[go: up one dir, main page]

JP5092498B2 - Low yield ratio high strength high toughness steel sheet and method for producing the same - Google Patents

Low yield ratio high strength high toughness steel sheet and method for producing the same Download PDF

Info

Publication number
JP5092498B2
JP5092498B2 JP2007091789A JP2007091789A JP5092498B2 JP 5092498 B2 JP5092498 B2 JP 5092498B2 JP 2007091789 A JP2007091789 A JP 2007091789A JP 2007091789 A JP2007091789 A JP 2007091789A JP 5092498 B2 JP5092498 B2 JP 5092498B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
yield ratio
low yield
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007091789A
Other languages
Japanese (ja)
Other versions
JP2008248328A (en
Inventor
豊久 新宮
信行 石川
光浩 岡津
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007091789A priority Critical patent/JP5092498B2/en
Publication of JP2008248328A publication Critical patent/JP2008248328A/en
Application granted granted Critical
Publication of JP5092498B2 publication Critical patent/JP5092498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、主にラインパイプ分野での使用に好適な、低降伏比高強度高靱性鋼板とその製造方法に関するものである。   The present invention relates to a low-yield-ratio, high-strength, high-toughness steel sheet suitable for use mainly in the field of line pipes and a method for producing the same.

近年、溶接構造用鋼材においては、高強度、高靱性に加え、耐震性の観点から低降伏比化、高一様伸びが要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化、高一様伸び化が可能であることが知られている。   In recent years, steel materials for welded structures are required to have a low yield ratio and high uniform elongation from the viewpoint of earthquake resistance in addition to high strength and high toughness. In general, by making the metal structure of steel a structure in which hard phases such as bainite and martensite are moderately dispersed in a soft phase like ferrite, low yield ratio and high uniform elongation of steel are achieved. It is known to be possible.

上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q’)を施す熱処理方法が知られている(例えば、特許文献1参照)。   As a production method for obtaining a structure in which a hard phase is appropriately dispersed in the soft phase as described above, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). There is known a heat treatment method for applying (see, for example, Patent Document 1).

この熱処理方法では、Q’温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下、製造コストの増加を招く。   In this heat treatment method, a low yield ratio can be achieved by appropriately selecting the Q 'temperature, but the number of heat treatment steps increases, resulting in a decrease in productivity and an increase in manufacturing cost.

製造工程が増加することがない方法として、Ar温度以上で圧延終了後、鋼材の温度がフェライトが生成するAr変態点以下になるまで加速冷却の開始を遅らせる方法が開示されている(例えば、特許文献2参照)。 As a method that does not increase the number of manufacturing steps, a method is disclosed in which after the end of rolling at an Ar 3 temperature or higher, the start of accelerated cooling is delayed until the temperature of the steel material becomes equal to or lower than the Ar 3 transformation point at which ferrite forms (for example, , See Patent Document 2).

しかし、圧延終了から加速冷却開始までの温度域を放冷程度の冷却速度で冷却する必要があるため、生産性が極端に低下する。   However, since it is necessary to cool the temperature range from the end of rolling to the start of accelerated cooling at a cooling rate that is about the ability to cool, productivity is extremely reduced.

特許文献1、特許文献2に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、Ar変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が知られている(例えば特許文献3参照)。
特開昭55−97425号公報 特開昭55−41927号公報 特開平1−176027号公報
As a technique for achieving a low yield ratio without performing a complex heat treatment as disclosed in Patent Document 1 and Patent Document 2, the rolling of the steel material is completed at the Ar 3 transformation point or higher, and the subsequent accelerated cooling rate and A method is known in which a two-phase structure of acicular ferrite and martensite is achieved by controlling the cooling stop temperature to achieve a low yield ratio (see, for example, Patent Document 3).
JP-A-55-97425 JP 55-41927 A Japanese Patent Laid-Open No. 1-176027

しかしながら、特許文献3に記載の技術では、その実施例が示すように、引張強さで490N/mm(50kg/mm)以上の鋼材とするために、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。 However, in the technique described in Patent Document 3, as shown in the examples, in order to obtain a steel material having a tensile strength of 490 N / mm 2 (50 kg / mm 2 ) or more, the carbon content of the steel material is increased, Or since it is necessary to set it as the component composition which increased the additional amount of other alloy elements, not only the cost of a raw material will be raised, but the deterioration of toughness of a welding heat affected zone becomes a problem.

このように従来の技術では、生産性を低下させたり、また素材コストを上昇させることなく、優れた溶接熱影響部靭性を備えた高一様伸びを有する低降伏比高強度高靱性鋼板を製造することは困難である。   In this way, the conventional technology produces low yield ratio, high strength, high toughness steel sheets with high uniform elongation with excellent weld heat affected zone toughness without lowering productivity or raising material costs. It is difficult to do.

そこで、本発明は、このような従来技術の課題を解決し、高製造効率、低コストで製造可能な、API 5L X70グレード以下の高一様伸び特性を備えた低降伏比高強度高靱性鋼板及びその製造方法を提供することを目的とする。   Therefore, the present invention solves such problems of the prior art, and can be manufactured at high production efficiency and low cost, and has a low yield ratio and high strength and high toughness steel plate with high uniform elongation characteristics of API 5L X70 grade or less. And it aims at providing the manufacturing method.

本発明者らは上記課題を解決するために、鋼板の製造方法、特に制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors have earnestly studied a manufacturing process of a steel sheet, particularly a manufacturing process of accelerated cooling after controlled rolling and subsequent reheating, and as a result, has obtained the following knowledge.

(a)加速冷却過程でベイナイト変態途中、すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後ベイナイト変態終了温度(以下Bf点と記載する。)以上から再加熱を行うことにより、鋼板の金属組織を、フェライト、ベイナイトの2相の混合相中に硬質な島状マルテンサイト(以下MAと記載する。)が均一に生成した組織とし、低降伏比化が可能である。   (A) During the accelerated cooling process, during the bainite transformation, that is, in the temperature region where untransformed austenite exists, cooling is stopped, and then reheating is performed from the bainite transformation finish temperature (hereinafter referred to as Bf point) or higher. The metal structure is made to have a structure in which hard island martensite (hereinafter referred to as MA) is uniformly formed in the mixed phase of ferrite and bainite, and a low yield ratio can be achieved.

MAは、たとえば3%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチングして観察すると、容易に識別可能である。走査型電子顕微鏡(SEM)で鋼板のミクロ組織を観察すると、MAは白く浮き立った部分として観測される。   MA can be easily identified by, for example, etching with a 3% nital solution (nital: nitrate alcohol solution), followed by electrolytic etching and observing. When the microstructure of the steel sheet is observed with a scanning electron microscope (SEM), MA is observed as a white floating part.

(b)Cu、Niなどのオーステナイト安定化元素を適量添加することにより、未変態オーステナイトが安定化するため、C、Mn等の焼入れ性向上元素を多量添加しなくても硬質なMAの生成が可能である。   (B) Since an untransformed austenite is stabilized by adding an appropriate amount of an austenite stabilizing element such as Cu or Ni, hard MA can be generated without adding a large amount of a hardenability improving element such as C or Mn. Is possible.

本発明は上記の知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.03〜0.08%、Si:0.01〜0.5%、Mn:1.2〜1.61%、Mo:0.05〜0.4%、Cu+Ni:0.3〜0.67%、Ti:0.005〜0.04%、Nb:0.005〜0.07%、Al:0.08%以下を含有し、残部Fe及び不可避的不純物、金属組織がフェライトとベイナイトと島状マルテンサイトの3相組織であり、体積分率が3〜15%の島状マルテンサイトと体積分率が2%以上の残留オーステナイトを含む組織で、長手方向の一様伸びが12%以上であることを特徴とする低降伏比高強度高靱性鋼板。
2.更に、鋼組成が、質量%で、V:0.005〜0.1%、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする1に記載の低降伏比高強度高靱性鋼板。
3.1または2のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行うことを特徴とする、低降伏比高強度高靱性鋼板の製造方法。
The present invention has been made by further studying the above findings, that is, the present invention
1. By mass%, C: 0.03~0.08%, Si : 0.01~0.5%, Mn: 1.2~ 1.61%, Mo: 0.05~0.4%, Cu + Ni: 0.3 to 0.67 %, Ti: 0.005 to 0.04 %, Nb: 0.005 to 0.07 %, Al: 0.08% or less, the remainder Fe and inevitable impurities, metal The structure is a three-phase structure of ferrite, bainite, and island martensite, which includes island martensite with a volume fraction of 3 to 15% and residual austenite with a volume fraction of 2% or more. A low yield ratio, high strength, high toughness steel sheet having a uniform elongation of 12% or more.
2. Further, the steel composition is in mass%, V: 0.005 to 0.1%, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005% or less. 2. The low yield ratio high strength high toughness steel plate according to 1, which contains one or more selected.
3.1 After heating steel having the component composition described in either 1 or 2 to a temperature of 1000 to 1300 ° C. and hot rolling at a rolling finish temperature of Ar 3 temperature or higher, cooling at 5 ° C./s or higher A low yield ratio high strength high toughness steel sheet characterized by performing accelerated cooling to 500 to 650 ° C. at a speed, and then immediately reheating to 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more. Production method.

本発明によれば、高一様伸び特性を備えた低降伏比高強度高靱性鋼板を、溶接熱影響部靭性を劣化させたり、多量の合金元素を添加することなく、低コストで製造することができる。このため主にラインパイプに使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができ産業上極めて有用である。   According to the present invention, a low yield ratio high strength high toughness steel sheet with high uniform elongation characteristics can be produced at low cost without degrading the weld heat affected zone toughness or adding a large amount of alloying elements. Can do. For this reason, the steel plate mainly used for a line pipe can be stably manufactured in a large amount at a low cost, and the productivity and economy can be remarkably improved, which is extremely useful industrially.

以下、本発明の高強度鋼板の金属組織、成分組成および製造条件について詳しく説明する。
[金属組織]
本発明では、フェライトとベイナイトに加えて体積分率が3〜15%の島状マルテンサイト(MA)と体積分率が2%以上の残留オーステナイトを均一に含む金属組織とする。
Hereinafter, the metal structure, component composition, and production conditions of the high-strength steel sheet of the present invention will be described in detail.
[Metal structure]
In the present invention, in addition to ferrite and bainite, a metal structure uniformly including island martensite (MA) having a volume fraction of 3 to 15% and residual austenite having a volume fraction of 2% or more is used.

フェライト、ベイナイトにMAが均一に生成した3相組織、すなわち、軟質なフェライト、ベイナイトに、硬質なMAを含んだ複合組織とすることで、低降伏比化、高一様伸び化を達成している。   A three-phase structure in which MA is uniformly formed in ferrite and bainite, that is, a composite structure containing hard MA in soft ferrite and bainite achieves a low yield ratio and a high uniform elongation. Yes.

強度確保の観点からフェライトの分率を5%以上に、母材の靭性確保の観点からベイナイトの分率を10%以上にする事が望ましい。   It is desirable that the ferrite fraction is 5% or more from the viewpoint of securing strength, and the bainite fraction is 10% or more from the viewpoint of securing toughness of the base material.

大変形を受ける地震地帯等へ適用される際には、低降伏比化に加え高一様伸び性能が要求されることがある。上記のような、軟質のフェライト、ベイナイトと硬質のMAとの複相組織では、軟質相が変形を担うため、12%以上の高一様伸び化が達成可能である。   When applied to an earthquake zone subjected to large deformation, high uniform elongation performance may be required in addition to low yield ratio. In the multiphase structure of soft ferrite, bainite and hard MA as described above, since the soft phase bears deformation, a highly uniform elongation of 12% or more can be achieved.

組織中のMAの割合は、MAの体積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるMAの面積の割合から算出)で、3〜15%とすることが望ましい。MAの体積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また15%を超えると母材靱性を劣化させる場合がある。   The proportion of MA in the structure is preferably 3 to 15% in terms of the volume fraction of MA (calculated from the proportion of the area of MA in an arbitrary cross section of the steel sheet in the rolling direction and the sheet width direction). If the volume fraction of MA is less than 3%, it may be insufficient to achieve a low yield ratio, and if it exceeds 15%, the base material toughness may be deteriorated.

また、低降伏比化、高一様伸び化および母材靭性の観点から、MAの体積分率は5〜15%とすることが特に望ましい。なお、MAの体積分率は、例えばSEM観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってMAの占める面積率から算出して求めることで得ることができる。   Further, from the viewpoint of low yield ratio, high uniform elongation, and base metal toughness, the volume fraction of MA is particularly preferably 5 to 15%. The volume fraction of MA can be obtained, for example, by calculating from the area ratio occupied by MA by performing image processing on a microstructure photograph of at least four fields of view obtained by SEM observation.

MAの平均粒径は、10μm以下であることが望ましい。なお、MAの平均粒径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。   The average particle size of MA is desirably 10 μm or less. The average particle diameter of MA can be obtained as an average value of the diameters obtained by subjecting the microstructure obtained by SEM observation to image processing, obtaining the diameter of a circle having the same area as each MA, and obtaining the diameter of each MA. .

本発明では、C、Mn等の焼き入れ性向上元素を多量に添加しなくてもMAを生成させるために、Cu、Niを添加し未変態オーステナイトを安定化させ、再加熱、その後の空冷中のパーライト変態やセメンタイト生成を抑制することが重要である。   In the present invention, Cu and Ni are added to stabilize untransformed austenite in order to produce MA without adding a large amount of hardenability improving elements such as C and Mn, and reheating and subsequent air cooling. It is important to suppress pearlite transformation and cementite formation.

よって、生成したMA中にはCu、Niよって安定化したオーステナイトが残存しており、残留オーステナイト体積分率として2%以上必要である。   Therefore, austenite stabilized by Cu and Ni remains in the produced MA, and the residual austenite volume fraction is required to be 2% or more.

本発明における、MA生成のメカニズムは概略以下の通りである。詳細な製造条件は後述する。   The mechanism of MA generation in the present invention is as follows. Detailed manufacturing conditions will be described later.

スラブを加熱後、オーステナイト領域で圧延を終了し、その後Ar変態温度以上で加速冷却を開始する。 After heating the slab, the rolling is finished in the austenite region, and then accelerated cooling is started at the Ar 3 transformation temperature or higher.

加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後ベイナイト変態終了温度(Bf点)以上で再加熱を行い、その後冷却する製造プロセスにおいてその組織の変化は次の通りである。   Accelerated cooling is completed during bainite transformation, that is, in the temperature range where untransformed austenite exists, and then reheated at a temperature higher than the bainite transformation finish temperature (Bf point) and then cooled in the manufacturing process. is there.

加速冷却終了時のミクロ組織はベイナイトと未変態オーステナイトであり、Bf点以上で再加熱を行うことで未変態オーステナイトからのフェライト変態が生じるが、フェライトはC固溶量が少ないためCが未変態オーステナイトへ排出される。   Microstructures at the end of accelerated cooling are bainite and untransformed austenite, and reheating at the Bf point or higher causes ferrite transformation from untransformed austenite. However, since ferrite has a small amount of C solid solution, C is untransformed. Discharged into austenite.

そのため、再加熱時のフェライト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Cu、Ni等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト、フェライトの2相に、MAが生成した組織となる。   Therefore, the amount of C in untransformed austenite increases with the progress of ferrite transformation during reheating. At this time, if Cu, Ni or the like, which is an austenite stabilizing element, is contained in a certain amount or more, untransformed austenite in which C is concentrated remains even at the end of reheating, and is transformed into MA by cooling after reheating. Finally, it becomes a structure in which MA is formed in two phases of bainite and ferrite.

本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点以上とする必要がある。   In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be higher than the Bf point.

また、再加熱後の冷却については、MAの変態に影響を与えないため特に規定しないが、基本的に空冷とすることが好ましい。本発明では、Cu、Niを一定量添加した鋼を用い、ベイナイト変態途中で加速冷却を停止し、その後連続的に再加熱を行うことで、製造効率を低下させることなく硬質なMAを生成させることができる。   In addition, the cooling after reheating is not particularly specified because it does not affect the transformation of MA, but basically it is preferably air cooling. In the present invention, steel with a certain amount of Cu and Ni added is used, and accelerated cooling is stopped during the bainite transformation, followed by continuous reheating, thereby generating hard MA without reducing the production efficiency. be able to.

なお、本発明に係る鋼では、金属組織が、フェライトとベイナイトの2相に一定量のMAと残留オーステナイトを均一に含む組織であるが、本発明の作用効果を損なわない程度で、その他の組織や析出物を含有するものも、本発明の範囲に含む。   In the steel according to the present invention, the metal structure is a structure that uniformly contains a certain amount of MA and retained austenite in the two phases of ferrite and bainite, but other structures as long as the effects of the present invention are not impaired. And those containing precipitates are also included in the scope of the present invention.

具体的には、パーライトなどの異なる金属組織が1種または2種以上混在する場合は、強度が低下する。しかし、フェライト、ベイナイトおよび残留オーステナイトやMA以外の組織の分率が低い場合は影響が無視できるため、トータルの分率で3%以下の他の金属組織を、すなわちパーライトやセメンタイト等を1種または2種以上含有してもよい。   Specifically, when one or more different metal structures such as pearlite are mixed, the strength decreases. However, when the fraction of the structure other than ferrite, bainite, retained austenite and MA is low, the influence can be ignored. Therefore, other metal structures of 3% or less in total fraction, that is, pearlite, cementite, etc. You may contain 2 or more types.

上述した金属組織は以下のような組成の鋼を用いて、以下のような方法で製造することにより得ることができる。
[化学成分]以下の説明において%で示す単位は全て質量%である。
The metal structure described above can be obtained by manufacturing the following composition using steel having the following composition.
[Chemical component] In the following description, all units shown in% are% by mass.


Cは0.03〜0.1%とする。Cは炭化物として析出強化に寄与し、且つMA生成に重要な元素であるが、0.03%未満ではMAの生成に不十分であり、また十分な強度が確保できない。0.1%を超える添加はHAZ靭性を劣化させるため、C含有量を0.03〜0.1%に規定する。さらに好適には、0.03〜0.08%である。
C
C is set to 0.03 to 0.1%. C contributes to precipitation strengthening as a carbide and is an important element for MA formation. However, if it is less than 0.03%, it is insufficient for formation of MA, and sufficient strength cannot be secured. Since addition exceeding 0.1% deteriorates the HAZ toughness, the C content is specified to be 0.03 to 0.1%. More preferably, it is 0.03 to 0.08%.

Si
Siは0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。
Si
Si is set to 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%. More preferably, it is 0.01 to 0.3%.

Mn
Mnは1.2〜2.0%とする。Mnは強度、靭性向上、更に焼き入れ性を向上しMA生成を促すために添加するが、1.2%未満ではその効果が十分でなく、2.5%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を1.2〜2.0%に規定する。成分や製造条件の変動によらず、安定してMAを生成するためには、1.5%以上の添加が望ましい。
Mn
Mn is set to 1.2 to 2.0%. Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if it is less than 1.2%, its effect is not sufficient, and if it exceeds 2.5%, toughness and weldability deteriorate. Therefore, the Mn content is specified to be 1.2 to 2.0%. Addition of 1.5% or more is desirable in order to stably produce MA regardless of changes in components and production conditions.

Mo
Moは0.05〜0.4%とする。Moは焼き入れ性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素である。しかし、0.4%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.05〜0.4%に規定する。さらに、溶接熱影響部靭性の観点からMo含有量を0.1〜0.3%とすることが好ましい。
Mo
Mo is set to 0.05 to 0.4%. Mo is an element that improves the hardenability, and is an element that contributes to an increase in strength by strengthening the MA formation and the bainite phase. However, if it exceeds 0.4%, the weld heat-affected zone toughness is deteriorated, so the Mo content is specified to be 0.05 to 0.4%. Furthermore, it is preferable to make Mo content into 0.1 to 0.3% from a viewpoint of weld heat affected zone toughness.

Cu+Ni
Cu+Niは0.1%以上とする。Cu、Niは本発明に重要な元素である。C、Mn等の焼き入れ性向上元素を多量に添加せずにMAを生成させるためには、未変態オーステナイトを安定化させる元素であるCu+Niを0.1%以上添加する必要である。更に、より安定的にMAを生成させるために、0.3%以上の添加が好ましい。
Cu + Ni
Cu + Ni is 0.1% or more. Cu and Ni are important elements in the present invention. In order to produce MA without adding a large amount of a hardenability improving element such as C and Mn, it is necessary to add 0.1% or more of Cu + Ni which is an element that stabilizes untransformed austenite. Furthermore, in order to produce MA more stably, addition of 0.3% or more is preferable.

Ti
Tiは0.005〜0.04%とする。TiはTiNをピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させる重要な元素である。その効果は、0.005%以上添加で発現する。
Ti
Ti is 0.005 to 0.04%. Ti is an important element that suppresses austenite coarsening during slab heating and improves the toughness of the base metal due to the pinning effect of TiN. The effect is manifested by adding 0.005% or more.

しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。溶接熱影響部靭性の観点から、Ti含有量を0.005%以上、0.02%未満とすることが好ましい。   However, since addition exceeding 0.04% causes deterioration of the weld heat affected zone toughness, the Ti content is specified to be 0.005 to 0.04%. From the viewpoint of weld heat affected zone toughness, the Ti content is preferably 0.005% or more and less than 0.02%.

Nb
Nbは0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させ、さらに固溶Nbの焼き入れ性向上により強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。
Nb
Nb is set to 0.005 to 0.07%. Nb is an element that improves toughness by refining the structure and contributes to an increase in strength by improving the hardenability of solid solution Nb. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.

Al
Alは0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。好ましくは、0.01〜0.08%とする。
Al
Al is made 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Preferably, the content is 0.01 to 0.08%.


Nは好ましくは0.007%以下とする。Nは不可避的不純物として扱うが、0.007%を超えると、溶接熱影響部靭性が劣化するため、好ましくは0.007%以下とする。
N
N is preferably 0.007% or less. N is treated as an unavoidable impurity, but if over 0.007%, the weld heat affected zone toughness deteriorates, so the content is preferably made 0.007% or less.

さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来るため、好ましくはTi/Nを2〜8、さらに好ましくは2〜5とする。   Furthermore, by optimizing Ti / N, which is the ratio of Ti amount to N amount, the austenite coarsening of the weld heat affected zone can be suppressed by TiN particles, and good weld heat affected zone toughness can be obtained. Therefore, Ti / N is preferably 2 to 8, and more preferably 2 to 5.

以上が本発明の基本成分であるが、鋼板の強度・靱性をさらに改善し、且つ焼入れ性を向上させMAの生成を促す目的で、以下に示すV、Cr、B、Caの1種又は2種以上を含有してもよい。   The above is the basic component of the present invention. For the purpose of further improving the strength and toughness of the steel sheet and improving the hardenability and promoting the formation of MA, one or two of V, Cr, B, and Ca shown below are used. It may contain seeds or more.


Vは0.005〜0.1%とする。焼き入れ性を高め、強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、添加する場合は、V含有量は0.005〜0.1%に規定する。
V
V is set to 0.005 to 0.1%. It is an element that enhances hardenability and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates. Therefore, when added, the V content is specified to be 0.005 to 0.1%. .

Cr
Crは0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
Cr
Cr is 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. In order to acquire the effect, it is preferable to add 0.1% or more. However, if it is added in a large amount, weldability deteriorates.


Bは0.005%以下とする。Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
B
B is 0.005% or less. B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.

Ca
Caは0.0005〜0.003%とする。Caは硫化物系介在物の形態を制御して靭性を改善する。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合には0.0005〜0.003%とする。
Ca
Ca is 0.0005 to 0.003%. Ca improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. And

上記以外の残部はFe及び不可避的不純物で不可避不純物には、Mg、REMをそれぞれ、0.02%以下添加しても良い。   The remainder other than the above is Fe and inevitable impurities, and Mg and REM may be added to the inevitable impurities in an amount of 0.02% or less.

次に、本発明の高強度鋼板の製造方法について説明する。
[製造条件]
説明において、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(500〜650℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。
Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
[Production conditions]
In the description, temperatures such as heating temperature, rolling end temperature, cooling end temperature, and reheating temperature are the average temperatures of the steel plates. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling end temperature (500 to 650 ° C.) by the time required for the cooling after the hot rolling is completed.

また、昇温速度は、冷却後、再加熱温度(550〜750℃)の温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。   The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (550 to 750 ° C.) by the time required for reheating after cooling. Hereinafter, each manufacturing condition will be described in detail.

加熱温度
加熱温度は1000〜1300℃とする。加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。
Heating temperature Heating temperature shall be 1000-1300 degreeC. If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the base material toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.

圧延終了温度
圧延終了温度はAr温度以上とする。圧延終了温度がAr温度以下であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr温度以上とする。
Rolling end temperature The rolling end temperature is Ar 3 temperature or higher. If the rolling end temperature is not more than Ar 3 temperature, the subsequent ferrite transformation rate is lowered, so that the concentration of C into untransformed austenite at the time of reheating becomes insufficient and MA is not generated. Therefore, the rolling end temperature is set to Ar 3 temperature or higher.

熱間圧延後の冷却条件
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、ベイナイトによる強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。
Cooling conditions after hot rolling Immediately after the rolling, cooling is performed at a cooling rate of 5 ° C / s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, so that strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more.

このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。   About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process. In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.

また、冷却開始温度がAr温度以下となりフェライトが生成すると、強度低下が起こり、且つMAの生成も起こらないため、冷却開始温度をAr温度以上とする。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。 Further, when the cooling start temperature becomes Ar 3 temperature or lower and ferrite is generated, the strength is lowered and MA is not generated, so the cooling start temperature is set to Ar 3 temperature or higher. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.

本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。   In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.

冷却停止温度は500〜650℃とする。本プロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。   Cooling stop temperature shall be 500-650 degreeC. This process is an important production condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling.

すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。650℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を450〜650℃に規定する。MA生成の観点からは、好ましくは530〜650℃である。   That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 500 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved. If it exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling, and MA is not generated, so the accelerated cooling stop temperature is defined as 450 to 650 ° C. From a viewpoint of MA production | generation, Preferably it is 530-650 degreeC.

加速冷却後の熱処理条件
加速冷却停止後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。本プロセスも本発明において重要な製造条件である。再加熱時の未変態オーステナイトからフェライト変態と、それに伴う未変態オーステナイトへのCの排出により、再加熱後の空冷時にCが濃化した未変態オーステナイトがMAへと変態する。
Heat treatment conditions after accelerated cooling Immediately after the accelerated cooling is stopped, reheating is performed to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more. This process is also an important production condition in the present invention. Due to the ferrite transformation from the untransformed austenite at the time of reheating and the accompanying discharge of C to the untransformed austenite, the untransformed austenite enriched with C during the air cooling after the reheating transforms to MA.

MAを得るためには、加速冷却後Bf点以上の温度から550〜750℃の温度域まで再加熱する必要がある。   In order to obtain MA, it is necessary to reheat from the temperature above the Bf point to a temperature range of 550 to 750 ° C. after accelerated cooling.

昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるためMAが得られず、十分な低降伏比を得ることができない。   If the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency deteriorates, and pearlite transformation occurs, so MA cannot be obtained, and a sufficiently low yield ratio. Can't get.

再加熱温度が550℃未満ではフェライト変態が十分起こらずCの未変態オーステナイトへの排出が不十分となり、MAが生成せず低降伏比化が達成できない。750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱の温度域を550〜750℃に規定する。   If the reheating temperature is less than 550 ° C., ferrite transformation does not occur sufficiently and C is not sufficiently discharged into untransformed austenite, MA is not generated, and a low yield ratio cannot be achieved. If the temperature exceeds 750 ° C., sufficient strength cannot be obtained due to softening of bainite, so the temperature range of reheating is specified to be 550 to 750 ° C.

本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点以上とする必要がある。   In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be higher than the Bf point.

確実にフェライト変態させるCを未変態オーステナイトへ濃化させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。   In order to reliably concentrate C that undergoes ferrite transformation into untransformed austenite, it is desirable to raise the temperature by 50 ° C. or more from the reheating start temperature. There is no need to set the temperature holding time at the reheating temperature.

本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分なMAが得られるため低降伏比化、高一様伸び化が達成できる。しかし、よりCの拡散を促進させMA体積分率を確保するために、30分以内の温度保持を行うことができる。   If the production method of the present invention is used, even if it is cooled immediately after reheating, sufficient MA can be obtained, so a low yield ratio and a high uniform elongation can be achieved. However, in order to further promote the diffusion of C and secure the MA volume fraction, the temperature can be maintained within 30 minutes.

30分を超えて温度保持を行うと、ベイナイト相の転位の回復が起こり強度が低下する場合がある。また、再加熱後の冷却速度は基本的には空冷とすることが好ましい。   If the temperature is maintained for more than 30 minutes, dislocation recovery of the bainite phase occurs and the strength may decrease. The cooling rate after reheating is preferably basically air cooling.

加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet.

表1に示す化学成分の鋼(鋼種A〜K)を連続鋳造法によりスラブとし、板厚18、26mmの厚鋼板(No.1〜16)を製造した。   Steels (steel types A to K) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 16) having a thickness of 18 and 26 mm were manufactured.

Figure 0005092498
Figure 0005092498

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。   After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment.

各鋼板(No.1〜16)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   Table 2 shows the production conditions of each steel plate (No. 1 to 16). The heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were the average temperature of the steel sheet. The average temperature was determined from the surface temperature of the slab or steel plate by parameters and calculations such as plate thickness and thermal conductivity.

また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度(350〜700℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で除した平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度(570〜660℃)までの再加熱に必要な温度差を再加熱するのに要した時間で除した平均昇温速度である。   The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature (350 to 700 ° C.) by the time required for the cooling after the hot rolling is completed. The reheating rate (temperature increase rate) is the average temperature increase rate divided by the time required to reheat the temperature difference required for reheating to the reheating temperature (570 to 660 ° C.) after cooling. is there.

以上のようにして製造した鋼板の引張特性を測定した。測定結果を表2に併せて示す。引張強度は、圧延垂直方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。   The tensile properties of the steel sheet produced as described above were measured. The measurement results are also shown in Table 2. Tensile strength was evaluated by taking two full thickness tensile test pieces in the vertical direction of rolling, conducting a tensile test, and evaluating the average value.

引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向の全厚丸棒引張試験片を2本採取し、引張試験を行い、その平均値で評価した。降伏比80%以下、一様伸び12%以上を本発明に必要な降伏比とした。   The tensile strength of 517 MPa or more (API 5L X60 or more) was determined as the strength required for the present invention. Yield ratio and uniform elongation were evaluated by taking two tensile test pieces of full thickness round bars in the rolling direction, conducting a tensile test, and measuring the average value. The yield ratio required for the present invention was a yield ratio of 80% or less and a uniform elongation of 12% or more.

母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−10℃での吸収エネルギーを測定し、その平均値を求めた。−10℃での吸収エネルギーが200J以上のものを良好とした。   For base metal toughness, three full-size Charpy V-notch test pieces in the vertical direction of rolling were sampled, Charpy test was performed, the absorbed energy at −10 ° C. was measured, and the average value was obtained. The absorption energy at −10 ° C. was determined to be 200 J or more.

また、残留オーステナイト量は、X線回折により定量化し、2%以上を良好とした。   The amount of retained austenite was quantified by X-ray diffraction, and 2% or more was considered good.

溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を3本採取し、シャルピー試験を行った。そして、−10℃での吸収エネルギーを測定し、その平均値を求めた。−10℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。   For the weld heat affected zone (HAZ) toughness, three specimens with a thermal history corresponding to a heat input of 40 kJ / cm were collected by a reproducible thermal cycle apparatus and subjected to a Charpy test. And the absorbed energy in -10 degreeC was measured and the average value was calculated | required. Those having Charpy absorbed energy at −10 ° C. of 100 J or more were considered good.

Figure 0005092498
Figure 0005092498

表2において、本発明例であるNo.1〜8はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度517MPa以上の高強度で降伏比80%以下、一様伸び10%以上の低降伏比、高一様伸びであり、母材ならびに溶接熱影響部の靭性は良好であった。   In Table 2, all of Nos. 1 to 8 which are examples of the present invention have chemical components and production methods within the scope of the present invention, high strength of tensile strength of 517 MPa or more, yield ratio of 80% or less, uniform elongation of 10 % Yield ratio and high uniform elongation, and the toughness of the base metal and the weld heat affected zone was good.

また、鋼板の組織はフェライト、ベイナイトの2相組織に島状マルテンサイトが生成した組織であり、島状マルテンサイトの体積分率は3〜20%の範囲内、残留オーステナイト量は体積分率2%以上であった。なお、島状マルテンサイトの体積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。   The structure of the steel sheet is a structure in which island martensite is formed in a two-phase structure of ferrite and bainite. The volume fraction of island martensite is in the range of 3 to 20%, and the amount of retained austenite is 2 in volume fraction. % Or more. In addition, the volume fraction of island martensite was calculated | required by image processing from the microstructure observed with the scanning electron microscope (SEM).

No.9〜12は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織がフェライト、ベイナイトであり、降伏比、一様伸びが不十分か十分な強度が得られなかった。No.14〜18は化学成分が本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、一様伸びが低いか、靭性が劣っていた。   In Nos. 9 to 12, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, so the structure is ferrite and bainite, and the yield ratio and uniform elongation are insufficient or sufficient. A sufficient strength could not be obtained. Nos. 14 to 18 had chemical components outside the scope of the present invention, so that sufficient strength could not be obtained, yield ratio was high, uniform elongation was low, or toughness was inferior.

Claims (3)

質量%で、C:0.03〜0.08%、Si:0.01〜0.5%、Mn:1.2〜1.61%、Mo:0.05〜0.4%、Cu+Ni:0.3〜0.67%、Ti:0.005〜0.04%、Nb:0.005〜0.07%、Al:0.08%以下を含有し、残部Fe及び不可避的不純物、金属組織がフェライトとベイナイトと島状マルテンサイトの3相組織であり、体積分率が3〜15%の島状マルテンサイトと体積分率が2%以上の残留オーステナイトを含む組織で、長手方向の一様伸びが12%以上であることを特徴とする低降伏比高強度高靱性鋼板。 By mass%, C: 0.03~0.08%, Si : 0.01~0.5%, Mn: 1.2~ 1.61%, Mo: 0.05~0.4%, Cu + Ni: 0.3 to 0.67 %, Ti: 0.005 to 0.04 %, Nb: 0.005 to 0.07 %, Al: 0.08% or less, the remainder Fe and inevitable impurities, metal The structure is a three-phase structure of ferrite, bainite, and island martensite, which includes island martensite with a volume fraction of 3 to 15% and residual austenite with a volume fraction of 2% or more. A low yield ratio, high strength, high toughness steel sheet having a uniform elongation of 12% or more. 更に、鋼組成が、質量%で、V:0.005〜0.1%、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の低降伏比高強度高靱性鋼板。   Further, the steel composition is in mass%, V: 0.005 to 0.1%, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005% or less. The low yield ratio high strength high toughness steel sheet according to claim 1, comprising one or more selected. 請求項1または請求項2のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行うことを特徴とする、低降伏比高強度高靱性鋼板の製造方法。 The steel having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1300 ° C and hot-rolled at a rolling end temperature of Ar 3 temperature or higher, and then 5 ° C / s or higher. Accelerated cooling to 500 to 650 ° C. at a cooling rate of 5 ° C., and then immediately reheating to 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more, low yield ratio high strength high toughness A method of manufacturing a steel sheet.
JP2007091789A 2007-03-30 2007-03-30 Low yield ratio high strength high toughness steel sheet and method for producing the same Active JP5092498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091789A JP5092498B2 (en) 2007-03-30 2007-03-30 Low yield ratio high strength high toughness steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091789A JP5092498B2 (en) 2007-03-30 2007-03-30 Low yield ratio high strength high toughness steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008248328A JP2008248328A (en) 2008-10-16
JP5092498B2 true JP5092498B2 (en) 2012-12-05

Family

ID=39973619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091789A Active JP5092498B2 (en) 2007-03-30 2007-03-30 Low yield ratio high strength high toughness steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5092498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696846B2 (en) 2005-01-11 2014-04-15 Yokohama Rubber Co., Ltd. Method of manufacturing a pneumatic tire

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853575B2 (en) 2009-02-06 2012-01-11 Jfeスチール株式会社 High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5390922B2 (en) * 2009-04-20 2014-01-15 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
US8778096B2 (en) * 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
KR101450977B1 (en) * 2009-09-30 2014-10-15 제이에프이 스틸 가부시키가이샤 Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
JP6064320B2 (en) * 2012-01-04 2017-01-25 Jfeスチール株式会社 Low yield ratio high strength steel plate with excellent ductile fracture resistance
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5516785B2 (en) 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516784B2 (en) 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
CN107881421B (en) * 2016-09-29 2019-09-03 宝钢湛江钢铁有限公司 550MPa grades of high temperature resistants and the pipe line steel and its manufacturing method for having good low temperature arrest toughness
CN112647014B (en) * 2020-11-23 2022-03-22 首钢集团有限公司 A kind of building structural steel suitable for marine atmospheric environment and its production method
CN115572896A (en) * 2022-09-13 2023-01-06 武安市裕华钢铁有限公司 High-toughness and high-corrosion-resistance pipeline steel and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419695B2 (en) * 2003-06-12 2010-02-24 Jfeスチール株式会社 Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412098B2 (en) * 2003-07-31 2010-02-10 Jfeスチール株式会社 Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4882251B2 (en) * 2005-03-22 2012-02-22 Jfeスチール株式会社 Manufacturing method of high strength and tough steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696846B2 (en) 2005-01-11 2014-04-15 Yokohama Rubber Co., Ltd. Method of manufacturing a pneumatic tire

Also Published As

Publication number Publication date
JP2008248328A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516785B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
KR101044161B1 (en) High strength, high toughness hot rolled steel sheet and welded steel pipe
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4507747B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507746B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP5842577B2 (en) High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250