始前に算出した内部インピーダンスZiによって算出できる。尚、電流計24で測定された充電電流の瞬時値、及び、電圧計25で測定される蓄電池21の端子間の電圧の瞬時値は、夫々所定のサンプリング周期でAD変換されて、制御データ設定部23に入力される。AD変換されたデータは必要に応じてノイズ処理(デジタルフィルタ処理演算)を行って用いられることが好ましい。   When the maximum current upper limit value Imax0 calculated in the above manner exceeds the allowable maximum current value Ibmax unique to the storage battery 21, the allowable maximum current value Ibmax is set as the set value Imax of the maximum current upper limit value, and the allowable maximum current When the value Ibmax is not exceeded, the calculated maximum current upper limit value Imax0 is set as the set value Imax of the maximum current upper limit value. The battery voltage Vb increases with the progress of charging, but the voltage value in the closed state is the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 and the voltmeter. 25, the instantaneous value (or peak value) of the charging voltage between the terminals of the storage battery 21 and the internal impedance Zi calculated before the start of charging. The instantaneous value of the charging current measured by the ammeter 24 and the instantaneous value of the voltage between the terminals of the storage battery 21 measured by the voltmeter 25 are AD-converted at a predetermined sampling period, respectively, and control data setting is performed. Input to the unit 23. The AD-converted data is preferably used after being subjected to noise processing (digital filter processing calculation) as necessary.

尚、充電開始後においても、充電開始前と同様に、数2に基づいて算出した最大電流上限値Imax0と許容最大電流値Ibmaxを比較して、最大電流上限値の設定値Imaxを算出して、それ以前に設定した最大電流上限値の設定値Imaxを更新する方法(第1の更新方法)を説明したが、当該第1の更新方法によって、結局は、蓄電池21に印加される充電電圧のピーク値が、当該充電電圧の上限値を超えないようにする制御であることから、制御データ設定部23は、電圧計25で測定される瞬時値からピーク電圧を算出し、当該算出値Vcpkと充電電圧上限値Vcmaxとを比較し、例えば、当該算出値Vcpkが上限値Vcmaxの97%値を超過する場合に、それ以前に算出または更新した設定値Imaxに、例えば、((Vcmax×0.97)/Vcpk)で表わされる縮小率を乗じて、新たな設定値Imaxとする更新方法(第2の更新方法)を採用しても良い。第2の更新方法は、目標電流積算値Ima1の更新方法と同じであり、計算が簡略化でき、且つ、充電開始後において蓄電池21の内部状態を都度算出する処理を省略できる。更に、上記2つの更新方法で更新した設定値Imaxの内のより小さい方を新たな設定値Imaxとするのも好ましい。   Even after the start of charging, as in the case before the start of charging, the maximum current upper limit value Imax0 calculated based on Equation 2 is compared with the allowable maximum current value Ibmax to calculate the set value Imax of the maximum current upper limit value. The method (first update method) for updating the set value Imax of the maximum current upper limit value set before that has been described. However, the charge voltage applied to the storage battery 21 is eventually reduced by the first update method. Since the control is performed so that the peak value does not exceed the upper limit value of the charging voltage, the control data setting unit 23 calculates the peak voltage from the instantaneous value measured by the voltmeter 25, and calculates the calculated value Vcpk. The charging voltage upper limit value Vcmax is compared. For example, when the calculated value Vcpk exceeds 97% of the upper limit value Vcmax, the setting value Imax calculated or updated before that is, for example, ( Vcmax × 0.97) / Vcpk) multiplied by the reduction ratio represented by, may be employed to update method according to a new setting value Imax (second updating method). The second updating method is the same as the updating method of the target current integrated value Ima1, can simplify the calculation, and can omit the process of calculating the internal state of the storage battery 21 each time after the start of charging. Furthermore, it is preferable that the smaller one of the set values Imax updated by the two update methods is set as a new set value Imax.

制御データ設定部23は、更に、電流計24で測定される蓄電池21に流入する充電電流の瞬時値に対して、充電電流の周期Tm毎の積算値Ia2を算出する電流積算機能を備え、充電器10側の電流積算器48と同じ処理を行う。   The control data setting unit 23 further includes a current integration function for calculating an integrated value Ia2 for each cycle Tm of the charging current with respect to an instantaneous value of the charging current flowing into the storage battery 21 measured by the ammeter 24. The same processing as that of the current accumulator 48 on the device 10 side is performed.

制御データ設定部23は、上記以外にも、充電開始前に、蓄電池21の内部状態或いは種類等に基づき、蓄電池21の端子間の最大許容電圧(充電電圧上限値Vcmax)、充電電流の充電停止下限値Istp、充電開始前の充電状態(SOC)、及び、充電終了時間Tstp等を算出または設定する。制御データ設定部23において設定される充電停止下限値Istpは、電気自動車側が所有する電流センサ24の測定精度から、十分に誤差無く測定できる範囲に設定されることが好ましい。例えば、100Aのセンサを用いているのであれば、5A程度が好ましい。尚、充電停止下限値Istpとの比較対象となる後述する電流判定値Ijの定義に応じて、実際の設定値は変化する。また、電流判定値Ijが周期Tm毎の積算値である場合は、例えば、電流値に周期Tmを乗じた値、または、電流値の周期Tm間の積分値(単位:アンペア秒)となる。   In addition to the above, the control data setting unit 23 stops charging the maximum allowable voltage (charging voltage upper limit value Vcmax) between the terminals of the storage battery 21 and the charging current based on the internal state or type of the storage battery 21 before starting charging. The lower limit value Istp, the state of charge (SOC) before the start of charging, the charging end time Tstp, and the like are calculated or set. The charge stop lower limit value Istp set in the control data setting unit 23 is preferably set in a range that can be measured without error from the measurement accuracy of the current sensor 24 owned by the electric vehicle. For example, if a 100A sensor is used, about 5A is preferable. The actual set value changes according to the definition of a later-described current determination value Ij to be compared with the charge stop lower limit value Istp. Further, when the current determination value Ij is an integrated value for each cycle Tm, for example, a value obtained by multiplying the current value by the cycle Tm or an integrated value (unit: ampere second) between the current values in the cycle Tm.

制御データ設定部23は、充電開始前の充電状態を公知の算出手法により算出する。例えば、充電電流の瞬時値を測定する電流計24に加え、放電電流の瞬時値を測定する電流計(図示せず)を備え、充電電流及び放電電流の積算値を夫々算出することで、充電に係る電荷の流れと放電に係る電荷の流れを夫々測定し監視することで(クーロンカウント法)、現状の充電状態を推定することができる。尚、充電状態の算出手法は、上述のクーロンカウント法に限らず、開路電池電圧Vb及び内部インピーダンス等に基づいて推定する手法等を用いて算出しても構わない。   The control data setting unit 23 calculates the state of charge before the start of charging by a known calculation method. For example, in addition to the ammeter 24 that measures the instantaneous value of the charging current, an ammeter (not shown) that measures the instantaneous value of the discharging current is provided, and the charging current and the integrated value of the discharging current are calculated, respectively. The current charge state can be estimated by measuring and monitoring the charge flow related to the discharge and the charge flow related to the discharge (Coulomb counting method). The charging state calculation method is not limited to the above-described coulomb counting method, and may be calculated using a method that estimates based on the open circuit battery voltage Vb, internal impedance, and the like.

制御データ設定部23は、目標電流積算値Ima1、充電電流の積算値Ia2、充電電圧上限値Vcmax、充電停止下限値Istp、充電終了時間Tstp、充電状態(SOC)等を、制御データとして、第2通信部22を介して、充電器10側に送信する。尚、目標電流積算値Ima1と充電電流の積算値Ia2は、充電開始後に所定の時間間隔(例えば、100m秒)で算出したものを同じ時間間隔で、第2通信部22を介して、充電器10側に送信する。この際、充電器10側と充電装置20側で夫々の電流測定値のサンプリングタイミングのトリガー信号を同期させ、同時にサンプリングを行う。更に、制御データ設定部23は、後述する充電異常判定を行う。尚、本実施形態では、制御データ設定部23が算出した最大電流上限値の設定値Imaxは、制御データとして充電器10側に送信されず、充電装置20側において後述する充電異常判定で使用される。   The control data setting unit 23 uses the target current integrated value Ima1, the charging current integrated value Ia2, the charging voltage upper limit value Vcmax, the charging stop lower limit value Istp, the charging end time Tstp, the state of charge (SOC), etc. as control data. 2 Transmit to the charger 10 side via the communication unit 22. The target current integrated value Ima1 and the charging current integrated value Ia2 are calculated at a predetermined time interval (for example, 100 msec) after the start of charging, and are connected to the charger via the second communication unit 22 at the same time interval. Send to the 10 side. At this time, the trigger signal of the sampling timing of each current measurement value is synchronized on the charger 10 side and the charging device 20 side, and sampling is performed simultaneously. Furthermore, the control data setting unit 23 performs charge abnormality determination described later. In the present embodiment, the setting value Imax of the maximum current upper limit value calculated by the control data setting unit 23 is not transmitted to the charger 10 side as control data, and is used in the charging abnormality determination described later on the charging device 20 side. The

次に、充電器10と充電装置20による蓄電池21の充電シーケンスについて、図3のフローチャートを参照して説明する。尚、図3において、充電器10と充電装置20における各処理の流れは実線で示し、データまたは信号の流れは破線で示す。   Next, a charging sequence of the storage battery 21 by the charger 10 and the charging device 20 will be described with reference to the flowchart of FIG. In FIG. 3, the flow of each process in the charger 10 and the charging device 20 is indicated by a solid line, and the flow of data or signals is indicated by a broken line.

先ず、充電器10の充電コネクタ18を、電気自動車の充電ソケット26に挿入して、両者を接続する(ステップA1)。ユーザは、充電器10に設置された操作部19aにおいて充電開始ボタンを押下して、充電開始を指示する(ステップA2)。制御回路部12は、当該開始指示を受け付け、充電開始通知を第1通信部13、通信ケーブル17b、及び、第2通信部22を介して、充電装置20の制御データ設定部23に送信する(ステップA3)。制御データ設定部23が充電開始通知を受信し、その旨を返信することで、充電器10と充電装置20間の通信路が確立し(ステップB1)、その後、下記の要領で制御データの送受信を行う。   First, the charging connector 18 of the charger 10 is inserted into the charging socket 26 of the electric vehicle, and both are connected (step A1). The user presses the charge start button on the operation unit 19a installed in the charger 10 to instruct the start of charging (step A2). The control circuit unit 12 receives the start instruction and transmits a charge start notification to the control data setting unit 23 of the charging device 20 via the first communication unit 13, the communication cable 17b, and the second communication unit 22 ( Step A3). The control data setting unit 23 receives the charging start notification and returns a notification to that effect, thereby establishing a communication path between the charger 10 and the charging device 20 (step B1), and then transmitting and receiving control data in the following manner. I do.

制御データ設定部23は、ステップA3で充電器10から送信された充電開始通知、或いは、新たに送信されたメッセージに、脈流充電である旨の情報が含まれているかを判定し(ステップB2)、当該情報が含まれている場合、脈流充電により蓄電池21の充電を行うことを判定する(ステップB2のYES)。ステップB2において、脈流充電である旨の情報が含まれていない場合、或いは、CVCC方式の充電である旨の情報が含まれている場合は、CVCC方式により蓄電池21の充電を行うことを判定する(ステップB2のNO)。後者の場合は、通常のCVCC方式による充電シーケンスが実行されるが、本発明の本旨とは関係ないので説明は省略する。以下、脈流充電と判定された場合の充電シーケンスについて説明する。   The control data setting unit 23 determines whether the charging start notification transmitted from the charger 10 in Step A3 or the newly transmitted message includes information indicating pulsating charge (Step B2). When the information is included, it is determined that the storage battery 21 is charged by pulsating charge (YES in step B2). In step B2, if the information indicating that the charging is pulsating charge is not included, or if the information indicating that the charging is based on the CVCC method is included, it is determined that the storage battery 21 is charged by the CVCC method. (NO in step B2). In the latter case, a charging sequence based on the normal CVCC method is executed, but the description is omitted because it is not related to the gist of the present invention. Hereinafter, a charging sequence when it is determined as pulsating charging will be described.

充電開始前において、制御データ設定部23が、蓄電池21の電気的仕様、充電開始前の充電状態等の内部状態を取得し、当該取得した情報に基づき、制御データに含まれる目標電流積算値Ima1、充電電圧の上限値Vcmax、充電電流の充電停止下限値Istp、充電開始前の充電状態、及び、充電終了時間Tstp等を夫々算出または設定し、更に、電池電圧及び内部インピーダンス等の内部状態に基づいて最大電流上限値の設定値Imaxを算出する(ステップB3)。   Before the start of charging, the control data setting unit 23 acquires the electrical specifications of the storage battery 21, the internal state such as the charging state before the start of charging, and based on the acquired information, the target current integrated value Ima1 included in the control data. The charging voltage upper limit value Vcmax, the charging current charging stop lower limit value Istp, the charging state before starting charging, the charging end time Tstp, and the like are calculated or set, respectively, and the internal state such as the battery voltage and internal impedance is set. Based on this, a set value Imax of the maximum current upper limit value is calculated (step B3).

制御データ設定部23は、算出した制御データの各設定値を、充電器10の制御回路部12に送信する(ステップB4)。   The control data setting unit 23 transmits each set value of the calculated control data to the control circuit unit 12 of the charger 10 (step B4).

制御回路部12は、受信した制御データの各設定値の内、充電開始前の充電状態(SOC)及び充電終了時間Tstp等は、表示部19bに表示してユーザに通知するとともに、脈流充電を開始し、受信した目標電流積算値Ima1と充電電流の充電停止下限値Istpに基づいて、充電電流の制御を行う。   The control circuit unit 12 displays the charging state (SOC) before the start of charging, the charging end time Tstp, and the like among the set values of the received control data on the display unit 19b and notifies the user, and pulsating charging And the charging current is controlled based on the received target current integrated value Ima1 and the charging stop lower limit value Istp of the charging current.

先ず、充電開始直後は、上述のソフトスタート動作を実行する。ソフトスタート動作では、充電電流の積算値Ia1が目標電流積算値Ima1に向けて徐々に増加するように、制御値Aを一定期間(例えば、100m秒)毎に段階的に増加させる制御が行われる(ステップA4)。ソフトスタート動作開始後、ソフトスタートの終了条件(例えば、電流積算値Ia1が目標電流積算値Ima1の97%値を超過)の判定を行い(ステップA5)、当該条件が満足されると(ステップA5のYES)、制御値Aの増加を停止して、充電電流の定常制御動作に移行する。制御回路部12は、ソフトスタート動作及び定常制御動作の各動作期間を通じて、電流積算器48で充電電流の電流積算値Ia1の算出を逐次実行する(ステップA6)。定常制御動作では、電流積算器48が積算値Ia1を算出する度に、積算値Ia1が目標電流積算値Ima1の例えば100%を超過しないように、制御値Aが調整される(ステップA7)。   First, immediately after the start of charging, the above-described soft start operation is executed. In the soft start operation, control is performed in which the control value A is increased stepwise for a certain period (for example, 100 milliseconds) so that the integrated value Ia1 of the charging current gradually increases toward the target current integrated value Ima1. (Step A4). After the soft start operation is started, a soft start end condition (for example, the current integrated value Ia1 exceeds 97% of the target current integrated value Ima1) is determined (step A5), and if the condition is satisfied (step A5) YES), the increase in the control value A is stopped, and the routine proceeds to a steady control operation of the charging current. The control circuit unit 12 sequentially executes the calculation of the current integrated value Ia1 of the charging current by the current integrator 48 throughout the operation periods of the soft start operation and the steady control operation (step A6). In the steady control operation, every time the current integrator 48 calculates the integrated value Ia1, the control value A is adjusted so that the integrated value Ia1 does not exceed, for example, 100% of the target current integrated value Ima1 (step A7).

一方、充電装置20側では、蓄電池21の充電の進行とともに、電池電圧Vbが上昇するため、充電電圧のピーク電圧の算出値Vcpkが蓄電池21の充電電圧上限値Vcmaxを超える可能性があるため、制御データ設定部23は、一定周期(例えば、100m秒周期)で、充電開始前に設定した充電電流の目標電流積算値Ima1を上述の要領で更新する(ステップB5)。   On the other hand, since the battery voltage Vb increases as the charging of the storage battery 21 progresses on the charging device 20 side, the calculated value Vcpk of the peak voltage of the charging voltage may exceed the charging voltage upper limit value Vcmax of the storage battery 21. The control data setting unit 23 updates the target current integrated value Ima1 of the charging current set before the start of charging at a constant cycle (for example, 100 ms cycle) as described above (step B5).

更に、制御データ設定部23は、ステップB5の目標電流積算値Ima1の更新と並行して、充電電流及び充電電圧の各瞬時値(或いは、各ピーク値)と内部インピーダンスに基づいて電池電圧Vbを算出し直して電池電圧Vbの更新を行い、更新された電池電圧Vbに基づき、最大電流上限値Imaxを新たに算出し直して更新する(ステップB6)。更に、上記ステップB6では、第1の更新方法により最大電流上限値Imaxを更新したが、第2の更新方法で最大電流上限値Imaxを更新しても良く、また、第1及び第2の更新方法で夫々更新した指示値Imaxの内のより小さい方を新たな指示値Imaxとして更新しても良い。   Furthermore, in parallel with the update of the target current integrated value Ima1 in step B5, the control data setting unit 23 sets the battery voltage Vb based on the instantaneous values (or peak values) of the charging current and charging voltage and the internal impedance. The battery voltage Vb is updated by recalculation, and the maximum current upper limit value Imax is newly calculated and updated based on the updated battery voltage Vb (step B6). Further, in step B6, the maximum current upper limit value Imax is updated by the first update method. However, the maximum current upper limit value Imax may be updated by the second update method, and the first and second update values may be updated. The smaller one of the instruction values Imax updated by the method may be updated as a new instruction value Imax.

更に、制御データ設定部23は、充電開始後、ステップB5及びB6と並行して、電流計24で測定される充電電流の瞬時値に対して、充電電流の周期Tm毎の電流積算値Ia2を算出する(ステップB7)。   Further, after starting charging, the control data setting unit 23 sets the current integrated value Ia2 for each charging current cycle Tm with respect to the instantaneous value of the charging current measured by the ammeter 24 in parallel with Steps B5 and B6. Calculate (step B7).

ステップB5で更新された目標電流積算値Ima1とステップB7で算出された積算値Ia2は、制御データの設定値の更新データとして、上記一定周期(例えば、100m秒周期)毎に順次、充電器10側に送信される(ステップB8)。上記一定周期が100m秒で、周期Tmが10m秒の場合は、積算値Ia2は10周期分算出されるので、10周期分の電流積算値Ia2を夫々制御データとして送信しても良く、或いは、それらの平均値または合計値を制御データとして送信しても良い。   The target current integrated value Ima1 updated in step B5 and the integrated value Ia2 calculated in step B7 are sequentially updated as the update data of the set value of the control data for each predetermined period (for example, 100 msec period). (Step B8). When the fixed period is 100 milliseconds and the period Tm is 10 milliseconds, the integrated value Ia2 is calculated for 10 periods, so the current integrated value Ia2 for 10 periods may be transmitted as control data, respectively, or You may transmit those average values or total values as control data.

更に、ステップB5〜B7と並行して、制御データ設定部23は、一定周期(例えば、100m秒周期)毎に順次、以下に示す充電異常判定を行う(ステップB9)。1回の充電異常判定では、第1に、電流計24で測定される蓄電池21に流入する充電電流の瞬時値(またはピーク値)が、最大電流上限値の設定値Imaxを超えている場合に、充電異常と判定する(第1判定)。第2に、電圧計25で測定される蓄電池21に印加される充電電圧の瞬時値(またはピーク値)が、充電電圧上限値Vcmaxを超えている場合に、充電異常と判定する(第2判定)。尚、上記第1及び第2判定の実際の判定処理では、3%程度の測定誤差を許容すべく、例えば、充電電流の瞬時値(またはピーク値)は最大電流上限値の設定値Imaxの103%値と、充電電圧の瞬時値(またはピーク値)は充電電圧の上限値Vcmaxの103%値と夫々比較する。更に、上記第1判定では、充電の進行とともに、最大電流上限値の設定値Imaxは徐々に低下するため、当該指示値を低下させた効果が、充電装置20側で瞬時に反映されずに、一定の時間遅れで反映されるため、一定時間(例えば、1〜3秒程度)前に設定された設定値Imaxを比較対象とするようにしても良い。1回の充電異常判定において、上記第1判定及び第2判定の少なくとも何れか一方において、異常と判定された場合に(ステップB9のYES)、充電停止信号S2を、第2通信部22を介して、充電器10側に送信し(ステップB10)、ステップB5〜B9の処理を停止する(ステップB11)。ステップB9で異常と判定されなかった場合は(ステップB9のNo)、充電動作は継続され、ステップB5〜B9が繰り返し継続的に実施される。尚、1回の充電異常判定で異常と判定された場合に即座に充電停止信号S2を送信してステップB5〜B9の処理を停止するのではなく、連続する複数回の充電異常判定において、同じ充電異常(第1判定または第2判定)が連続した場合に、充電異常と確定し、充電停止信号S2を送信してステップB5〜B9の処理を停止するようにしても良い。   Further, in parallel with Steps B5 to B7, the control data setting unit 23 sequentially performs the following charging abnormality determination at regular intervals (for example, 100 msec cycle) (Step B9). In one charge abnormality determination, first, when the instantaneous value (or peak value) of the charging current flowing into the storage battery 21 measured by the ammeter 24 exceeds the set value Imax of the maximum current upper limit value. The charging is determined to be abnormal (first determination). Second, when the instantaneous value (or peak value) of the charging voltage applied to the storage battery 21 measured by the voltmeter 25 exceeds the charging voltage upper limit value Vcmax, it is determined that the charging is abnormal (second determination). ). In the actual determination process of the first and second determinations described above, for example, the instantaneous value (or peak value) of the charging current is 103 of the set value Imax of the maximum current upper limit value in order to allow a measurement error of about 3%. The% value and the instantaneous value (or peak value) of the charging voltage are respectively compared with the 103% value of the upper limit value Vcmax of the charging voltage. Furthermore, in the first determination, as the charging progresses, the set value Imax of the maximum current upper limit value gradually decreases, so the effect of reducing the instruction value is not reflected instantaneously on the charging device 20 side, Since it is reflected with a fixed time delay, the set value Imax set before a fixed time (for example, about 1 to 3 seconds) may be used as a comparison target. In one charge abnormality determination, when it is determined as abnormal in at least one of the first determination and the second determination (YES in step B9), the charge stop signal S2 is sent via the second communication unit 22. Then, the data is transmitted to the charger 10 side (step B10), and the processing of steps B5 to B9 is stopped (step B11). When it is not determined to be abnormal in Step B9 (No in Step B9), the charging operation is continued, and Steps B5 to B9 are repeatedly and continuously performed. In addition, when it determines with abnormality by one charge abnormality determination, it does not transmit the charge stop signal S2 immediately and stops the process of step B5-B9, but is the same in several continuous charge abnormality determinations. When the charging abnormality (first determination or second determination) continues, it is determined that the charging abnormality has occurred, and the processing of steps B5 to B9 may be stopped by transmitting a charging stop signal S2.

充電器10側では、ソフトスタート動作及び定常制御動作の各動作期間を通じて、ステップB8で上記一定周期毎に送信された制御データの更新データ(目標電流積算値Ima1と電流積算値Ia2)を順次受信する(ステップA8)。ステップA5では、更新された制御データの目標電流積算値Ima1に基づいて、ソフトスタートの終了条件の判定が上述の要領で行われる。ステップA7では、更新された制御データの目標電流積算値Ima1に基づいて、充電電流の積算値Ia1が、目標電流積算値Ima1の例えば97%〜103%の範囲内となるように、制御値設定部43において制御値Aの調整が上述の要領で行われる。一方、比較器49は、ソフトスタート動作及び定常制御動作の各動作期間を通して、上記一定周期毎に、例えば、ステップA8で順次受信した電流積算値Ia2と、ステップA6で算出した電流積算値Ia1の合計値(或いは平均値)を比較する(ステップA9)。ステップA9において、電流積算値Ia1,Ia2間に、所定の誤差(例えば3%)以上の不一致が存在する場合に、比較器49は充電停止信号S1を出力する(ステップA10)。但し、電流積算値Ia1,Ia2の比較は、例えば、充電電流のピーク値Ipkが電流計15及び電流計24の測定可能範囲の下限値を一定レベル以上超えてから開始するようにしても良い。   On the charger 10 side, the control data update data (target current integrated value Ima1 and current integrated value Ia2) transmitted at regular intervals in step B8 are sequentially received through each operation period of the soft start operation and the steady control operation. (Step A8). In step A5, the soft start end condition is determined as described above based on the updated target current integrated value Ima1 of the control data. In step A7, based on the updated target current integrated value Ima1 of the control data, the control value is set so that the integrated value Ia1 of the charging current is within the range of 97% to 103% of the target current integrated value Ima1, for example. In the unit 43, the control value A is adjusted as described above. On the other hand, the comparator 49 performs, for example, the current integrated value Ia2 sequentially received in step A8 and the current integrated value Ia1 calculated in step A6 for each fixed period throughout the operation periods of the soft start operation and the steady control operation. The total value (or average value) is compared (step A9). In step A9, when there is a discrepancy greater than or equal to a predetermined error (for example, 3%) between the current integrated values Ia1 and Ia2, the comparator 49 outputs a charge stop signal S1 (step A10). However, the comparison of the current integrated values Ia1 and Ia2 may be started, for example, after the peak value Ipk of the charging current exceeds the lower limit value of the measurable range of the ammeter 15 and the ammeter 24 by a certain level or more.

更に、ソフトスタート動作及び定常制御動作の各動作期間を通じて、制御回路部12は、以下の異常終了判定を行い(ステップA11)、当該判定において、ステップA10の充電停止信号S1の出力、または、ステップB10で送信される充電停止信号S2の受信の少なくとも何れか一方を確認すると(ステップA11のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA12)。   Furthermore, through each operation period of the soft start operation and the steady control operation, the control circuit unit 12 performs the following abnormal termination determination (step A11), and in the determination, the output of the charge stop signal S1 in step A10, or step When at least one of the reception of the charge stop signal S2 transmitted in B10 is confirmed (YES in Step A11), the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is displayed. To the control data setting unit 23 (step A12).

また、ソフトスタート動作及び定常制御動作の各動作期間を通じて、ユーザが充電器10に設置された操作部19aにおいて充電終了ボタンを押下した場合には、制御回路部12は、当該充電終了指示を受け付け(ステップA13のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA14)。   In addition, when the user presses the charge end button on the operation unit 19a installed in the charger 10 during each operation period of the soft start operation and the steady control operation, the control circuit unit 12 accepts the charge end instruction. (YES in step A13), the charging current supply operation of the charging circuit unit 11 is stopped, and a charging stop notification S3 is transmitted to the control data setting unit 23 of the charging device 20 (step A14).

ソフトスタート動作から定常制御動作に移行した後、ステップA11の異常終了判定において、充電停止信号S1の出力及び充電停止信号S2の受信の何れも確認せず(ステップA11のNO)、充電終了ボタンの押下による充電終了指示も受け付けずに(ステップA13のNO)、充電動作が順調に進行すると、上述のように、目標電流積算値Ima1が徐々に低下するため、充電電流の積算値Ia1も同様に徐々に低下するように制御される。従って、定常制御動作では、充電動作の進行とともに、充電電流の積算値Ia1が低下するのに伴い、充電電流の周期Tm毎のピーク値Ipk、ボトム値Ibt、平均値Iave、及び、積算値Ia1の何れかで定義される電流判定値Ijも低下するため、当該電流判定値Ijを周期Tm毎に算出し、充電停止下限値Istpとの比較判定を行う(ステップA15)。ステップA15において、電流判定値Ijが充電停止下限値Istp以下と判定された場合に(ステップA15のYES)、充電回路部11の充電電流の供給動作を停止するとともに、充電停止通知S3を、充電装置20の制御データ設定部23に送信する(ステップA16)。ステップA15において、電流判定値Ijが充電停止下限値Istp以下でない場合は(ステップA12のNO)、定常制御動作における制御値Aの調整(ステップA6)が引き続き継続される。   After the transition from the soft start operation to the steady control operation, in the abnormal end determination in step A11, neither the output of the charge stop signal S1 nor the reception of the charge stop signal S2 is confirmed (NO in step A11). If the charging operation proceeds smoothly without accepting the charging end instruction by pressing (NO in step A13), the target current integrated value Ima1 gradually decreases as described above, and thus the integrated value Ia1 of the charging current is also the same. It is controlled to gradually decrease. Therefore, in the steady control operation, as the charging operation progresses, as the charging current integrated value Ia1 decreases, the peak value Ipk, the bottom value Ibt, the average value Iave, and the integrated value Ia1 for each charging current cycle Tm. Since the current determination value Ij defined by any of the above also decreases, the current determination value Ij is calculated for each period Tm and compared with the charge stop lower limit value Istp (step A15). When it is determined in step A15 that the current determination value Ij is equal to or less than the charge stop lower limit value Istp (YES in step A15), the charging circuit unit 11 stops the charging current supply operation, and the charge stop notification S3 is charged. It transmits to the control data setting part 23 of the apparatus 20 (step A16). If the current determination value Ij is not less than or equal to the charge stop lower limit value Istp in step A15 (NO in step A12), the adjustment of the control value A in the steady control operation (step A6) is continued.

制御データ設定部23は、ステップA12、A14またはA16で送信される充電停止通知S3の受信の有無を判定し(ステップB12)、充電停止通知S3を受信した場合は(ステップB12のYES)、ステップB5〜B9の処理を停止する(ステップB11)。尚、充電装置20側で、先に充電異常判定が行われている場合は(ステップB9のYES)、充電停止通知S3の受信の有無に関係なく、ステップB5〜B9の処理は停止する(ステップB11)。   The control data setting unit 23 determines whether or not the charge stop notification S3 transmitted in step A12, A14 or A16 is received (step B12). When the charge stop notification S3 is received (YES in step B12), The processing of B5 to B9 is stopped (step B11). If the charging abnormality determination has been made on the charging device 20 side (YES in step B9), the processing in steps B5 to B9 is stopped regardless of whether or not the charging stop notification S3 is received (step S9). B11).

次に、充電回路部11の最終段に、コイル37とコンデンサ38で構成される低域通過フィルタ回路を設ける場合の効果について、簡単に説明する。図4に、低域通過フィルタ回路を設けた場合と設けてない場合の各充電電流Ioutの出力波形のシミュレーション結果の一例を、入力交流電圧波形Vinとともに、表示する。図4より、低域通過フィルタ回路を設けない場合は、充電電流Ioutは、電流振幅は大きいものの、0Aまで低下する。この場合、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)において、電流判定値Ijとしてボトム値Ibtは使用できない。一方、低域通過フィルタ回路を設けた場合は、電流振幅は抑圧され、充電電流Ioutのピーク値Ipkは低下し、ボトム値Ibtは上昇する。従って、充電電流Ioutが、電流計15及び電流計24の測定可能範囲内に常時収まるため、充電制御に使用する各瞬時値の測定精度が維持され、高精度に充電制御可能になる。コイル37とコンデンサ38の回路定数は、ボトム値Ibtが、電流計15及び電流計24の測定可能範囲の下限値以上となれば十分であるので、不必要に大きな値とする必要は無い。また、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)において、電流判定値Ijとしてボトム値Ibtを使用できる。   Next, the effect of providing a low-pass filter circuit composed of a coil 37 and a capacitor 38 at the final stage of the charging circuit unit 11 will be briefly described. FIG. 4 shows an example of the simulation result of the output waveform of each charging current Iout with and without the low-pass filter circuit, together with the input AC voltage waveform Vin. From FIG. 4, when the low-pass filter circuit is not provided, the charging current Iout decreases to 0 A although the current amplitude is large. In this case, the bottom value Ibt cannot be used as the current determination value Ij in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp. On the other hand, when the low-pass filter circuit is provided, the current amplitude is suppressed, the peak value Ipk of the charging current Iout decreases, and the bottom value Ibt increases. Therefore, since the charging current Iout is always within the measurable range of the ammeter 15 and the ammeter 24, the measurement accuracy of each instantaneous value used for the charge control is maintained, and the charge control can be performed with high accuracy. The circuit constants of the coil 37 and the capacitor 38 are sufficient if the bottom value Ibt is equal to or greater than the lower limit value of the measurable range of the ammeter 15 and the ammeter 24, and need not be unnecessarily large. Further, in the comparison determination (step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp, the bottom value Ibt can be used as the current determination value Ij.

次に、上記実施形態の別実施形態につき説明する。   Next, another embodiment of the above embodiment will be described.

〈1〉上記実施形態では、電流指標値及び目標電流指標値として、充電電流の周期Tm毎の積算値Ia1と目標電流積算値Ima1を用い、制御データ設定部23が充電開始前及び充電開始後において目標積算値Ima1を設定及び更新し、電流積算器48が、電流計15で測定された充電電流の瞬時値Ioutを脈流の周期Tm毎の積算値Ia1を算出し、制御値設定部43が、積算値Ia1と目標積算値Ima1を比較して制御値Aを調整する構成につき説明したが、電流指標値及び目標電流指標値として、充電電流の周期Tm毎の平均値Ib1(=Ia1/Tm)とその目標電流平均値Imb1(=Ima1/Tm)を用いても良い。この場合、充電装置20側で算出される充電電流の積算値Ia2に代えて平均値Ib2(=Ia2/Tm)を使用する。   <1> In the above-described embodiment, the integrated value Ia1 and the target current integrated value Ima1 for each charging current cycle Tm are used as the current index value and the target current index value, and the control data setting unit 23 performs before charging and after charging starts. The target integrated value Ima1 is set and updated at, and the current integrator 48 calculates the integrated value Ia1 for each cycle Tm of the pulsating flow from the instantaneous value Iout of the charging current measured by the ammeter 15, and the control value setting unit 43 However, the configuration in which the control value A is adjusted by comparing the integrated value Ia1 and the target integrated value Ima1 has been described. However, as the current index value and the target current index value, the average value Ib1 (= Ia1 / Tm) and the target current average value Imb1 (= Ima1 / Tm) may be used. In this case, an average value Ib2 (= Ia2 / Tm) is used instead of the integrated value Ia2 of the charging current calculated on the charging device 20 side.

〈2〉上記実施形態では、充電装置20側でステップB3,B6において算出或いは更新された最大電流上限値Imaxを、制御データの一部として、ステップB4,B8において充電器10側に送信し、充電器10側で、ソフトスタート動作及び定常制御動作の各動作期間において、制御値設定部43が、目標電流積算値Ima1に加えて、送信された最大電流上限値Imaxも、制御値Aの調整に使用するようにしても良い。   <2> In the above embodiment, the maximum current upper limit value Imax calculated or updated in steps B3 and B6 on the charging device 20 side is transmitted to the charger 10 side in steps B4 and B8 as part of the control data. In each operation period of the soft start operation and the steady control operation on the charger 10 side, the control value setting unit 43 adjusts the control value A for the transmitted maximum current upper limit value Imax in addition to the target current integrated value Ima1. You may make it use for.

具体的には、ソフトスタート動作において、制御値設定部43は、電流計15で測定された瞬時値Ioutから周期Tm毎のピーク値Ipkを算出し、充電装置20から逐次送信される最大電流上限値の最新の設定値Imaxを、第1通信部13で受信し、ピーク値Ipkと設定値Imaxを比較して、ピーク値Ipkが設定値Imaxを下回っている(Ipk<Imax)の間は、制御値Aを上記要領で徐々に増加させる。ピーク値Ipkが設定値Imaxの例えば97%まで到達した時点で、ソフトスタート動作を終了し、制御値Aの増加を停止する。つまり、積算値Ia1が目標積算値Ima1の例えば97%まで到達するか、ピーク値Ipkが設定値Imaxの例えば97%まで到達するか、何れか早い方のタイミングでソフトスタート動作を終了させる。ソフトスタート動作が終了し、定常制御動作に移行した後は、ピーク値Ipkが指示値Imaxの例えば97%を超過した場合は、その時点で設定されている制御値Aに、例えば、((Imax×0.97)/Ipk)で表わされる縮小率を乗じて制御値Aの設定値を低下させて、制御値Aの更新を行う。斯かるフィードバック制御により、充電電流のピーク値Ipkが最大電流上限値の最新の設定値Imaxを超過しないようにする制御が可能となる。つまり、本別実施形態では、制御値Aは、積算値Ia1が目標積算値Ima1の例えば97%〜103%の範囲内となるように、且つ、充電電流のピーク値Ipkが最大電流上限値の最新の設定値Imaxを超過しないように、制御値Aが調整される。更に、充電装置20側で測定した蓄電池のピーク電圧を充電器10側で受信し、常に(例えば100ms毎に更新)で充電器10側の電圧の読み取り値と、充電装置20側の電圧の読み取り値の間で相互にズレが生じていないか、異常判定を行うようにしても良い。   Specifically, in the soft start operation, the control value setting unit 43 calculates the peak value Ipk for each cycle Tm from the instantaneous value Iout measured by the ammeter 15 and the maximum current upper limit sequentially transmitted from the charging device 20. The latest setting value Imax of the value is received by the first communication unit 13, and the peak value Ipk is compared with the setting value Imax. While the peak value Ipk is lower than the setting value Imax (Ipk <Imax), The control value A is gradually increased as described above. When the peak value Ipk reaches, for example, 97% of the set value Imax, the soft start operation is terminated and the increase of the control value A is stopped. In other words, the soft start operation is terminated at the earlier timing when the integrated value Ia1 reaches, for example, 97% of the target integrated value Ima1, or the peak value Ipk reaches, for example, 97% of the set value Imax. After the soft start operation is finished and the routine shifts to the steady control operation, if the peak value Ipk exceeds 97% of the indicated value Imax, for example, the control value A set at that time is set to ((Imax The control value A is updated by reducing the set value of the control value A by multiplying the reduction ratio represented by × 0.97) / Ipk). Such feedback control enables control so that the peak value Ipk of the charging current does not exceed the latest set value Imax of the maximum current upper limit value. That is, in this embodiment, the control value A is such that the integrated value Ia1 falls within the range of 97% to 103% of the target integrated value Ima1, and the peak value Ipk of the charging current is the maximum current upper limit value. The control value A is adjusted so as not to exceed the latest set value Imax. Further, the storage battery peak voltage measured on the charging device 20 side is received on the charger 10 side, and the voltage reading value on the charger 10 side and the voltage reading on the charging device 20 side are constantly read (for example, updated every 100 ms). You may make it perform abnormality determination whether the deviation | shift between values has produced mutually.

〈3〉上記実施形態の充電異常判定(ステップB9)において、上記第1及び第2判定の少なくとも何れか一方に代えて、または、追加して、脈流の周期Tm毎に充電器10側で測定した充電電流のピーク値を都度受信し、同じ周期Tm毎に充電装置20側で測定した充電電流のピーク値と比較し、所定の誤差範囲(例えば、±3%)以上両ピーク値が乖離している場合に、充電異常と判定する(第3の判定)のも好ましい。この場合、比較対象となる2つのピーク値が、同じ脈流周期内でサンプリングされた充電電流の瞬時値に基づくピーク値であることを確実にするため、例えば、充電器10側で入力交流電圧のゼロクロス点を検出し、その検出タイミングを同期信号として、充電器10側と充電装置20側で共通に利用して、充電器10側における脈流の周期Tmと充電装置20側における脈流の周期Tmを一致させるのが好ましい。これにより、同じ周期Tm内で検出されたピーク値同士を比較できる。尚、当該第3の判定を充電器10側で行う場合は、充電装置20側で測定した充電電流のピーク値を充電器10側で受信すれば良い。   <3> In the charging abnormality determination (step B9) of the above embodiment, instead of or in addition to at least one of the first and second determinations, on the charger 10 side for each cycle Tm of the pulsating flow The peak value of the measured charging current is received each time, and compared with the peak value of the charging current measured on the charging device 20 side at the same period Tm, both peak values deviate by more than a predetermined error range (for example, ± 3%). In this case, it is also preferable to determine that charging is abnormal (third determination). In this case, in order to ensure that the two peak values to be compared are peak values based on the instantaneous value of the charging current sampled within the same pulsating cycle, for example, the input AC voltage on the charger 10 side. The zero-crossing point is detected and the detection timing is used as a synchronization signal in common on the charger 10 side and the charging device 20 side, and the pulsating flow period Tm on the charger 10 side and the pulsating flow on the charging device 20 side It is preferable to match the periods Tm. Thereby, the peak values detected within the same period Tm can be compared. When the third determination is performed on the charger 10 side, the peak value of the charging current measured on the charging device 20 side may be received on the charger 10 side.

更に、上記同期信号は、上記検出タイミングに依らずに、充電器10側と充電装置20側の何れかにタイマー素子を設けて、当該タイマー素子の出力に基づいて生成するようにしても良い。また、上記同期信号は、電流積算器48と制御データ設定部23が、夫々充電器10側と充電装置20側において、充電電流の周期Tm毎の積算値Ia1,Ia2を算出する場合において利用することで、各積算値Ia1,Ia2の算出に使用する周期Tmを一致させるのも好ましい。   Further, the synchronization signal may be generated based on the output of the timer element by providing a timer element on either the charger 10 side or the charging device 20 side without depending on the detection timing. The synchronization signal is used when the current integrator 48 and the control data setting unit 23 calculate the integrated values Ia1 and Ia2 for each charging current cycle Tm on the charger 10 side and the charging device 20 side, respectively. Thus, it is also preferable that the periods Tm used for calculation of the integrated values Ia1 and Ia2 are matched.

〈4〉上記実施形態では、充電装置20側でステップB3,B6において算出或いは更新された最大電流上限値Imaxを、制御データの一部として、ステップB4,B8において充電器10側に送信し、充電装置20側で行っていた充電異常判定(ステップB9)の内の第1判定を、充電器10側で行うようにしても良い。この場合、充電器10の制御回路部12内に、電流計15で測定された瞬時値Ioutから周期Tm毎のピーク値Ipkを算出する手段と、当該ピーク値Ipkと最大電流上限値Imaxを比較する手段を設け、ステップA9における電流積算値Ia1,Ia2間の比較処理と並行して、当該ピーク値Ipkと最大電流上限値Imaxを比較し、当該ピーク値Ipkが最大電流上限値Imaxを超えている場合に、充電異常と判定し、その結果である充電停止信号S2を充電装置20側に送信する構成とする。或いは、電流計15で測定された瞬時値Ioutと最大電流上限値Imaxを比較する手段を設け、ステップA9における電流積算値Ia1,Ia2間の比較処理と並行して、当該瞬時値Ioutと最大電流上限値Imaxを比較し、当該瞬時値Ioutが最大電流上限値Imaxを超えている場合に、充電異常と判定すし、その結果である充電停止信号S2を充電装置20側に送信する構成とする。当該比較処理の詳細は、ステップB9の充電異常判定と同様であるので、重複する説明は割愛する。   <4> In the above embodiment, the maximum current upper limit value Imax calculated or updated in steps B3 and B6 on the charging device 20 side is transmitted to the charger 10 side in steps B4 and B8 as part of the control data. You may make it perform the 1st determination in the charging abnormality determination (step B9) performed on the charging device 20 side by the charger 10 side. In this case, a means for calculating the peak value Ipk for each cycle Tm from the instantaneous value Iout measured by the ammeter 15 is compared with the peak value Ipk and the maximum current upper limit value Imax in the control circuit unit 12 of the charger 10. In parallel with the comparison process between the current integrated values Ia1 and Ia2 in step A9, the peak value Ipk is compared with the maximum current upper limit value Imax, and the peak value Ipk exceeds the maximum current upper limit value Imax. If it is determined that the charging is abnormal, the charging stop signal S2 as a result of the charging is transmitted to the charging device 20 side. Alternatively, a means for comparing the instantaneous value Iout measured by the ammeter 15 with the maximum current upper limit value Imax is provided, and in parallel with the comparison processing between the current integrated values Ia1 and Ia2 in step A9, the instantaneous value Iout and the maximum current are compared. The upper limit value Imax is compared, and when the instantaneous value Iout exceeds the maximum current upper limit value Imax, it is determined that charging is abnormal, and a charging stop signal S2 as a result is transmitted to the charging device 20 side. Since the details of the comparison process are the same as the charging abnormality determination in step B9, the overlapping description is omitted.

更に、充電装置20側で行っていた充電異常判定(ステップB9)の内の第2判定も、充電器10側において実行し、その結果である充電停止信号S2を充電装置20側に送信する構成としても良い。   Furthermore, the second determination of the charging abnormality determination (step B9) performed on the charging device 20 side is also performed on the charger 10 side, and the charging stop signal S2 as a result thereof is transmitted to the charging device 20 side. It is also good.

〈5〉上記実施形態では、制御データ設定部23が、充電開始前に、蓄電池21の公称電流容量または蓄電池メーカが推奨する最適充電電流値に基づいて目標電流積算値Ima1を設定する場合を説明したが、目標電流積算値Ima1を充電開始前の充電状態に応じて設定するようにしても良い。例えば、公称電流容量の値に乗じる所定の割合を、例えば、所定の範囲内において、充電開始前の充電率が高い程、小さく設定するようにしても良い。   <5> In the above embodiment, the case where the control data setting unit 23 sets the target current integrated value Ima1 based on the nominal current capacity of the storage battery 21 or the optimum charging current value recommended by the storage battery manufacturer before the start of charging will be described. However, the target current integrated value Ima1 may be set according to the state of charge before the start of charging. For example, the predetermined ratio multiplied by the value of the nominal current capacity may be set to be smaller as the charging rate before the start of charging is higher, for example, within a predetermined range.

〈6〉上記実施形態では、充電回路部11として、図2の回路構成のものを例示したが、充電回路部11は、図2の回路構成に限定されるものではない。例えば、特許文献2の図1に開示されているように、商用交流電源30の交流入力を全波整流した後に、フルブリッジ構成のスイッチング素子のインバータ回路を介してトランスの1次側に接続し、当該トランスの2次側に更に全波整流回路を設ける構成としても良い。更に、絶縁型のAC/DCコンバータとする場合、インバータ回路に代えて、トランスの1次側コイルを、チョッパ回路を構成するチョークコイルと兼用させても良い。AC/DCコンバータの1段で絶縁しつつ、力率改善動作を行うように充電電流を制御することが好ましい。何れの回路構成においてもインバータ回路またはチョッパ回路を構成するスイッチング素子のオンオフ制御は、上記実施形態で説明したものと同様にすれば良い。絶縁型のAC/DCコンバータを使用する場合、充電回路部11の出力側と入力側(商用交流電源30側)をトランスにより絶縁でき、出力側(電池側)の地絡の問題や、感電に対する安全性が向上する。   <6> In the above embodiment, the charging circuit unit 11 has the circuit configuration illustrated in FIG. 2, but the charging circuit unit 11 is not limited to the circuit configuration illustrated in FIG. 2. For example, as disclosed in FIG. 1 of Patent Document 2, after full-wave rectification of the AC input of the commercial AC power supply 30, it is connected to the primary side of the transformer via an inverter circuit of a switching element having a full bridge configuration. A full-wave rectifier circuit may be further provided on the secondary side of the transformer. Further, in the case of an insulating AC / DC converter, the primary coil of the transformer may be used also as a choke coil constituting the chopper circuit instead of the inverter circuit. It is preferable to control the charging current so as to perform the power factor correction operation while insulating at one stage of the AC / DC converter. In any circuit configuration, on / off control of the switching elements constituting the inverter circuit or chopper circuit may be performed in the same manner as described in the above embodiment. When using an insulation type AC / DC converter, the output side and the input side (commercial AC power supply 30 side) of the charging circuit unit 11 can be insulated by a transformer. Safety is improved.

また、商用交流電源30は単相3線式200Vに限定されるものではないので、例えば、商用交流電源30が三相200Vの場合には、充電回路部11の回路構成も、商用交流電源30に応じて変更となる。力率改善動作をさせながら、脈流での充電電流に対する制御を単相の場合と同様に行うことが出来る。   Further, since the commercial AC power supply 30 is not limited to the single-phase three-wire type 200V, for example, when the commercial AC power supply 30 is a three-phase 200V, the circuit configuration of the charging circuit unit 11 is also the commercial AC power supply 30. It will be changed according to. While performing the power factor correction operation, the control with respect to the charging current in the pulsating flow can be performed as in the case of the single phase.

また、スイッチング素子34は、図2に示す構成例では、2つのIGBT(絶縁ゲートバイポーラトランジスタ)を、コレクタ同士を共通にして直列接続し、双方向に完全にオンオフ動作可能な構成としたが、例えば、IGBTに代えてパワーMOSFET等を使用して構成されていても良く、また、双方向に完全にオンオフ動作可能な単体のスイッチング素子を用いても良い。   In the configuration example shown in FIG. 2, the switching element 34 has a configuration in which two IGBTs (insulated gate bipolar transistors) are connected in series with a common collector, and can be completely turned on and off in both directions. For example, a power MOSFET or the like may be used instead of the IGBT, or a single switching element that can be completely turned on and off in both directions may be used.

〈7〉上記実施形態では、制御回路部12は、スイッチング素子34のオン及びオフ時間のデューティ比を制御する構成としたが、制御パルス信号出力部47が、PI演算部46の出力値に基づいて制御パルス信号Sの出力周波数が変化する回路(電圧周波数コンバータ回路等)とし、周波数の変化に伴い制御パルス信号Sのデューティ比が実質的に変化する構成としても良い。   <7> In the above embodiment, the control circuit unit 12 is configured to control the duty ratio of the on and off times of the switching element 34, but the control pulse signal output unit 47 is based on the output value of the PI calculation unit 46. Thus, a circuit (voltage frequency converter circuit or the like) in which the output frequency of the control pulse signal S is changed may be configured so that the duty ratio of the control pulse signal S substantially changes with the change in frequency.

また、上記実施形態では、PI演算部46を用いて、数1に示すPI補正演算によりデューティ比を算出したが、数1の演算式の右辺の括弧内に微分項を追加したPID補正演算によりデューティ比を算出しても良い。   Further, in the above embodiment, the duty ratio is calculated by the PI correction calculation shown in Formula 1 using the PI calculation unit 46, but by the PID correction calculation in which the differential term is added in parentheses on the right side of the calculation formula of Formula 1. The duty ratio may be calculated.

〈8〉上記実施形態では、電流積算値Ia1,Ia2の比較(ステップA9)を充電器10側において実行し、その結果である充電停止信号S1を充電装置20側に送信する構成としたが、電流積算値Ia1を充電装置20側に送信し、当該比較処理を充電装置20側で行う構成としても良い。この場合、充電異常判定(ステップB9)が充電装置20側で実行される構成では、当該比較処理を充電異常判定に含めても良い。   <8> In the above embodiment, the comparison of the current integrated values Ia1 and Ia2 (step A9) is performed on the charger 10 side, and the resulting charge stop signal S1 is transmitted to the charging device 20 side. The current integrated value Ia1 may be transmitted to the charging device 20 side, and the comparison process may be performed on the charging device 20 side. In this case, in the configuration in which the charging abnormality determination (step B9) is performed on the charging device 20 side, the comparison process may be included in the charging abnormality determination.

〈9〉更に、上記実施形態では、充電電流の電流判定値Ijと充電停止下限値Istpとの比較判定(ステップA15)を充電器10側において実行し、充電停止通知を、充電装置20側に送信する構成としたが、電流判定値Ijの算出及び電流判定値Ijと充電停止下限値Istpとの比較判定を充電装置20側において実行し、その結果として、充電停止信号S1を充電器10側に送信する構成としても良い。   <9> Further, in the above-described embodiment, a comparison determination (Step A15) between the current determination value Ij of the charging current and the charge stop lower limit value Istp is executed on the charger 10 side, and a charge stop notification is sent to the charging device 20 side. Although it is configured to transmit, the calculation of the current determination value Ij and the comparison determination between the current determination value Ij and the charge stop lower limit Istp are executed on the charging device 20 side, and as a result, the charge stop signal S1 is transmitted to the charger 10 side. It is good also as a structure which transmits to.

10: 充電器
11: 充電回路部
12: 制御回路部
13: 第1通信部
14,15,24: 電流計
16,25: 電圧計
17: 充電ケーブル
17a: 電源ケーブル
17b: 通信ケーブル
18: 充電コネクタ
19: ユーザインターフェース部
19a: 操作部
19b: 表示部
20: 車載充電装置
21: 蓄電池
22: 第2通信部
23: 制御データ設定部
26: 充電ソケット
30: 商用交流電源
31,32: チョークコイル
34: スイッチング素子
35: 全波整流回路
36: 平滑コンデンサ
37: コイル
38: コンデンサ
41,42: 絶対値演算部
43: 制御値設定部
44: 乗算器
45: 減算器
46: PI演算部
47: 制御パルス信号出力部
47a: ノコギリ波発生器
47b: 比較器
48: 電流積算器
49: 比較器
N1: 接続ノード
S: 制御パルス信号
S1,S2: 充電停止信号
S3: 充電停止通知
T1: 出力端子
DESCRIPTION OF SYMBOLS 10: Charger 11: Charging circuit part 12: Control circuit part 13: 1st communication part 14,15,24: Ammeter 16,25: Voltmeter 17: Charging cable 17a: Power supply cable 17b: Communication cable 18: Charging connector 19: User interface unit 19a: Operation unit 19b: Display unit 20: In-vehicle charging device 21: Storage battery 22: Second communication unit 23: Control data setting unit 26: Charging socket 30: Commercial AC power supply 31, 32: Choke coil 34: Switching element 35: Full wave rectifier circuit 36: Smoothing capacitor 37: Coil 38: Capacitor 41, 42: Absolute value calculation unit 43: Control value setting unit 44: Multiplier 45: Subtractor 46: PI calculation unit 47: Control pulse signal Output unit 47a: sawtooth wave generator 47b: comparator 48: current accumulator 49 Comparator N1: connection node S: control pulse signal S1, S2: charge stop signal S3: charging stop notification T1: Output terminal

Claims (21)

充電対象の電気自動車との間で充電制御に使用する制御データの通信を行う第1通信部と、
前記電気自動車に搭載されている蓄電池に脈流の充電電流を供給する充電回路部と、
前記充電回路部の電流供給を前記制御データに基づいて制御する制御回路部と、を備え、
前記第1通信部は、充電開始前に、少なくとも前記充電電流の所定時間単位毎の積算値または平均値で与えられる電流指標値の目標値である目標電流指標値を含む前記制御データを、前記電気自動車から取得し、
前記制御回路部は、前記制御データに基づいて前記充電電流の前記電流指標値を前記目標電流指標値となるように制御することを特徴とする電気自動車充電用の充電器。
A first communication unit for communicating control data used for charging control with an electric vehicle to be charged;
A charging circuit unit for supplying a pulsating charging current to a storage battery mounted on the electric vehicle;
A control circuit unit for controlling the current supply of the charging circuit unit based on the control data,
The first communication unit includes the control data including a target current index value, which is a target value of a current index value given by at least an integrated value or an average value of the charging current for each predetermined time unit before starting charging. Obtained from electric cars,
The charger for charging an electric vehicle, wherein the control circuit unit controls the current index value of the charging current to be the target current index value based on the control data.
充電開始後に、前記第1通信部が、前記蓄電池の充電の進行に伴い更新される前記制御データを前記電気自動車から順次取得し、
前記制御回路部が、前記電流指標値を順次取得した前記制御データに含まれる前記目標電流指標値となるように制御することを特徴とする請求項1に記載の充電器。
After the start of charging, the first communication unit sequentially acquires the control data updated as the storage battery progresses from the electric vehicle,
The charger according to claim 1, wherein the control circuit unit performs control so that the target current index value is included in the control data obtained by sequentially acquiring the current index value.
前記第1通信部は、充電開始前に、前記充電回路部が脈流の充電電流を供給する脈流充電である旨の情報を前記電気自動車に送信した後、前記制御データを前記電気自動車から受信することを特徴とする請求項1または2に記載の充電器。   The first communication unit transmits information indicating that the charging circuit unit is a pulsating charge supplying a pulsating charging current to the electric vehicle before starting charging, and then transmits the control data from the electric vehicle. The charger according to claim 1, wherein the charger is received. 前記制御回路部は、充電開始直後の一定期間において、前記充電電流の電流指標値を前記目標電流指標値に向けて徐々に増加させる制御を行うことを特徴とする請求項1〜3の何れか1項に記載の充電器。   The control circuit unit performs control to gradually increase the current index value of the charging current toward the target current index value in a certain period immediately after the start of charging. The charger according to item 1. 前記充電回路部は、最終段にLC型の低域通過フィルタを備えることを特徴とする請求項1〜4の何れか1項に記載の充電器。   The charger according to any one of claims 1 to 4, wherein the charging circuit unit includes an LC-type low-pass filter in a final stage. 前記制御回路部は、前記充電電流の測定値に基づいて前記電流指標値を算出し、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記電流指標値が前記目標電流指標値を所定の誤差範囲を超えて超過する場合は、前記電流指標値が低下するように前記制御値を調整するフィードバック制御を行うことを特徴とする請求項1〜5の何れか1項に記載の充電器。   The control circuit unit calculates the current index value based on the measured value of the charging current, and switching that constitutes a booster circuit provided in the charging circuit unit based on a control value adjusted based on the control data The device is configured to control an on / off duty ratio of an element, and when the current index value exceeds the target current index value beyond a predetermined error range, the control value is set so that the current index value decreases. 6. The charger according to claim 1, wherein feedback control for adjustment is performed. 前記制御データは、前記充電電流の最大電流上限値を含み、
前記制御回路部が、前記制御データに基づいて前記充電電流を前記最大電流上限値以下となるように制御することを特徴とする請求項1〜5の何れか1項に記載の充電器。
The control data includes a maximum current upper limit value of the charging current,
The charger according to any one of claims 1 to 5, wherein the control circuit unit controls the charging current to be equal to or lower than the maximum current upper limit value based on the control data.
前記制御回路部は、前記充電電流の測定値に基づいて前記充電電流のピーク値及び前記電流指標値を算出し、前記制御データに基づいて調整される制御値によって、前記充電回路部に設けられた昇圧回路を構成するスイッチング素子のオンオフのデューティ比を制御するように構成され、前記電流指標値が前記目標電流指標値を所定の誤差範囲を超えて超過する場合は前記電流指標値が低下するように、更に、前記充電電流のピーク値が前記最大電流上限値と所定の誤差範囲内で等しいか、或いは、超過する場合は、前記ピーク値が低下するように、前記制御値を調整するフィードバック制御を行うことを特徴とする請求項7に記載の充電器。 The control circuit unit calculates the peak value of the charging current and the current index value based on the measured value of the charging current, and is provided in the charging circuit unit by a control value adjusted based on the control data. The ON / OFF duty ratio of the switching elements constituting the booster circuit is controlled, and the current index value decreases when the current index value exceeds the target current index value beyond a predetermined error range. as further or peak value of the charging current is equal the maximum current limit and within a predetermined error range, or if it exceeds, as the peak value decreases, you adjust the control value charger according to claim 7, characterized in that performing feedback control. 前記制御データは、前記充電電流の前記電流指標値の指示値を含み、
前記制御回路部は、前記充電電流の測定値から前記電流指標値を算出し、前記電流指標値の算出値が、前記電流指標値の指示値から所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する制御を行うことを特徴とする請求項1〜8の何れか1項に記載の充電器。
The control data includes an indication value of the current index value of the charging current,
The control circuit unit calculates the current index value from the measured value of the charging current, and the calculated value of the current index value deviates from the indicated value of the current index value beyond a predetermined error range The charger according to any one of claims 1 to 8, wherein control for stopping the supply of the charging current is performed.
前記制御データは、前記充電電流の最大電流上限値を含み、
前記制御回路部は、前記充電電流の測定値から前記充電電流のピーク値を算出し、前記ピーク値が、前記最大電流上限値より所定の誤差範囲を超えて大きい場合に、前記充電電流の供給を停止する制御を行うことを特徴とする請求項1〜9の何れか1項に記載の充電器。
The control data includes a maximum current upper limit value of the charging current,
The control circuit unit calculates a peak value of the charging current from the measured value of the charging current, and supplies the charging current when the peak value is larger than a predetermined error range than the maximum current upper limit value. The charger according to any one of claims 1 to 9, wherein control for stopping the charging is performed.
前記制御データは、前記充電電流のピーク値、ボトム値、或いは、所定時間単位毎の積算値または平均値で与えられる電流判定値に対する充電停止下限値を含み、
前記制御回路部は、前記充電電流の測定値から前記電流判定値を算出し、前記電流判定値が、前記充電停止下限値以下である場合に、前記充電電流の供給を停止して充電動作を終了する制御を行うことを特徴とする請求項1〜10の何れか1項に記載の充電器。
The control data includes a charge stop lower limit value for a current determination value given as a peak value, a bottom value, or an integrated value or an average value for each predetermined time unit,
The control circuit unit calculates the current determination value from the measured value of the charging current, and when the current determination value is equal to or lower than the charging stop lower limit value, stops the supply of the charging current and performs a charging operation. The charger according to any one of claims 1 to 10, wherein control to be terminated is performed.
前記第1通信部が前記電気自動車から充電停止指示を受信すると、前記制御回路部は、前記充電電流の供給を停止する制御を行うことを特徴とする請求項1〜11の何れか1項に記載の充電器。   The said control circuit part performs control which stops supply of the said charging current, when the said 1st communication part receives the charge stop instruction | indication from the said electric vehicle, The any one of Claims 1-11 characterized by the above-mentioned. The charger described. 請求項1〜12の何れか1項に記載の充電器から供給される充電電流により、電気自動車側において車載蓄電池の充電を行う車載充電装置であって、
前記充電器と前記制御データの通信を行う第2通信部と、
充電開始前に、前記蓄電池の電気的仕様と内部状態の少なくとも何れか一方に基づき前記制御データに含まれる設定値を設定し、充電開始後に前記内部状態の変化に応じて逐次前記設定値を更新する制御データ設定部と、を備えることを特徴とする充電装置。
An in-vehicle charging device for charging an in-vehicle storage battery on an electric vehicle side by a charging current supplied from the charger according to any one of claims 1 to 12,
A second communication unit for communicating the control data with the charger;
Prior to the start of charging, a set value included in the control data is set based on at least one of an electrical specification and an internal state of the storage battery, and the set value is sequentially updated according to a change in the internal state after the start of charging. And a control data setting unit.
前記制御データ設定部は、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記制御データに含まれる設定値を算出し、
前記第2通信部は、充電開始前及び充電開始後において順次、算出された前記制御データの設定値を前記充電器に送信することを特徴とする請求項13に記載の充電装置。
The control data setting unit sequentially obtains the latest internal state of the storage battery before and after charging, and calculates a setting value included in the control data based on the internal state.
14. The charging device according to claim 13, wherein the second communication unit transmits the calculated setting value of the control data to the charger sequentially before and after the start of charging.
前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、
前記制御データ設定部は、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の少なくとも前記目標電流指標値の設定値を低下させることを特徴とする請求項13または14に記載の充電装置。
A voltmeter for measuring a charging voltage applied to the storage battery by the charging current;
The control data setting unit reduces a set value of at least the target current index value among the set values included in the control data when a peak value of the charging voltage exceeds a predetermined threshold value. The charging device according to claim 13 or 14.
前記充電電流によって前記蓄電池に印加される充電電圧を測定する電圧計を備え、
前記制御データ設定部は、前記制御データに前記充電電流の最大電流上限値が含まれる場合、前記充電電圧のピーク値が、所定の閾値を超える場合は、前記制御データに含まれる前記設定値の内の前記最大電流上限値の設定値を低下させることを特徴とする請求項15に記載の充電装置。
A voltmeter for measuring a charging voltage applied to the storage battery by the charging current;
The control data setting unit, when the maximum current upper limit value of the charging current is included in the control data, and when the peak value of the charging voltage exceeds a predetermined threshold, the control data setting unit of the setting value included in the control data The charging device according to claim 15, wherein a set value of the maximum current upper limit value is reduced.
前記制御データ設定部は、前記制御データに前記充電電流の最大電流上限値が含まれる場合、前記蓄電池の内部状態である電池電圧と内部インピーダンスに基づいて、前記最大電流上限値と前記内部インピーダンスの積と前記電池電圧の和が、前記電池電圧の上限値を超えないように、且つ、前記最大電流上限値が前記蓄電池の許容最大電流値を超えないように、前記最大電流上限値を設定することを特徴とする請求項13〜16の何れか1項に記載の充電装置。   The control data setting unit, when the control data includes the maximum current upper limit value of the charging current, based on the battery voltage and the internal impedance that is the internal state of the storage battery, the maximum current upper limit value and the internal impedance of The maximum current upper limit value is set so that the sum of the product and the battery voltage does not exceed the upper limit value of the battery voltage, and the maximum current upper limit value does not exceed the allowable maximum current value of the storage battery. The charging device according to any one of claims 13 to 16, wherein 前記制御データ設定部は、充電開始前に、前記充電器が脈流の充電電流を供給する脈流充電方式の充電器であること確認した後、前記制御データの設定値を算出して、前記第2通信部を介して前記充電器に送信することを特徴とする請求項13〜17の何れか1項に記載の充電装置。   The control data setting unit calculates a set value of the control data after confirming that the charger is a pulsating charging type charger that supplies a pulsating charging current before starting charging, The charging device according to claim 13, wherein the charging device is transmitted to the charger via a second communication unit. 前記充電器側から供給される前記充電電流を測定する電流計を備え、
前記制御データ設定部は、前記充電電流の測定値に基づいて前記電流指標値を算出し、
前記第2通信部は、前記制御データ設定部が算出した前記電流指標値を、前記電流指標値の指示値として、前記充電器に送信することを特徴とする請求項13〜18の何れか1項に記載の充電装置。
An ammeter for measuring the charging current supplied from the charger side;
The control data setting unit calculates the current index value based on the measured value of the charging current,
The said 2nd communication part transmits the said current index value which the said control data setting part calculated to the said charger as the instruction value of the said current index value, The any one of Claims 13-18 characterized by the above-mentioned. The charging device according to item.
前記充電器側から供給される前記充電電流を測定する電流計を備え、
前記第2通信部は、前記充電器側において前記充電電流の測定値に基づいて算出された前記電流指標値を受信し、
前記制御データ設定部は、電気自動車側で測定した前記充電電流に基づいて、前記電流指標値を算出し、前記充電器側で算出された前記電流指標値と比較し、両者の前記電流指標値が所定の誤差範囲を超えて乖離している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信することを特徴とする請求項13〜18の何れか1項に記載の充電装置。
An ammeter for measuring the charging current supplied from the charger side;
The second communication unit receives the current index value calculated based on the measured value of the charging current on the charger side,
The control data setting unit calculates the current index value based on the charging current measured on the electric vehicle side, compares it with the current index value calculated on the charger side, and both the current index values The charging stop instruction for stopping the supply of the charging current is transmitted to the charger via the second communication unit when the battery is deviating beyond a predetermined error range. The charging device according to any one of 13 to 18.
前記充電器側から供給される前記充電電流を測定する電流計を備え、
前記制御データ設定部は、充電開始前及び充電開始後において順次、前記蓄電池の最新の内部状態を取得して、前記内部状態に基づき前記充電電流の最大電流上限値を算出し、電気自動車側で測定した前記充電電流に基づいて、前記充電電流のピーク値を算出し、前記ピーク値と前記最大電流上限値と比較し、前記ピーク値が所定の誤差範囲を超えて前記最大電流上限値を超過している場合に、前記充電電流の供給を停止する充電停止指示を、前記第2通信部を介して、前記充電器に送信することを特徴とする請求項13〜20の何れか1項に記載の充電装置。
An ammeter for measuring the charging current supplied from the charger side;
The control data setting unit sequentially acquires the latest internal state of the storage battery before starting charging and after starting charging, calculates a maximum current upper limit value of the charging current based on the internal state, Based on the measured charging current, a peak value of the charging current is calculated, compared with the peak value and the maximum current upper limit value, and the peak value exceeds the maximum current upper limit value exceeding a predetermined error range. The charging stop instruction for stopping the supply of the charging current is transmitted to the charger via the second communication unit when the charging current is being supplied. The charging device described.
JP2011118801A 2011-05-27 2011-05-27 Battery charger and charging device for electric vehicle charging Expired - Fee Related JP5097289B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011118801A JP5097289B1 (en) 2011-05-27 2011-05-27 Battery charger and charging device for electric vehicle charging
PCT/JP2012/060324 WO2012165072A1 (en) 2011-05-27 2012-04-17 Charger and charging device for charging electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118801A JP5097289B1 (en) 2011-05-27 2011-05-27 Battery charger and charging device for electric vehicle charging

Publications (2)

Publication Number Publication Date
JP5097289B1 true JP5097289B1 (en) 2012-12-12
JP2012249409A JP2012249409A (en) 2012-12-13

Family

ID=47258936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118801A Expired - Fee Related JP5097289B1 (en) 2011-05-27 2011-05-27 Battery charger and charging device for electric vehicle charging

Country Status (2)

Country Link
JP (1) JP5097289B1 (en)
WO (1) WO2012165072A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121216B (en) 2013-04-15 2017-11-10 沃尔沃卡车集团 Method and apparatus for the error detection during the charging of energy storage system
CN104092273B (en) * 2014-07-25 2017-01-18 中山大洋电机股份有限公司 Electric vehicle driving and charging integrated control method and electric vehicle operated with same
JP6351474B2 (en) * 2014-10-03 2018-07-04 日東工業株式会社 Vehicle charging device
WO2016128956A1 (en) * 2015-02-10 2016-08-18 StoreDot Ltd. High-power charging devices for charging energy-storage devices
JP6421253B2 (en) 2016-02-05 2018-11-07 クワントン オーピーピーオー モバイル テレコミュニケーションズ コーポレイション リミテッド Adapter and charge control method
SG11201700428UA (en) * 2016-02-05 2017-09-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal
JP6717061B2 (en) * 2016-06-07 2020-07-01 株式会社椿本チエイン Power control device
JP6705706B2 (en) * 2016-06-22 2020-06-03 株式会社マキタ Battery device
KR101846682B1 (en) 2016-06-28 2018-04-09 현대자동차주식회사 Charging control method and system for electric vehicle
KR101846683B1 (en) 2016-06-28 2018-05-21 현대자동차주식회사 Charging system and control method for electric vehicle
GB2552777B (en) 2016-07-21 2022-06-08 Petalite Ltd A battery charging system and method
CN106274528B (en) * 2016-08-26 2018-08-28 朱利东 Pre-charge circuit with automatic control function and method
WO2020084689A1 (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Charging control device
KR20220112240A (en) * 2021-01-28 2022-08-10 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Charging methods, battery management systems and charging files for power batteries
KR102671058B1 (en) * 2021-09-30 2024-05-30 주식회사 넥스트그리드 Adapter type high boltage charging system
JP2024058848A (en) * 2022-10-17 2024-04-30 株式会社Gsユアサ Energy storage unit, energy storage system, electric energy storage conversion system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343203A (en) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd Electric car battery charger
JPH07147729A (en) * 1993-11-24 1995-06-06 Toyota Motor Corp Controller for battery charger
US5814973A (en) * 1996-09-20 1998-09-29 Ericsson Inc. Power unit and charger for a battery powered electrical apparatus and method
JP3570173B2 (en) * 1997-09-18 2004-09-29 株式会社豊田自動織機 Control circuit provided in a device that generates direct current from alternating current
HU223696B1 (en) * 1999-07-15 2004-12-28 András Fazakas Circuit arrangement and method for pulse-like recharging batteries
JP2009247101A (en) * 2008-03-31 2009-10-22 Tdk Corp Charger device

Also Published As

Publication number Publication date
WO2012165072A1 (en) 2012-12-06
JP2012249409A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5097289B1 (en) Battery charger and charging device for electric vehicle charging
WO2012165071A1 (en) Charger and charging device for charging electric vehicle
US9428177B2 (en) Vehicle
US9937805B2 (en) Battery charging system and charging method using same
CN109690337B (en) Battery diagnosis method, battery diagnosis program, battery management device, and power storage system
JP5035427B2 (en) Vehicle charging system
EP2246956B1 (en) Vehicle and method for estimating charged state of secondary battery
JP5343981B2 (en) Vehicle charging system
US11358490B2 (en) Power feed system
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
EP2120309A1 (en) Electric vehicle, method for estimating state of charge, and computer readable recording medium recording program for executing state of charge estimation method on computer
US9315105B2 (en) Electrically-driven vehicle and method for controlling the same
JP4900496B2 (en) Remaining capacity calculation device
CN111907373A (en) Charging method for dynamically adjusting charging current of electric automobile
JP2010019595A (en) Residual capacity calculating apparatus of storage device
EP2613417A1 (en) Charging device and charging method for capacitor device
JPWO2015087488A1 (en) Power supply
CN105785275A (en) Battery SOH testing device based on charger and method for testing battery SOH
JP2011205727A (en) Current estimation device and dcdc converter control system
JP5108076B2 (en) Vehicle charging device
JP5673504B2 (en) Vehicle charging device
WO2012073350A1 (en) Power supply system of vehicle
US8704496B2 (en) Charge control system
JP2014143842A (en) Power supply unit for vehicle and vehicle provided therewith
KR20200038152A (en) An integrated multi battery charging system having an active power decoupling capability for an electric vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5097289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees