[go: up one dir, main page]

JP5094132B2 - RF wave irradiation element for subject lesion - Google Patents

RF wave irradiation element for subject lesion Download PDF

Info

Publication number
JP5094132B2
JP5094132B2 JP2007006750A JP2007006750A JP5094132B2 JP 5094132 B2 JP5094132 B2 JP 5094132B2 JP 2007006750 A JP2007006750 A JP 2007006750A JP 2007006750 A JP2007006750 A JP 2007006750A JP 5094132 B2 JP5094132 B2 JP 5094132B2
Authority
JP
Japan
Prior art keywords
puncture
irradiation
transformer
lesion
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006750A
Other languages
Japanese (ja)
Other versions
JP2007296318A (en
Inventor
完成 岩田
靖 岩田
雅文 川村
誠之 中塚
陽太郎 泉
英樹 屋代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DGS COMPUTER
Original Assignee
DGS COMPUTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DGS COMPUTER filed Critical DGS COMPUTER
Priority to JP2007006750A priority Critical patent/JP5094132B2/en
Publication of JP2007296318A publication Critical patent/JP2007296318A/en
Application granted granted Critical
Publication of JP5094132B2 publication Critical patent/JP5094132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)

Description

本発明は、RF(ラジオフリケンシー)波を照射して腫瘍等の病巣治療に使用する被検体の病巣用RF波照射素子に関する。   The present invention relates to an RF wave irradiation element for a lesion of a subject to be used for treatment of a lesion such as a tumor by irradiating an RF (radio frequency) wave.

被検体の癌腫瘍等の病巣の除去には、X線、電波、超音波等の各種のエネルギー照射法、凍結と解凍とで壊死させる凍結法、等がある。
凍結法を使用した公知文献には以下のものがある。
雑誌「医学のあゆみ」(Vol.206No.3,2003.7.19)。川村他著「肺癌の凍結融解壊死療法」(P229〜P231)。 雑誌「低温医学」(30巻、2004)。中塚、川村他著「CT透視を用いた肺悪性腫瘍に対する経皮的凍結療法の実際」(P9〜P15)。
The removal of a lesion such as a cancer tumor from a subject includes various energy irradiation methods such as X-rays, radio waves, and ultrasonic waves, and a freezing method in which necrosis is caused by freezing and thawing.
Known documents using the freezing method include the following.
The magazine “Ayumi of Medicine” (Vol. 206 No. 3, 2003. 7.19). Kawamura et al., “Freeze-thaw necrosis therapy for lung cancer” (P229-P231). Magazine "Cryogenic Medicine" (30, 2004). Nakatsuka, Kawamura et al., “Percutaneous cryotherapy for lung malignant tumor using CT fluoroscopy” (P9-P15).

RFの照射では、数100KHzの高周波を病巣に照射して腫瘍等の壊死をはかる。この時の供給電力は数10Wである。   In RF irradiation, the lesion is irradiated with a high frequency of several hundreds KHz, and necrosis of a tumor or the like is attempted. The supplied power at this time is several tens of watts.

数10Wの供給電力は人体、例えば肺癌の肺部にとっては極めて大きな電力であり、照射には、充分に安全を確保する必要がある。
然るに雷などによるサージ電流等の外部ノイズが照射経路に混入する恐れもあり、純粋なRF波の照射の確保、照射経路上でのノイズの混入の防止が必要である。更に、外部ノイズとして、インバータ仕様による回生電力中での各種の高周波ノイズがある。こうしたノイズの除去をはかり、安定したRF波の照射が必要である。
本発明の目的は、ノイズの混入を防止し、安全で確実なRF波の照射を可能にするRF波照射素子を提供することにある。
The supply power of several tens of watts is extremely large for the human body, for example, the lung part of lung cancer, and it is necessary to ensure sufficient safety for irradiation.
However, external noise such as a surge current due to lightning may be mixed in the irradiation path, and it is necessary to ensure pure RF wave irradiation and prevent noise from being mixed in the irradiation path. Further, as external noise, there are various high-frequency noises in regenerative power according to inverter specifications. It is necessary to remove such noise and to irradiate a stable RF wave.
An object of the present invention is to provide an RF wave irradiation element that prevents the mixing of noise and enables safe and reliable irradiation of an RF wave.

本発明は、RF発信源と、
RF発振源の出力側に設けられ、その一次側にRF発振信号が印加されると共に、その二次側の中点が接地されたトランスと、
トランスの二次側の両端につながる送出電気経路と、
この送出電気経路の出力端であって、被検体病巣部にRF波を照射するための第1、第2の照射端子と、
第1、第2照射端子を除く送出電気経路の周囲を対地シールド化する接地導体部と、この接地導体部の周囲を覆う外周絶縁体部と、
を備えた被検体病巣用RF波照射素子を開示する。
The present invention comprises an RF source;
A transformer which is provided on the output side of the RF oscillation source, the RF oscillation signal is applied to the primary side, and the midpoint of the secondary side is grounded;
A transmission electrical path leading to both ends of the secondary side of the transformer;
First and second irradiation terminals for irradiating the subject lesion with an RF wave at the output end of the electrical transmission path;
A grounding conductor portion that shields the periphery of the electrical transmission path excluding the first and second irradiation terminals, and an outer peripheral insulating portion that covers the periphery of the grounding conductor portion;
An RF wave irradiation element for a subject lesion comprising the above is disclosed.

更に本発明は、RF発振源と、
RF発信源の出力側に設けられ、その一次側にRF発振信号が印加されると共に、その二次側の中点が接地されたトランスと、
トランスの二次側の両端である第1、第2出力端子につながり、被検体病巣部位にRF波を照射するための照射部と、
を備え、
照射部は、
病巣部位に穿刺する穿刺部と、非穿刺部と、より成り、
非穿刺部は、トランスの二次側の両端である第1、第2出力端子からのRF信号を送出する第1、第2の送出電気経路と、この第1、第2の送出電気経路を囲むようにして設けられて対地シールドを行う接地導体部と、を具え、
穿刺部は、非穿刺部の第1の送出電気経路につながる中空の第1導体と、第2の送出経路につながり上記中空な第1の導体を非接触で貫通し第1の導体先端から突出自在とする第2の導体と、を具え、第1導体と第2導体とのそれぞれの先端側との間でRF波を放射させるものとした被検体病巣用RF波照射素子を開示する。
The present invention further includes an RF oscillation source;
A transformer which is provided on the output side of the RF transmission source, the RF oscillation signal is applied to the primary side, and the midpoint of the secondary side is grounded;
An irradiation unit for irradiating the subject lesion site with RF waves, connected to the first and second output terminals at both ends of the secondary side of the transformer;
With
The irradiation part
It consists of a puncture part that punctures the lesion site and a non-puncture part,
The non-puncture unit includes first and second transmission electrical paths for transmitting RF signals from the first and second output terminals, which are both ends on the secondary side of the transformer, and the first and second transmission electrical paths. A grounding conductor portion that is provided so as to surround the ground shield,
The puncture part is connected to the first delivery electrical path of the non-puncture part, and the second delivery path is connected to the hollow first conductor in a non-contact manner and protrudes from the tip of the first conductor. Disclosed is an RF wave irradiation element for a subject lesion that includes a second conductor that can be freely radiated and emits an RF wave between the first conductor and the respective distal ends of the second conductor.

更に本発明は、前記第2の導体は先端に開閉自在なアンテナを持ち、中空な第1の導体内部にあっては閉とし、中空な第1の導体から突出しての外部にあっては開とする被検体病巣用RF波照射素子を開示する。   Further, according to the present invention, the second conductor has an openable / closable antenna at the tip, closed inside the hollow first conductor, and opened outside the hollow first conductor. An RF wave irradiation element for a subject lesion is disclosed.

更に本発明は、前記中空な第1の導体の先端に、第2の導体が外部に突出した状態で、開とするアンテナを持つものとする被検体病巣用RF波照射素子を開示する。   Furthermore, the present invention discloses an RF wave irradiation element for a subject lesion having an open antenna with the second conductor projecting to the outside at the tip of the hollow first conductor.

更に本発明は、前記アンテナは傘骨状アンテナとする被検体病巣用RF波照射素子を開示する。   Furthermore, the present invention discloses an RF wave irradiation element for a subject lesion in which the antenna is an umbrella-shaped antenna.

本発明によれば、安全で確実にRF波による治療の実現がはかれる。   According to the present invention, it is possible to realize a safe and reliable treatment using RF waves.

本発明のRF波照射素子の回路構成例を図1に示す。RF発振源(出力源)1は、RF波、例えば300KHzの高周波発振源であり、その出力は、例えば50W程度である。6は発振源1の内部インピーダンスである。RF波には現実にラジオ波帯として使っているものもあるため、それらと混信しない周波数を選ぶことが好ましい。   A circuit configuration example of the RF wave irradiation element of the present invention is shown in FIG. The RF oscillation source (output source) 1 is an RF wave, for example, a high frequency oscillation source of 300 KHz, and its output is, for example, about 50 W. Reference numeral 6 denotes an internal impedance of the oscillation source 1. Since some RF waves are actually used as radio wave bands, it is preferable to select a frequency that does not interfere with them.

トランス2は、この発振源1の出力側に設けられ、1次側2Aがつながり、2次側2Bが病巣部への高周波出力側となる。2次側2Bの中点3はアース(E)されている。点線部4が被検体病巣部に穿刺される部分であり、RF波を病巣部に照射するための照射端5を有する。トランス2の2次側から負荷である照射端5の直前(体内に入らない部位の先端)までの電気経路は、その周囲を、対地シールド部7によってシールドされている。このシールド部7は接地線につながり、シールド内の回路部を大地から完全に浮かせた状態にさせる。2次側2Bの2端をK点、M点とすると、負荷である照射端5には、次の2つの経路でRF波が送られる。
(1)E→2B1→K→照射端5
(2)E←2B2←M←照射端5
かかる2つの経路(1)、(2)とは、電気回路的には、アースEからの平衡伝送法による経路である。
The transformer 2 is provided on the output side of the oscillation source 1, the primary side 2A is connected, and the secondary side 2B is the high frequency output side to the lesion. The midpoint 3 of the secondary side 2B is grounded (E). A dotted line portion 4 is a portion that is punctured into the subject lesion, and has an irradiation end 5 for irradiating the lesion with an RF wave. The electrical path from the secondary side of the transformer 2 to immediately before the irradiation end 5 that is a load (the tip of the part that does not enter the body) is shielded by the ground shield part 7 around the periphery. This shield part 7 is connected to the ground line, and makes the circuit part in the shield completely floated from the ground. Assuming that the two ends of the secondary side 2B are point K and point M, RF waves are transmitted to the irradiation end 5 as a load through the following two paths.
(1) E → 2B1 → K → irradiation end 5
(2) E ← 2B2 ← M ← Irradiation end 5
The two paths (1) and (2) are paths based on the balanced transmission method from the ground E in terms of electric circuit.

図1の平衡伝送によるノイズ除去を図2にて説明する。図2は、ノイズ除去説明用等価回路であり、30と31とがトランス2の中点接地の正極側等価電源と負極側等価電源とを示す。電源32は、外部ノイズの等価電源、経路33、34はトランス2の二次側の両端からのK点、M点を通る伝送経路、負荷5は、病巣に対する照射端である。更に、接地経路35は、トランスの二次側中央接地点及びトランス2の二次出力側から負荷直前までの経路の周囲を対地シールドするシールド部7による経路を示す。 Noise removal by balanced transmission in FIG. 1 will be described with reference to FIG. FIG. 2 is an equivalent circuit for explaining noise removal, and reference numerals 30 and 31 denote a positive-side equivalent power source and a negative-side equivalent power source of the center point grounding of the transformer 2. The power source 32 is an equivalent power source for external noise, the paths 33 and 34 are transmission paths through the K point and M point from both ends on the secondary side of the transformer 2, and the load 5 is an irradiation end for the lesion. Furthermore, the ground path 35 shows the pathway by shield 7 for ground shield around the path from the secondary output side of the secondary side central grounding point and trans 2 of the transformer 2 to the load immediately before.

トランス2の二次側出力電圧をVとすると、正極及び負極側等価電源30、31の電圧V1、V2は、
=+V/2
=−V/2
2つの経路及び負荷5を流れる電流iは、
i=(i/2)+(i/2)
である。但し、(i/2)は、V、Vと負荷5とで定まる電流である。かかる2回線平衡回路に対して、外部ノイズ源32は、トランス中心接地点に直列に接続されていると仮想的に考えてよく、この結果、電源30、31を通して負荷に向かって同一極性且つ同一値のノイズ電流iが流れ、負荷5では、両者は相殺される。この相殺によって、外部ノイズ源32によるノイズ電流は、負荷5に流れず、影響を与えない。
When the secondary output voltage of the transformer 2 is V s , the voltages V1 and V2 of the positive and negative equivalent power sources 30 and 31 are
V 1 = + V s / 2
V 2 = −V s / 2
The current i flowing through the two paths and the load 5 is
i = (i s / 2) + (i s / 2)
It is. However, (i s / 2) is a current determined by V 1 and V 2 and the load 5. For such a two-line balanced circuit, the external noise source 32 may be virtually considered to be connected in series to the transformer center ground point. As a result, the same polarity and the same polarity toward the load through the power supplies 30 and 31 are obtained. flow noise current i n value, the load 5, so that both are canceled. By this cancellation, the noise current from the external noise source 32 does not flow to the load 5 and does not affect it.

図3は、発振部分を含む全体に対地シールドを施した回路例図である。この回路は、RF発振部36とRF帯域通過フィルタ(例えばコンデンサとリアクタンスより成る)38Aと低域フィルタ38B(例えばコンデンサとリアクタンスより成る)と直流電源37と低域フィルタ(例えばコンデンサとリアクタンスより成る)39とより成る発振源1と、トランス2、この出力端からのケーブル化した二次側出力経路40、負荷5より成る。フィルタ38AはRF波のみを通し、フィルタ38B及びフィルタ39は直流のみを通し、これによってそれぞれに関わる経路上のノイズの除去をはかる。二次側出力経路40は、K端からの出力経路40AとM端からの出力経路40Bとの2つの経路より成るが、図では便宜上、1本で表現してある。尚、フィルタ38、39は、種々の回路態様がある。   FIG. 3 is an example of a circuit in which the ground shield is applied to the whole including the oscillation part. This circuit includes an RF oscillating unit 36, an RF bandpass filter (for example, composed of a capacitor and reactance) 38A, a low-pass filter 38B (for example, composed of a capacitor and reactance), a DC power source 37, and a low-pass filter (for example, composed of a capacitor and reactance). ) 39 and the transformer 2, the secondary output path 40 formed as a cable from the output end, and the load 5. The filter 38A passes only the RF wave, and the filter 38B and the filter 39 pass only the direct current, thereby eliminating noise on the path related to each. The secondary output path 40 is composed of two paths, that is, an output path 40A from the K end and an output path 40B from the M end. The filters 38 and 39 have various circuit modes.

接地シールド部は7、7A、7B、7Cである。7はケーブル化したトランス出力経路と負荷5とをつなぐ経路の対地シールド部(正確には、穿刺部の手前である非穿刺部の先端までのシールド)であり、7Aはトランス2の全体の対地シールド部、7Bはフィルタ38全体の対地シールド部、7Cはフィルタ39全体の対地シールド部である。これらのシールド部は、例えばそれぞれの全体回路を覆う金属導体(環状や箱状化したもの)より成る。尚、この接地シールド部7A、7B、7Cも図7や図11の如く、周囲を絶縁体部で覆う構成も当然にある。   The ground shield portions are 7, 7A, 7B, and 7C. Reference numeral 7 denotes a ground shield part (to be precise, a shield to the tip of the non-puncture part before the puncture part) of the path connecting the cabled transformer output path and the load 5, and 7A denotes the entire ground of the transformer 2 The shield part 7B is a ground shield part for the entire filter 38, and 7C is a ground shield part for the entire filter 39. These shield portions are made of, for example, metal conductors (annular or box-shaped) that cover the entire circuits. Of course, the ground shield portions 7A, 7B, and 7C also have a configuration in which the periphery is covered with an insulator portion as shown in FIGS.

図3の構成によれば、発振源から負荷直前に至る全経路が対地シールド化され、外部ノイズの混入を完全に防止できるとの利点を持つ。   According to the configuration of FIG. 3, the entire path from the oscillation source to immediately before the load is grounded, and there is an advantage that mixing of external noise can be completely prevented.

尚、シールド部7等を、対地シールドとしたが、電磁シールド機能を持たせれば又は機能を付加すれば、外部からの電磁波のシールドを達成できる。   In addition, although the shield part 7 grade | etc., Was used as the ground shield, if the electromagnetic shielding function is given or the function is added, the shielding of the electromagnetic wave from the outside can be achieved.

参考までに、従来使用されているRF波照射素子の回路構成を図4に示す。この回路は、RF発振源1に直列に内部インピーダンス6を有し、照射端5には、1ループでRF波を提供する。接点Eには、インピーダンス6の一端接地構成である。
かかる図4の回路は、電気回路的には、不平衡伝送法による経路を有することになる。
For reference, FIG. 4 shows a circuit configuration of a conventionally used RF wave irradiation element. This circuit has an internal impedance 6 in series with the RF oscillation source 1 and provides an RF wave to the irradiation end 5 in one loop. The contact E has a one-end grounding configuration with an impedance 6.
The circuit shown in FIG. 4 has a path based on the unbalanced transmission method in terms of electrical circuit.

本発明の平衡伝送法を採用する回路によれば、経路(1)(2)には、それぞれ同一電流iが向きを変えてバランスよく流れ、ノイズも乗りにくい(キャンセルできる)。一方、図4の回路での不平衡伝送法では、1ループ構成であり、ノイズが乗りやすく、除去も難しい。本発明の回路ではノイズが乗りにくいため、所期の電力のRF波を設計通り印加できる利点を持つ。一方、図4によればノイズが乗りやすいため設計通りの電力のRF波の照射が困難である。更にノイズによる電力変動も避けられない。   According to the circuit employing the balanced transmission method of the present invention, the same current i flows in a balanced manner in the directions (1) and (2), and noise is less likely to be canceled (can be canceled). On the other hand, the unbalanced transmission method in the circuit of FIG. 4 has a one-loop configuration, and noise is easy to ride on and is difficult to remove. Since the circuit of the present invention is less susceptible to noise, there is an advantage that an RF wave with a desired power can be applied as designed. On the other hand, according to FIG. 4, it is difficult to irradiate RF waves with power as designed because it is easy for noise to ride. Furthermore, power fluctuation due to noise is inevitable.

次に、本発明のプローブ化した照射素子を説明する。
図5は、プローブ化した照射素子の外観図を示す。素子本体10は、穿刺部11と非穿刺部12とより成り、非穿刺部12が穿刺部11とRF発振源1側のトランス2とをつなぐ部位である。具体的には、トランス2の2次側出力端K、Mにつながるコネクタ部13を、支持部12の端部14に挿入することで電気的結合をはかる。
Next, the irradiation element made into a probe of the present invention will be described.
FIG. 5 shows an external view of a probed irradiation element. The element body 10 includes a puncture unit 11 and a non-puncture unit 12, and the non-puncture unit 12 is a part that connects the puncture unit 11 and the transformer 2 on the RF oscillation source 1 side. Specifically, electrical connection is achieved by inserting the connector portion 13 connected to the secondary output ends K and M of the transformer 2 into the end portion 14 of the support portion 12.

非穿刺部12は、コネクタ13からのK点、M点を通る2つの電気経路k、m及び接地導体部、並びにそれらの外部絶縁体を有するが、図5では省略し、後述の図で詳述する。
穿刺部11は、その先端側又は全体が被検体内に穿刺すべき部材であり、微小開口の先端11aが穿刺可能なように針状化し、その先端に至る途中の経路が中空部11bを有する第1導体部11Aと、この導体部11Aの中空内部を貫通する第2導体線11Bと、より成る。導体部11Aは、非穿刺部12の部材内でコネクタ13からのM点に電気的につながり、この中空内を貫通する。第2導体線11Bは、鋭く硬い金属線より成り、非穿刺部12の部材内でコネクタBからのK点につながる。導体部11Aの先端11aは内部中空につながる微小な開口を有し、この開口を通して第2導体線11Bの先端が外部へ突出可能になっている。第1導体部11Aの開口先端11aが第1照射端、第2導体線11Bの先端が第2照射端となる。当然に、第1導体部11Aと第2導体部11Bとは電気的に非接触、例えば絶縁体層で区分されている。
The non-puncture portion 12 has two electrical paths k and m passing through the K point and the M point from the connector 13 and a ground conductor portion, and external insulators thereof, which are omitted in FIG. Describe.
The puncture part 11 is a member to be punctured into the subject, or the tip side of the puncture part 11 is formed into a needle shape so that the tip 11a of the minute opening can be punctured, and a path on the way to the tip has a hollow part 11b. 11A of 1st conductor parts and the 2nd conductor wire 11B which penetrates the hollow inside of this conductor part 11A are comprised. The conductor portion 11A is electrically connected to the point M from the connector 13 in the member of the non-puncture portion 12, and penetrates through this hollow. The second conductor wire 11 </ b> B is made of a sharp and hard metal wire, and is connected to the K point from the connector B in the member of the non-puncture portion 12. The tip 11a of the conductor portion 11A has a minute opening connected to the inside hollow, and the tip of the second conductor wire 11B can project to the outside through this opening. The opening tip 11a of the first conductor portion 11A is the first irradiation end, and the tip of the second conductor wire 11B is the second irradiation end. Naturally, the first conductor portion 11A and the second conductor portion 11B are electrically non-contact, for example, separated by an insulator layer.

図6は、かかる第1導体部11Aから突出した状態の第2導体部11Bの様子を示す。ここで、第2導体部11Bの先端11bはRF波放射面積及び方向性確保のための傘骨状のアンテナ11cを具える。アンテナ11cは第1導体部11Aの内部中空部内にあっては閉じた傘のように束ねられており、その先端開口を突出してから開いて傘骨状となる。この中空部内での第2導体線11Bの先端開口方向への前進移動、開口から内側への戻り退却移動は御者の手動にてのやり方もあれば、マニュプレータによる自動操作のやり方もある。ここで、治療部位は開いた傘骨状アンテナ11cと第1導体部11Bの先端11aとの間に介在する。即ち、穿刺部11の第1照射端11aを前進移動により穿刺させ、治療部位の直前で停止させる。この停止した状態で第2導体線11Bを、第1導体部11Aの中空に沿って前進させ、その先端開口により突出させ治療部位を貫通させる。この貫通したことを確認して傘骨状アンテナ11cを開く。かくして、治療部位を挟んで、開いた傘骨状アンテナ11cと第1照射端11aとが対向したことになり、この状態で、RF波を発振させる。かくして、対向する傘骨状アンテナ11cと第1照射端11aとからRF波が放射され、治療部位の癌組織の壊死等の処置を行う。   FIG. 6 shows a state of the second conductor portion 11B in a state of protruding from the first conductor portion 11A. Here, the tip 11b of the second conductor portion 11B includes an umbrella-shaped antenna 11c for securing the RF wave radiation area and directionality. The antenna 11c is bundled like a closed umbrella in the inner hollow portion of the first conductor portion 11A, and the tip opening is projected and then opened to become an umbrella bone shape. The forward movement of the second conductor wire 11B in the hollow portion in the direction of the distal end opening and the return and retraction movement from the opening to the inside can be performed manually by the user or automatically by a manipulator. Here, the treatment site is interposed between the opened umbrella-shaped antenna 11c and the tip 11a of the first conductor portion 11B. That is, the first irradiation end 11a of the puncture unit 11 is punctured by forward movement and stopped just before the treatment site. In this stopped state, the second conductor wire 11B is advanced along the hollow of the first conductor portion 11A, protrudes through the opening of the tip, and penetrates the treatment site. After confirming the penetration, the umbrella-bone antenna 11c is opened. Thus, the opened umbrella-bone antenna 11c and the first irradiation end 11a face each other across the treatment site, and in this state, an RF wave is oscillated. Thus, RF waves are radiated from the opposed umbrella-shaped antenna 11c and the first irradiation end 11a, and treatment such as necrosis of the cancer tissue at the treatment site is performed.

図7はプローブとしての構成例を示す。プローブは、非穿刺部12と穿刺部11とより成り、非穿刺部12はRF給電端子としてのk、m端を持ち、その周囲は絶縁体層21であり、一種のケーブル構成をなす。絶縁体層21の周囲は円環状の金属導体層20であり、更に最外周層として、絶縁体層23を持つ。
絶縁体層23の外周には、ワンタッチ操作部25、26を持つ。操作部25は、第2照射端11bの、第1導体部11A内での前進及び後退移動の操作ボタン、操作部26は傘骨状アンテナ11cの開閉操作ボタンである。これらの操作機構は図示していない。尚、給電端子kの差し込み手前側で第2照射端11cの直接移動操作を行うやり方、傘骨状アンテナ11cの開閉用の操作系をこの差し込み手前側に持たせるやり方もありうる。更に、第2導体線11Bを直接に手で押し、引きして前後退させるやり方もある。
FIG. 7 shows a configuration example as a probe. The probe includes a non-puncture portion 12 and a puncture portion 11, and the non-puncture portion 12 has k and m ends as RF feed terminals, and the periphery thereof is an insulator layer 21, which forms a kind of cable configuration. The periphery of the insulator layer 21 is an annular metal conductor layer 20, and further has an insulator layer 23 as the outermost peripheral layer.
One-touch operation portions 25 and 26 are provided on the outer periphery of the insulator layer 23. The operation unit 25 is an operation button for moving the second irradiation end 11b forward and backward within the first conductor portion 11A, and the operation unit 26 is an opening / closing operation button for the umbrella-shaped antenna 11c. These operating mechanisms are not shown. There may be a method of directly moving the second irradiation end 11c on the front side of the feeding terminal k and a method of providing an operating system for opening and closing the umbrella-shaped antenna 11c on the front side of the insertion port. Furthermore, there is also a method of pushing the second conductor wire 11B directly by hand and pulling it forward.

金属導体20は、図3での対地シールド部7を形成する接地導体であり、円環状としたことで、広い接地面積を持たせた。金属導体層20は支持部12だけに設けられており、穿刺部11には延設していない。理由は穿刺部11は被検体内に穿刺する部位であり、接地導体と被検体との被接触化をはかるためである。これにより接地導体の設けられている個所では周囲からのノイズの混入を広い面積をもって抑止できる。
穿刺部11と支持部10との境界では、第1照射端11Aと接地導体18の端部とが直接接触しないように、絶縁体層24で両者の分離をはかっている。
The metal conductor layer 20 is a ground conductor that forms the ground shield part 7 in FIG. 3, and has a large ground area by being an annular shape. The metal conductor layer 20 is provided only on the support portion 12 and does not extend to the puncture portion 11. The reason is that the puncture part 11 is a part to be punctured in the subject, and the ground conductor and the subject are brought into contact with each other. As a result, noise from surroundings can be prevented with a large area at the place where the ground conductor is provided.
At the boundary between the puncture unit 11 and the support unit 10, the first irradiation end 11 </ b> A and the end of the ground conductor 18 are separated from each other by the insulator layer 24 so that they do not directly contact each other.

図8は、第1照射端11aに特徴を持つ構成例である。第2導体線11Bには第2照射端11bの照射面積及び方向性を確保するための傘骨状アンテナ11cを設けたが、図8は第1照射端11aの先端に、第2の傘骨状アンテナ11dを設けた。傘骨状アンテナ11dは、開閉自在であり、第2照射端11aがその先端開口から突出し治療部位50を突きぬけてから、傘が開く。このアンテナ11dの開閉操作のために操作ボタンをもつことは図5と同様である。
傘骨状アンテナ11dがないと、第1照射端の先端放射端面積は小さく、充分な放射エネルギー及び放射広さを確保できないこともありうるが、傘骨状アンテナ11dを設けたことで充分な放射エネルギー及び放射広さを確保できる利点がある。
尚、傘骨アンテナ11c、11dのアンテナ形状や構造は、原理上は照射部位への放射ビームの照射の最大効率をはかれるものであればよいが、照射部位の広がりや状態に対応して他の形状や構造を採用することを否定するものではない。
FIG. 8 is a configuration example characterized by the first irradiation end 11a. The second conductor wire 11B is provided with an umbrella-shaped antenna 11c for ensuring the irradiation area and directionality of the second irradiation end 11b. FIG. 8 shows a second umbrella bone at the tip of the first irradiation end 11a. 11d was provided. The umbrella bone-shaped antenna 11d can be freely opened and closed, and the umbrella is opened after the second irradiation end 11a protrudes from the distal end opening and penetrates the treatment site 50. Having an operation button for opening and closing the antenna 11d is the same as in FIG.
Without the umbrella-bone antenna 11d, the tip radiation end area of the first irradiation end is small, and sufficient radiation energy and radiation width may not be ensured. However, the provision of the umbrella-bone antenna 11d is sufficient. There is an advantage that radiation energy and radiation width can be secured.
The antenna shape and structure of the umbrella antennas 11c and 11d are not limited in principle as long as they can maximize the efficiency of irradiation of the radiation beam to the irradiation site, but other antenna shapes and structures may be used depending on the spread and state of the irradiation site. Adopting a shape or structure is not denied.

交換可能とした照射素子プローブの具体例を図11に示す。照射素子プローブ30は、K、M端につながるケーブル化したケーブル経路31にワンタッチ挿着可能とするもので、いわゆる使い捨てを可能化したものである。挿着は、ケーブル経路31の端部に設けたコネクタ32に、プローブ30側の端部35を差し込むことで実現し、取りはずしは端部35をコネクタ32から抜くことで実現する。
プローブ30は、非穿刺部33と穿刺部34とより成る。非穿刺部33は、円周外部にスライド式の操作部36、37を持ち、穿刺部34は、中空導体部34Aとその中を貫通し先端開口から外部に突出する針状導体部34Bを持つ。操作部36は、中空導体部34Aの先端のアンテナの開閉操作部であり、スライド36Aを矢印の如く移動させることで、この操作部36Aにつながるアンテナが傘骨状に開き、その逆方向に移動させることで、傘骨状のアンテナが閉じる。操作部37は針状導体部34Bの先端のアンテナの開閉操作部であり、スライド37Aを矢印の如く移動させることで、この操作部36Bにつながるアンテナが傘骨状に開き、その逆方向に移動させることで、傘骨状アンテナが閉じる。ここで傘骨状アンテナとは、図8に示す如きものである。
更に、中空導体部34Aは先端開口に向かって徐々に細くなっており、穿刺しやすい構造である。かかる構造は、図5や図6の素子でも適用可能である。
非穿刺部33の内部構造は、図7の事例と似ている。即ち、h、m端につながる2つの導体部がケーブル化しており、その導体部の周囲は絶縁体層とし、更にこの絶縁体層の周囲は接地導体層とし、この接地導体層の周囲は絶縁体層を形成した。
A specific example of the irradiation element probe that can be exchanged is shown in FIG. The irradiation element probe 30 can be inserted into the cable path 31 formed as a cable connected to the K and M ends by one-touch operation, and is so-called disposable. The insertion is realized by inserting the end portion 35 on the probe 30 side into the connector 32 provided at the end portion of the cable path 31, and the removal is realized by removing the end portion 35 from the connector 32.
The probe 30 includes a non-puncture part 33 and a puncture part 34. The non-puncture part 33 has slide-type operation parts 36 and 37 outside the circumference, and the puncture part 34 has a hollow conductor part 34A and a needle-like conductor part 34B penetrating through the hollow conductor part 34A and projecting outside from the tip opening. . The operation part 36 is an antenna opening / closing operation part at the tip of the hollow conductor part 34A. By moving the slide 36A as indicated by an arrow, the antenna connected to the operation part 36A opens in an umbrella shape and moves in the opposite direction. By doing so, the umbrella-shaped antenna is closed. The operation unit 37 is an opening / closing operation unit for the antenna at the tip of the needle-shaped conductor 34B. By moving the slide 37A as shown by an arrow, the antenna connected to the operation unit 36B opens like an umbrella and moves in the opposite direction. By doing so, the umbrella-bone shaped antenna is closed. Here, the umbrella-bone antenna is as shown in FIG.
Furthermore, the hollow conductor portion 34A is gradually narrowed toward the tip opening, and has a structure that is easy to puncture. Such a structure can also be applied to the elements shown in FIGS.
The internal structure of the non-puncture part 33 is similar to the case of FIG. That is, the two conductors connected to the h and m ends are cabled, and the periphery of the conductor is an insulator layer, the periphery of the insulator layer is a ground conductor layer, and the periphery of the ground conductor layer is insulated. A body layer was formed.

図9は、照射装置としての実施例図である。照射装置は、RF波照射素子100と、これにRF電力を供給するRF電力部101、そのRF発生源102、出力制御部103、医師操作台104、処理部105、より成る。
医師操作台104は、穿刺操作を行うための操作部であり、処理部105は、その操作のための各種の処理を行う装置である。出力制御部103は、RF発生源102の発振及び停止の指示、並び発振エネルギの制御、更にRF電力部101での電力制御(例えばAGC)、並びに照射素子100のアンテナの開閉制御、移動制御を行う。これらの制御は、医師操作台104による医師の指令、及び又は処理部105からの治療計画による制御指令に基づく。出力制御部103は、RF発生源102、RF電力部101の状態、照射素子100の状態を、処理部105へ送る。
FIG. 9 is an embodiment diagram as an irradiation apparatus. The irradiation apparatus includes an RF wave irradiation element 100, an RF power unit 101 that supplies RF power thereto, an RF generation source 102, an output control unit 103, a doctor operation table 104, and a processing unit 105.
The doctor operation table 104 is an operation unit for performing a puncture operation, and the processing unit 105 is an apparatus that performs various processes for the operation. The output control unit 103 performs instructions for oscillation and stop of the RF source 102, control of the oscillation energy, power control (for example, AGC) in the RF power unit 101, opening / closing control of the antenna of the irradiation element 100, and movement control. Do. These controls are based on a doctor command from the doctor console 104 and / or a control command based on a treatment plan from the processing unit 105. The output control unit 103 sends the state of the RF generation source 102, the RF power unit 101, and the state of the irradiation element 100 to the processing unit 105.

以上の実施例は、1つの平衡伝送回路に、1つのプローブを設けた事例であったが、1つの平衡伝送回路に、2つのプローブを設けることもできる。2つのプローブは、高周波トランスの2次側の2つの出力端子それぞれに設ける。上記実施例は、この2つの出力端子の一方を穿刺針へと接続し、他方をこの穿刺針の周囲の円筒導体部へと接続し、両者をプローブとして組み込む構成であった。
新しい実施例は、高周波トランスの2次側の出力端子それぞれに独立した1つのプローブ(即ち合計2つのプローブ)を設けて、この2つのプローブによって、癌病巣を挟み込み、この2つのプローブ相互間で高周波を流し合い照射せしめることにした。この場合、2つのプローブは、それぞれ先端に1本の穿刺針が存在し、傘骨状アンテナは存在しない。先の実施例の1つは、傘骨状アンテナを開き、電波放射効率の向上をはかったが、この新しい実施例は、傘骨状アンテナを廃して機構を簡単化すると共に、2つのプローブで病巣を挟み込むことで、安全で確実な照射を可能化せしめるねらいを持つ。
The above embodiment is an example in which one probe is provided in one balanced transmission circuit, but two probes can be provided in one balanced transmission circuit. Two probes are provided at each of the two output terminals on the secondary side of the high-frequency transformer. In the above embodiment, one of the two output terminals is connected to the puncture needle, the other is connected to the cylindrical conductor around the puncture needle, and both are incorporated as a probe.
In the new embodiment, an independent probe (that is, a total of two probes) is provided for each of the output terminals on the secondary side of the high-frequency transformer, and the cancer lesion is sandwiched between the two probes. It was decided to irradiate with high frequency. In this case, each of the two probes has one puncture needle at the tip, and no umbrella-bone antenna exists. In one of the previous embodiments, the umbrella-bone antenna was opened to improve the radio wave radiation efficiency. However, this new embodiment simplifies the mechanism by removing the umbrella-bone antenna and uses two probes. It has the aim of enabling safe and reliable irradiation by pinching the lesion.

かかる照射素子の基本構成図を図12に示す。図12の照射素子は、2次側中点接地端50を持つ高周波トランスの2次側の2つの出力経路2a、2bの先端に、非穿刺部53、54を介して、第1、第2の照射端51、52を設けた事例である。中継部としての非穿刺部53、54の外周は接地しない点が、1つの特徴である。図1では高周波トランスの2次側の2つの出力経路を1つの照射端5両端につなぐ構成であった。図12では、2つの出力経路2a、2bに別々の照射端51、52を接続したものである。
2つの照射端51、52は、極性的には、高周波交流波である故に一方が正極性であるとき他方は必ず負極性となる。そこで、照射端51、52の使用法として、図13に示すように病巣部60をこの2つの照射端51、52で挟み込み、高周波信号をこの端子間で照射させる。2つの照射端51、52の極性が異なるため、一方が(+)で他方が(−)とあり、病巣部への効率のよい高周波印加が可能となる。
FIG. 12 shows a basic configuration diagram of such an irradiation element. The irradiation element of FIG. 12 is connected to the tips of the two output paths 2a and 2b on the secondary side of the high-frequency transformer having the secondary-side midpoint grounding terminal 50 via the non-puncture portions 53 and 54. This is an example in which the irradiation ends 51 and 52 are provided. One feature is that the outer peripheries of the non-puncture portions 53 and 54 as relay portions are not grounded. In FIG. 1, two output paths on the secondary side of the high frequency transformer are connected to both ends of one irradiation end 5. In FIG. 12, separate irradiation ends 51 and 52 are connected to the two output paths 2a and 2b.
In terms of polarity, the two irradiation ends 51 and 52 are high-frequency AC waves, and therefore when one is positive, the other is always negative. Therefore, as a method of using the irradiation ends 51 and 52, as shown in FIG. 13, a lesion 60 is sandwiched between the two irradiation ends 51 and 52, and a high frequency signal is irradiated between the terminals. Since the polarities of the two irradiation ends 51 and 52 are different, one is (+) and the other is (−), and an efficient high frequency application to the lesion is possible.

図14は、図12の装置を2組用意して合計4つのプローブを持つ別実施例である。この4つのプローブは、病巣部60の周囲を例えば90°間隔(即ち、0°、90°、180°、270°)で挟み込み、高周波を印加する使用法をとる。この実施例の重要な特徴は一次側の2つの高周波源が完全に同期化している点、及び4つのプローブで、病巣部60へまんべんなく高周波を照射できるようにするべく、スイッチ回路55を持たせた点である。高周波源の周期化とは、位相及び振り幅が時間軸上で両者で完全一致していることであり、スイッチ回路55による切替えによっての電流の流れの円滑化のためである。   FIG. 14 shows another embodiment in which two sets of the apparatus of FIG. 12 are prepared and a total of four probes are provided. These four probes are used by sandwiching the periphery of the lesion 60 at, for example, 90 ° intervals (ie, 0 °, 90 °, 180 °, 270 °) and applying a high frequency. An important feature of this embodiment is that the two high-frequency sources on the primary side are completely synchronized, and a switch circuit 55 is provided to enable the four probes to irradiate the lesion 60 uniformly. It is a point. The periodization of the high-frequency source means that the phase and amplitude are completely coincident with each other on the time axis, and is for smoothing the current flow by switching by the switch circuit 55.

スイッチ回路55の切替え動作を図15に示す。スイッチ回路55は、3つのモード1、2、3の切替えが時間幅t毎に自動的に行われるものであって、モード1では、端子I−O、端子I−O、端子I−O、端子I−Oが接続され、この結果、51Aと52Aとが電流対、51Bと52Bとがもう1つの電流対とする。これが図16(a)である。モード2では、図16(b)に示したように、51Aと51Bとが1つの電流対、52Aと52Bとがもう1つの電流対となるように、端子I−Iと端子O−Oとの組合せを行う。モード3では、図16(c)に示したように、51Aと52B、52Aと53Bとがそれぞれ電流対となるように端子I−Iと端子O−Oとの組合せを行う。
かくして、ある時刻(0〜t)では、図16(a)の如く、時刻(t−2t)では、図16(b)の如く、時刻(2t−3t)では図16(c)の如く、電流が流れる。こうした3つのモードを複数回繰り返すことで、病巣部60には、全体にまんべんなく高周波照射が行われ、治療効果を発揮する。
The switching operation of the switch circuit 55 is shown in FIG. The switch circuit 55 automatically switches between the three modes 1, 2, and 3 every time width t 1. In the mode 1, the terminal I 1 -O 1 , the terminal I 2 -O 2 , Terminals I 3 -O 3 and I 4 -O 4 are connected. As a result, 51A and 52A constitute a current pair, and 51B and 52B constitute another current pair. This is shown in FIG. In mode 2, as shown in FIG. 16B, the terminals I 1 to I 4 and the terminal O 1 are set such that 51A and 51B are one current pair, and 52A and 52B are another current pair. perform a combination of a -O 4. In mode 3, as shown in FIG. 16C, the terminals I 1 -I 4 and the terminals O 1 -O 4 are combined so that 51A and 52B, and 52A and 53B form current pairs, respectively.
Thus, at a certain time (0 to t 1 ), as shown in FIG. 16 (a), at time (t 1 -2t 1 ), as shown in FIG. 16 (b), at time (2t 1 -3t 1 ), FIG. As shown in c), a current flows. By repeating these three modes a plurality of times, the lesion 60 is uniformly irradiated with high-frequency radiation and exhibits a therapeutic effect.

図14の4照射端の事例は、術者1人によって操作することは簡単でない。そこで、4照射端においては、図14の2つの回路を1つの機構ユニットに組み込むと共に、スイッチ回路55の自動切替え、及び4照射端を互いに連動させて動作させる仕組み、例えばプログラムとその連動機構を作っておけばよい。
図17は図12や図14に示す円筒プローブの具体例を示す。このプローブ100は、同軸ケーブル60と、これにつながる把持部61と、非穿刺部としての中継部62と穿刺部63と、より成る。中継部62は、ケーブル60と穿刺部63とをつなぐ部位であり、把持部61は、この中継部62の外周に、術者が把持するための外径部を有する部位である。
把持部61と中継部62とは、いわゆる非穿刺部であり、体内への穿刺部位は、穿刺部63である。穿刺部63の先端63Aは、針状化している。
図18は、図17の円筒状プローブの断面例を示し、(a)図がI−I断面、(b)図がII−II断面、(c)図がI−I断面の他の事例を示す。(a)図では、中心にトランス2の出力端又はスイッチ回路55につながるリード線(芯線)62Aがあり、その周囲に接地線としての導体層62B、更に外周にプラスチック層62Cを有する。(c)図では、導体層62Bに接触してプラスチック層62Cを設けた事例である。(b)図は、穿刺部63の円筒断面であって、金属導体63Cより成る。この円筒形状が先端に行く程に細くなって先端針状化となる。
The case of the four irradiation end in FIG. 14 is not easy to operate by one operator. Therefore, at the 4 irradiation end, the two circuits of FIG. 14 are incorporated into one mechanism unit, and the switch circuit 55 is automatically switched, and the mechanism for operating the 4 irradiation ends in conjunction with each other, for example, a program and its interlocking mechanism. Just make it.
FIG. 17 shows a specific example of the cylindrical probe shown in FIGS. The probe 100 includes a coaxial cable 60, a gripping part 61 connected to the coaxial cable 60, a relay part 62 as a non-puncture part, and a puncture part 63. The relay part 62 is a part that connects the cable 60 and the puncture part 63, and the gripping part 61 is a part that has an outer diameter part for the operator to grip on the outer periphery of the relay part 62.
The gripping part 61 and the relay part 62 are so-called non-puncture parts, and the puncture site into the body is the puncture part 63. The tip 63A of the puncture portion 63 is needle-shaped.
FIG. 18 shows a cross-sectional example of the cylindrical probe of FIG. 17, (a) FIG. 18 shows another example of the II cross-section, (b) FIG. Show. (A) In the figure, there is a lead wire (core wire) 62A connected to the output end of the transformer 2 or the switch circuit 55 at the center, a conductor layer 62B as a ground wire around it, and a plastic layer 62C around the outer periphery. FIG. 6C shows an example in which a plastic layer 62C is provided in contact with the conductor layer 62B. (B) The figure is a cylindrical cross section of the puncture part 63, and consists of a metal conductor 63C. This cylindrical shape becomes thinner as it goes to the tip, and becomes a tip needle shape.

図19は中継部62と穿刺部63との継ぎ目の部位IIIの拡大図である。この継ぎ目では、リード線(芯線)62Aが円筒金属導体層63Cの内部に接続しており、且つプラスチック層62Cが両者の結合をはかっている。
図19の照射素子としてのプローブは、2つ又は4つを対として使用し、術者が把持部61を把持し、病巣部へとその穿刺針を突きさし、癌病巣に対して側方から支持した状態とする。他方の穿刺針も別側へと突きさし、癌病巣部を両側から挟み込み、高周波を照射する。
FIG. 19 is an enlarged view of a part III of the joint between the relay unit 62 and the puncture unit 63. At this joint, the lead wire (core wire) 62A is connected to the inside of the cylindrical metal conductor layer 63C, and the plastic layer 62C is connected to both.
The probe as the irradiation element in FIG. 19 uses two or four as a pair, and the operator holds the holding part 61, pushes the puncture needle into the lesion, and is lateral to the cancer lesion. It will be in the state supported from. The other puncture needle is also pushed to the other side, the cancer lesion is sandwiched from both sides, and high frequency is irradiated.

図20は、ガイド針を有するプローブの実施例を示す。ガイド針とは、穿刺する際に、穿刺針に代わって、病巣部までプローブを誘導するものである。従って、この場合、プローブの先端は、図12の如く針状化しておらず、プローブの先端からガイド針が突出して穿刺用となる。このプローブ101は、非穿刺部をなす中継部62の手前側に、差し込み部65を取り付けた。差し込み部65は高周波信号を導く同軸ケーブル60(図17)が結合する結合部65Aとガイド針64を差し込む差し込み口65Bと、を有する。この差し込み口65Bに細長い形状で先端が針状化しているガイド針64を差し込み、穿刺ガイドとして使用する。ガイド針64は、把手64Cとストッパー64Dとガイド針本体64Bとを有し、矢印の如く差し込んで、使用し、不使用時にはそれを引き抜く。 FIG. 20 shows an embodiment of a probe having a guide needle. The guide needle guides the probe to the lesion site instead of the puncture needle when puncturing. Therefore, in this case, the tip of the probe is not formed into a needle shape as shown in FIG. 12, and the guide needle protrudes from the tip of the probe for puncturing. The probe 101 has an insertion portion 65 attached to the front side of the relay portion 62 that forms a non-puncture portion. The insertion portion 65 has a coupling portion 65A to which a coaxial cable 60 (FIG. 17) for guiding a high frequency signal is coupled, and an insertion port 65B into which the guide needle 64 is inserted. A guide needle 64 having an elongated shape and a needle shape is inserted into the insertion port 65B and used as a puncture guide. The guide needle 64 has a handle 64C, a stopper 64D, and a guide needle main body 64B. The guide needle 64 is inserted as shown by an arrow and is used, and is pulled out when not in use.

図21は、図20の差し込み部65のI−I断面図(a)、中継部62のII−II断面図(b)、穿刺部63のIII−III断面図(c)、穿刺部63の先端のIV−IV断面図(a)を示す。図22は、中継部62と穿刺部63との継ぎ目部の拡大断面図である。
これらの図21、図22からわかるように、ガイド針64は、プローブの中心を通るように構成されており、高周波リード線60Aは、それよりも外側で非接触となるように配置される。穿刺部63の先端は、開孔しており、この開孔端からガイド針64の本体64Bの針状化した先端が突出するようになっている。
かかるガイド針を使用するときの治療事例を図23に示す。病巣部60の周囲二方向(例えば対向関係にある部位)位置にプローブ102、103が達するように、ガイド針70、71でプローブを誘導し、病巣部60に、プローブの先端が到達した時点でガイド針70、71を引き抜き、ケーブル72、73からの高周波印加を行う。
この実施例によれば、ガイド針64をプローブ内に挿入して病巣部まで穿刺してガイドを行い、その後でガイド針を引き抜き(全部又は後退させる)。この後でプローブの先端から高周波照射を行うことで、治療を実現する。
21 is a cross-sectional view taken along the line II of FIG. 20 (a), a cross-sectional view taken along the line II-II of the relay part 62, a cross-sectional view taken along the line III-III of the puncture part 63, and the puncture part 63. The IV-IV sectional view (a) of the tip is shown. FIG. 22 is an enlarged cross-sectional view of a joint portion between the relay portion 62 and the puncture portion 63.
As can be seen from FIGS. 21 and 22, the guide needle 64 is configured to pass through the center of the probe, and the high-frequency lead wire 60 </ b> A is disposed so as to be non-contact on the outer side. The tip of the puncture portion 63 is open, and the needle-like tip of the main body 64B of the guide needle 64 protrudes from the opening end.
An example of treatment when using such a guide needle is shown in FIG. When the probes are guided by the guide needles 70 and 71 so that the probes 102 and 103 reach the positions around the lesion 60 in two directions (for example, sites in an opposing relationship), when the tip of the probe reaches the lesion 60. The guide needles 70 and 71 are pulled out, and high frequency application from the cables 72 and 73 is performed.
According to this embodiment, the guide needle 64 is inserted into the probe and punctured to the lesion to guide, and then the guide needle is withdrawn (all or retracted). Thereafter, high-frequency irradiation is performed from the tip of the probe to realize treatment.

図24は、図14の如く4端子を持つ照射装置としての実施例図である。照射装置は、スイッチ回路55、RF波照射素子100−1〜100−4と、これにRF電力を供給するRF電力部101、そのRF発生源102、出力制御部103、医師操作台104、処理部105、4端子位置決め制御部110より成る。この他に穿刺ガイド針の駆動制御部111を持つ例もある。
医師操作台104は、穿刺操作を行うための操作部であり、処理部105は、その操作のための各種の処理を行う装置である。出力制御部103は、スイッチ回路55の切替制御、RF発生源102の発振及び停止の指示、並び発振エネルギの制御、更にRF電力部101での電力制御(例えばAGC)、を行う。これらの制御は、医師操作台104による医師の指令、及び又は処理部105からの治療計画による制御指令に基づく。出力制御部103は、RF発生源102、RF電力部101の状態、照射素子100の状態を、処理部105へ送る。更に操作部104から4端子51A〜52Bの位置決め制御部を制御部110に行わせる。また穿刺ガイド針の前進、後退、穿刺の制御を行うこともできる。
FIG. 24 is an embodiment diagram as an irradiation apparatus having four terminals as shown in FIG. The irradiation apparatus includes a switch circuit 55, RF wave irradiation elements 100-1 to 100-4, an RF power unit 101 that supplies RF power thereto, an RF generation source 102, an output control unit 103, a doctor operation table 104, a process Part 105 and a four-terminal positioning control part 110. In addition, there is an example having a drive control unit 111 for the puncture guide needle.
The doctor operation table 104 is an operation unit for performing a puncture operation, and the processing unit 105 is an apparatus that performs various processes for the operation. The output control unit 103 performs switching control of the switch circuit 55, instructions to oscillate and stop the RF source 102, control of oscillation energy, and power control (for example, AGC) in the RF power unit 101. These controls are based on a doctor command from the doctor console 104 and / or a control command based on a treatment plan from the processing unit 105. The output control unit 103 sends the state of the RF generation source 102, the RF power unit 101, and the state of the irradiation element 100 to the processing unit 105. Further, the control unit 110 is caused to perform the positioning control unit for the four terminals 51A to 52B from the operation unit 104. In addition, the puncture guide needle can be controlled to advance, retreat, and puncture.

図10は、本発明の処理部105の機能原理図である。
処理部105の中心となるものが、並列演算機構114であり、これは、本件出願人の先願である特願2006−34911の処理を行う新しい装置である。
特願2006−34911は、穿刺点(挿入点)と治療対象部位である目標点とを結ぶ、ある所定の角度(例えば90°)より成る2つの断層面の形成と、この2つの断層面上での画素データの取得と、この2つの断層面上の取得した画素データの断層画像としての表示と、を基本とする発明を開示する。所定の角度と異ならしめることで、穿刺点から目標点に至る経路の確認やその経路上の障害物の有無をチェックでき治療計画に供する。障害物があれば経路を変更すべく別角度の2つの断層面の形成、画素データの取得、表示を行って再度確認する。
FIG. 10 is a functional principle diagram of the processing unit 105 of the present invention.
The central part of the processing unit 105 is a parallel operation mechanism 114, which is a new device that performs the processing of Japanese Patent Application No. 2006-34911, which is the prior application of the present applicant.
Japanese Patent Application No. 2006-34911 forms two tomographic planes having a predetermined angle (for example, 90 °) connecting a puncture point (insertion point) and a target point that is a treatment target region, and on the two tomographic planes. The invention based on the acquisition of the pixel data in the above and the display of the acquired pixel data on the two tomographic planes as a tomographic image is disclosed. By making the angle different from the predetermined angle, the route from the puncture point to the target point can be confirmed and the presence or absence of an obstacle on the route can be checked, which is provided for the treatment plan. If there is an obstacle, the formation of two tomographic planes at different angles, acquisition of pixel data, and display are performed to confirm the route again to change the path.

かかる先願は、現実の穿刺動作の段階での穿刺動作、穿刺ルートのリアルタイム確認にも利用できる。現実の穿刺動作のリアルタイム確認は、いわゆるCT監視下で行う。CT監視とは、穿刺を進めながら、その被検体内の進行の様子のCT画像の高速取得を行いこれを三次元的に表示させて、穿刺の様子を監視するものである。   Such a prior application can also be used for puncturing operation at the stage of actual puncturing operation and real-time confirmation of the puncturing route. Real-time confirmation of an actual puncture operation is performed under so-called CT monitoring. CT monitoring is to monitor the state of puncture by performing high-speed acquisition of a CT image of the state of progress in the subject while proceeding with puncture and displaying it three-dimensionally.

かかる図10は、このCT監視下での穿刺動作のリアルタイム監視を行うための機能図でもある。並列演算機構114は、このリアルタイム監視の処理中心であって、以下の4つの機能を果す。
(1)Z方向(体軸方向)の所定ピッチ、例えば0.1mmピッチ被検体ボクセルデータの管理
(2)被検体姿勢変動による座標軸の修正(リアルタイム)、例えば1分以内
(3)穿刺点、目標点を通る所定の角度をなす、2つの平面の形成とその画像の取得
(4)アンテナ11c、11Bの制御と電力制御
FIG. 10 is a functional diagram for performing real-time monitoring of the puncturing operation under CT monitoring. The parallel computing mechanism 114 is the processing center of this real-time monitoring, and performs the following four functions.
(1) Management of subject voxel data at a predetermined pitch in the Z direction (body axis direction), for example, 0.1 mm pitch (2) Correction of coordinate axis due to subject posture variation (real time), for example, within 1 minute (3) Puncture point, Formation of two planes forming a predetermined angle passing through the target point and acquisition of the image (4) Control of antennas 11c and 11B and power control

図10では前記並列演算機構116の他に、CT装置110、断層像データ取り込み機構111、高速レイド構成のディスタ群112、114,表示部115、116、操作制御機構117、穿刺プローブ幾何学的位置取込機構118を持つ。
CT装置110は、CT装置制御部110A、断層像画像表示部110Bを持ち、被検体の体軸方向(Z方向)に沿う。例えば0.1mmピッチの断層像を取得する。この断層像は、取り込み機構111を介して高速レイド構成ディスク群112へと送られ蓄積される。高速レイド構成ディスク群113は、過去のCT断層像を蓄積する。
In FIG. 10, in addition to the parallel operation mechanism 116, the CT apparatus 110, the tomographic image data capturing mechanism 111, the high-speed raid configuration 112 and 114, the display units 115 and 116, the operation control mechanism 117, the puncture probe geometric position. It has a take-in mechanism 118.
The CT apparatus 110 includes a CT apparatus control unit 110A and a tomographic image display unit 110B, and is along the body axis direction (Z direction) of the subject. For example, a tomographic image having a pitch of 0.1 mm is acquired. This tomographic image is sent to the high-speed raid configuration disk group 112 via the capturing mechanism 111 and accumulated. The high-speed raid configuration disk group 113 accumulates past CT tomograms.

先ず、初期設定を説明する。
初期設定では、過去にCT装置110で撮影した被検体の0.1mmピッチ単位で取得した断層像を表示部110Bで表示させて、穿刺入口(点)と病巣部位である目標点及びそれを結ぶルートを決定する。この決定は、穿刺点と目標点とを通る、例えば直交する2つの平面Q、Qを求め、この2つの平面上での画素データを近接するCT断層面から求めて2平面での断層像R1、R2を得る。断層像R1、R2を表示部115と116とに別々に表示する。更に、この断層像上に穿刺点と目標点とを示すマークを付ける。かくして、2つの断層像R1、R2との両者を観察することで、穿刺点と目標点とを結ぶ経路の確認ができ、仮に障害物があれば別の穿刺点、目標点を選ぶ。そして障害物のない、治療に適切なルートの決定をする。
First, the initial setting will be described.
In the initial setting, a tomographic image acquired in 0.1 mm pitch units of the subject imaged by the CT apparatus 110 in the past is displayed on the display unit 110B, and the puncture entrance (point) is connected to the target point that is a lesion site and the target point. Determine the route. In this determination, two orthogonal planes Q 1 and Q 2 passing through the puncture point and the target point, for example, are obtained, and pixel data on these two planes are obtained from adjacent CT tomographic planes, and the tomograms in the two planes are obtained. Images R1 and R2 are obtained. The tomographic images R1 and R2 are separately displayed on the display units 115 and 116. Further, a mark indicating the puncture point and the target point is put on this tomographic image. Thus, by observing both the two tomographic images R1 and R2, the path connecting the puncture point and the target point can be confirmed. If there is an obstacle, another puncture point and target point are selected. Then, determine the appropriate route for treatment without any obstacles.

かくして得た初期設定した2つの画像R1、R2を表示させておき、実際の穿刺動作に入る。これは、操作制御機構117を利用する。穿刺動作により照射素子は被検体内に穿刺してゆき、その位置は取込み機構118により取り込まれ並列演算機構114へと送られ、位置確認に利用する。更に、照射素子自体を含むその前後の複数断層面のCT断層像がリアルタイムで撮影され、2つの平面R1、R2上でリアルタイム画像データを得、これを照射素子の進行に合せて平面R1、R2上の画像として表示する。これによって、CT監視下でも穿刺動作を実行する。   The two initially set images R1 and R2 thus obtained are displayed, and the actual puncturing operation is started. This utilizes the operation control mechanism 117. The irradiating element is punctured into the subject by the puncturing operation, and the position is captured by the capturing mechanism 118 and sent to the parallel computing mechanism 114 for use in position confirmation. Furthermore, CT tomographic images of a plurality of tomographic planes before and after the irradiation element itself are taken in real time, real-time image data is obtained on the two planes R1 and R2, and the planes R1 and R2 are obtained in accordance with the progress of the irradiation element. Display as the top image. Thereby, the puncture operation is executed even under CT monitoring.

尚、図10の処理部は一例であって、特願平2006−34911と同様の構成、同様の処理フローによって実現できることは云うまでもない。   Note that the processing unit in FIG. 10 is an example, and it is needless to say that the processing unit can be realized by the same configuration and the same processing flow as that of Japanese Patent Application No. 2006-34911.

本発明のRF照射素子の電気回路例を示す図である。It is a figure which shows the electric circuit example of RF irradiation element of this invention. 本発明のノイズ混入防止の説明用等価回路図である。It is an equivalent circuit diagram for explanation of noise mixing prevention of the present invention. 本発明の全体シールドの構成例図である。It is a structural example figure of the whole shield of this invention. 他のRF照射素子の電気回路を示す図である。It is a figure which shows the electric circuit of another RF irradiation element. 本発明のプローブ化したRF照射素子例を示す図である。It is a figure which shows the example of RF irradiation element made into the probe of this invention. 本発明のプローブ化したRF照射素子の第2照射端の構成例を示す図である。It is a figure which shows the structural example of the 2nd irradiation end of RF irradiation element made into the probe of this invention. 本発明のプローブ化したRF照射素子の非穿刺部の詳細例図である。It is a detailed example figure of the non-puncture part of the RF irradiation element made into the probe of this invention. 本発明のプローブ化したRF照射素子の第1照射端の構成例を示す図である。It is a figure which shows the structural example of the 1st irradiation end of the RF irradiation element made into the probe of this invention. 本発明のRF照射装置例を示す図である。It is a figure which shows the example of RF irradiation apparatus of this invention. 本発明の処理部の機能構成図である。It is a functional block diagram of the process part of this invention. 本発明のRF波照射素子のプローブの具体例図である。It is a specific example figure of the probe of the RF wave irradiation element of this invention. 本発明の1つの高周波電源にたいする2つの照射端子51、52を持つ回路図である。It is a circuit diagram which has two irradiation terminals 51 and 52 with respect to one high frequency power supply of this invention. 図12の照射端子による病巣部60への配置例図である。It is the example of arrangement | positioning to the lesion part 60 by the irradiation terminal of FIG. 本発明の4つの照射端子51A〜52Bを持つ回路例図である。It is a circuit example figure with four irradiation terminals 51A-52B of this invention. 図14のスイッチ回路55の切替モードを示す図である。It is a figure which shows the switching mode of the switch circuit 55 of FIG. 図14のスイッチ回路55での病巣部60への各種照射例図である。FIG. 15 is a diagram illustrating various irradiation examples to the lesion part 60 in the switch circuit 55 of FIG. 14. 本発明穿刺ガイド針を持つ照射素子例を示す図である。It is a figure which shows the example of an irradiation element with this invention puncture guide needle. 図17の各種断面図である。It is various sectional drawing of FIG. 図17の継ぎ目の断面図である。FIG. 18 is a cross-sectional view of the seam of FIG. 17. 本発明の穿刺ガイド針を持つ照射素子の具体例図である。It is a specific example figure of the irradiation element with the puncture guide needle of this invention. 図20の各種断面図である。It is various sectional drawing of FIG. 図20の継ぎ目の断面図である。It is sectional drawing of the seam of FIG. 図20の照射素子による病巣部60への配置例を示す図である。It is a figure which shows the example of arrangement | positioning to the lesion part 60 by the irradiation element of FIG. 図14の4端子の照射素子を持つ照射装置の実施例図である。It is an Example figure of the irradiation apparatus with the irradiation element of 4 terminals of FIG.

符号の説明Explanation of symbols

1 RF発生源
2 トランス
5 照射端
11 穿刺部
12 非穿刺部
11c、11c 傘骨状アンテナ
DESCRIPTION OF SYMBOLS 1 RF generation source 2 Transformer 5 Irradiation end 11 Puncture part 12 Non-puncture part 11c, 11c Umbrella-shaped antenna

Claims (3)

RF発振源と、
RF発振源の出力側に設けられ、その一次側にRF発振信号が印加されると共に、その二次側の中点が接地されたトランスと、
トランスの二次側の両端につながる送出電気経路と、
この送出電気経路の出力端であって、被検体病巣部にRF波を照射するための第1、第2の照射端子と、
上記RF発振源及び第1、第2照射端子を除く送出電気経路の周囲を対地シールド化する接地導体部と、
少なくとも上記送出電気経路の接地導体部の周囲を覆う外周絶縁体部と、を備え、
上記RF発振源は、RF発振部と、その出力側に設けられRF信号を通過させる帯域通過フィルタと、直流電源と、この出力側に設けた低域通過フィルタと、より成り、帯域通過フィルタの出力側と低域通過フィルタの出力側とが上記トランスの一次側の両端子に接続されているものとした被検体病巣用RF波照射素子。
An RF oscillation source;
A transformer which is provided on the output side of the RF oscillation source, the RF oscillation signal is applied to the primary side, and the midpoint of the secondary side is grounded;
A transmission electrical path leading to both ends of the secondary side of the transformer;
First and second irradiation terminals for irradiating the subject lesion with an RF wave at the output end of the electrical transmission path;
A grounding conductor portion that shields the periphery of the electrical transmission path excluding the RF oscillation source and the first and second irradiation terminals;
An outer peripheral insulator portion covering at least the ground conductor portion of the delivery electrical path,
The RF oscillation source includes an RF oscillation unit, a band-pass filter that is provided on the output side thereof and allows an RF signal to pass through, a DC power source, and a low-pass filter that is provided on the output side. An RF wave irradiation element for a subject lesion in which an output side and an output side of a low-pass filter are connected to both terminals on the primary side of the transformer.
RF発振源と、
RF発振源の出力側に設けられ、その一次側にRF発振信号が印加されると共に、その二次側の中点が接地されたトランスと、
トランスの二次側の両端である第1、第2出力端子につながり、被検体病巣部位にRF波を照射するための第1、第2の照射部と、を備え、
第1の照射部は、
病巣部位に穿刺する穿刺部と、非穿刺部と、先端針状のガイド針と、より成り、
非穿刺部は、トランスの二次側の対応する出力端子からの平衡伝送法による同一極性且つ同一値のノイズ電流を含むRF信号を送出する送出電気経路と、この送出電気経路を囲むようにして設けられて対地シールドを行う接地導体部と、この接地導体部を覆う外周絶縁体部を具え、
穿刺部は、非穿刺部の送出電気経路につながる先端が開口の第1の中空導体を備え、
ガイド針は、非穿刺部と穿刺部との内部を通り穿刺部の先端開口より突出可能として、穿刺部の病巣部への誘導を行うものとし、
第2の照射部は、
病巣部位に穿刺する穿刺部と、非穿刺部と、先端針状のガイド針と、より成り、
非穿刺部は、トランスの二次側の対応する出力端子からの平衡伝送法によるRF信号を送出する送出電気経路と、この送出電気経路を囲むようにして設けられて対地シールドを行う接地導体部と、この接地導体部を覆う外周絶縁体部を具え、
穿刺部は、非穿刺部の送出電気経路につながる第2の中空導体を備え、
ガイド針は、非穿刺部と穿刺部との内部を通り穿刺部の先端開口より突出可能として、穿刺部の病巣部への誘導を行うものとし、
第1の中空導体と第2の中空導体とのそれぞれの先端側との間でRF波を放射させるものとし、かつ、
それぞれ2つの出力端子を持つ第1、第2のRF発振部と、
第1、第2、第3、第4の照射端子と、
上記第1、第2のRF発振部の、それぞれの第1、第2の出力端子と第1、第2、第3、第4の照射端子との間に設けられ、出力端子と照射端子との組合せをサイクリックに変更させるスイッチ手段と、を備えた被検体病巣用RF波照射装置。
An RF oscillation source;
A transformer which is provided on the output side of the RF oscillation source, the RF oscillation signal is applied to the primary side, and the midpoint of the secondary side is grounded;
A first and a second irradiation unit connected to first and second output terminals, which are both ends of the secondary side of the transformer, for irradiating the subject lesion site with an RF wave;
The first irradiation unit is
It consists of a puncture part that punctures the lesion site, a non-puncture part, and a needle needle guide needle,
The non-puncture part is provided so as to surround an electrical transmission path for transmitting an RF signal including noise current of the same polarity and the same value by a balanced transmission method from a corresponding output terminal on the secondary side of the transformer, and the electrical transmission path. A grounding conductor portion for ground shielding and an outer peripheral insulator portion covering the grounding conductor portion,
The puncture unit includes a first hollow conductor having an opening at the tip connected to the delivery electrical path of the non-puncture unit,
The guide needle passes through the inside of the non-puncture part and the puncture part and can protrude from the tip opening of the puncture part, and guides to the lesion part of the puncture part,
The second irradiation unit is
It consists of a puncture part that punctures the lesion site, a non-puncture part, and a needle needle guide needle,
The non-puncture part is a transmission electrical path for transmitting an RF signal by a balanced transmission method from a corresponding output terminal on the secondary side of the transformer, a ground conductor part that is provided so as to surround the transmission electrical path and performs a ground shield, Provided with an outer peripheral insulator covering the ground conductor,
The puncture unit includes a second hollow conductor that leads to a delivery electrical path of the non-puncture unit,
The guide needle passes through the inside of the non-puncture part and the puncture part and can protrude from the tip opening of the puncture part, and guides to the lesion part of the puncture part,
An RF wave is radiated between the first hollow conductor and the respective distal end sides of the second hollow conductor; and
A first and a second RF oscillator each having two output terminals;
First, second, third and fourth irradiation terminals;
The first and second RF oscillation units are provided between the first and second output terminals and the first, second, third, and fourth irradiation terminals, respectively, and the output terminal and the irradiation terminal. An RF wave irradiation apparatus for a subject lesion, comprising: switch means for cyclically changing the combination of
上記第1、第2のRF発振部のそれぞれは、RF発振源と、RF発振源の出力側に設けられ、その一次側にRF発振信号が印加されると共に、その二次側の中点が接地されて2つの出力端子を持つトランスと、を備えた請求項の被検体病巣用RF波照射装置。 Each of the first and second RF oscillation units is provided on the output side of the RF oscillation source and the RF oscillation source, the RF oscillation signal is applied to the primary side, and the midpoint of the secondary side is It is grounded object foci for RF wave irradiation apparatus according to claim 2 comprising a transformer, a with two output terminals.
JP2007006750A 2006-04-07 2007-01-16 RF wave irradiation element for subject lesion Expired - Fee Related JP5094132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006750A JP5094132B2 (en) 2006-04-07 2007-01-16 RF wave irradiation element for subject lesion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006106090 2006-04-07
JP2006106090 2006-04-07
JP2007006750A JP5094132B2 (en) 2006-04-07 2007-01-16 RF wave irradiation element for subject lesion

Publications (2)

Publication Number Publication Date
JP2007296318A JP2007296318A (en) 2007-11-15
JP5094132B2 true JP5094132B2 (en) 2012-12-12

Family

ID=38766318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006750A Expired - Fee Related JP5094132B2 (en) 2006-04-07 2007-01-16 RF wave irradiation element for subject lesion

Country Status (1)

Country Link
JP (1) JP5094132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047222A (en) * 2012-03-14 2017-03-09 コヴィディエン リミテッド パートナーシップ Microwave ablation generator control system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260154A (en) * 1988-08-26 1990-02-28 Semiconductor Energy Lab Co Ltd Lead frame and manufacture of electronic device incorporating the same
JP2670166B2 (en) * 1990-03-13 1997-10-29 株式会社日立製作所 Data transmission system
JPH0761338B2 (en) * 1992-06-20 1995-07-05 千雄 加藤 Radiofrequency ablation catheter
JPH06215647A (en) * 1993-01-13 1994-08-05 Matsushita Electric Works Ltd Balanced-to-unbalanced transducer
JPH0823241A (en) * 1994-07-08 1996-01-23 Matsushita Electric Ind Co Ltd Power amplifier
US6235023B1 (en) * 1995-08-15 2001-05-22 Rita Medical Systems, Inc. Cell necrosis apparatus
EP0873086A1 (en) * 1995-12-22 1998-10-28 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
GB9708268D0 (en) * 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
AU7141198A (en) * 1997-06-13 1998-12-30 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
US8048070B2 (en) * 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6554827B2 (en) * 2000-12-11 2003-04-29 Scimed Life Systems, Inc. Radio frequency ablation system
US20020087151A1 (en) * 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
JP2005102750A (en) * 2003-09-26 2005-04-21 Olympus Corp Electrosurgical power supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047222A (en) * 2012-03-14 2017-03-09 コヴィディエン リミテッド パートナーシップ Microwave ablation generator control system
US10022185B2 (en) 2012-03-14 2018-07-17 Covidien Lp Microwave ablation generator control system

Also Published As

Publication number Publication date
JP2007296318A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US20240293179A1 (en) Microwave ablation system
US20230248415A1 (en) Treatment instrument and high-voltage connectors for robotic surgical system
JP7402525B2 (en) electrosurgical generator
JP2015163232A (en) System and method for performing electrosurgical procedure using ablation device with integrated imaging device
JP5094132B2 (en) RF wave irradiation element for subject lesion
US20090326529A1 (en) Method and apparatus for reducing image artifacts in electronic ablation images
CN116138870A (en) Biopsy and ablation device, biopsy and ablation system
US20240206937A1 (en) Tumor ablation tools and techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

LAPS Cancellation because of no payment of annual fees