JP5083964B2 - Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus - Google Patents
Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus Download PDFInfo
- Publication number
- JP5083964B2 JP5083964B2 JP2007337766A JP2007337766A JP5083964B2 JP 5083964 B2 JP5083964 B2 JP 5083964B2 JP 2007337766 A JP2007337766 A JP 2007337766A JP 2007337766 A JP2007337766 A JP 2007337766A JP 5083964 B2 JP5083964 B2 JP 5083964B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation detector
- thallium
- crystal
- thallium halide
- tlbr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims description 66
- 238000002591 computed tomography Methods 0.000 title claims description 4
- 238000003325 tomography Methods 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims description 46
- 229910052716 thallium Inorganic materials 0.000 claims description 45
- -1 thallium halide Chemical class 0.000 claims description 45
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical group [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000002600 positron emission tomography Methods 0.000 claims description 2
- 230000010287 polarization Effects 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 229910004613 CdTe Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
- Nuclear Medicine (AREA)
Description
本発明は、陽電子断層画像診断装置(PET)、単光子放射線コンピュータ断層撮影装置(SPECT)等に用いられる臭化タリウム等のタリウムハロゲン化物放射線検出器及びこれを備えたPETあるいはSPECTに関する。 The present invention relates to a thallium halide radiation detector such as thallium bromide used in a positron tomography diagnostic apparatus (PET), a single photon radiation computed tomography apparatus (SPECT), and the like, and a PET or SPECT equipped with the same.
PET等における高性能タイプの検出部には、CdTe結晶を用いた放射線検出器が使用されている。ところがCdTe結晶は、共有結合結晶であり、融点が高く、また作製費が高いという問題点がある。例えば装置1台当たりの結晶のみの価格が数億円と高価になっている。
このためCdTeに代わるものとしてTlBr等のタリウムハロゲン化物が注目されている。
例えばTlBrは、その高い原子番号(Tl: 81、Br: 35)及び高密度(7.56g/cm3)、広いギャップ・エネルギー(2.68eV)及び高い光子阻止能により室温放射線検出器の素材として魅力的な半導体である。
A radiation detector using a CdTe crystal is used for a high-performance type detector in PET or the like. However, the CdTe crystal is a covalent crystal, has a high melting point and a high production cost. For example, the price of only crystals per device is as high as several hundred million yen.
For this reason, thallium halides such as TlBr have attracted attention as an alternative to CdTe.
For example, TlBr is attractive as a material for room temperature radiation detectors due to its high atomic number (Tl: 81, Br: 35) and high density (7.56g / cm3), wide gap energy (2.68eV) and high photon stopping power Is a good semiconductor.
TlBr結晶を用いた従来の臭化タリウム放射線検出器の構造模式図を図6に示す。TlBr結晶の対向する面にAu電極が形成されている。そしてAu電極間には、バイアス電圧が印加されており、TlBr結晶にガンマ線が入射するとこれにより電子が生成され、これが前置増幅器の出力信号として検出される。 FIG. 6 shows a structural schematic diagram of a conventional thallium bromide radiation detector using a TlBr crystal. Au electrodes are formed on opposing surfaces of the TlBr crystal. A bias voltage is applied between the Au electrodes. When gamma rays are incident on the TlBr crystal, electrons are generated thereby and detected as an output signal of the preamplifier.
臭化タリウム放射線検出器は、CdTe放射線検出器に比べて次のような点で優れている。
(1)臭化タリウムは、イオン結合結晶であり、融点が低く、安価に作製できる。このためTlBr結晶は、CdTe結晶と比較し、100分の1程度の値段で作製できる。
(2)TlBr結晶はCdTe結晶よりもガンマ線を止める能力が高く、CdTeの半分程度の大きさで同程度の効果が発揮できる。このため検出器を薄くすることができる。
The thallium bromide radiation detector is superior to the CdTe radiation detector in the following points.
(1) Thallium bromide is an ion-bonded crystal, has a low melting point, and can be produced at low cost. For this reason, the TlBr crystal can be manufactured at a price about 1/100 compared with the CdTe crystal.
(2) The TlBr crystal has a higher ability to stop gamma rays than the CdTe crystal, and can exhibit the same effect at about half the size of CdTe. For this reason, a detector can be made thin.
ところが臭化タリウム等のタリウムハロゲン化物放射線検出器には、次のような重大な問題がある。
これは、臭化タリウム等のタリウムハロゲン化物放射線検出器にバイアス電圧を印加した後、しばらく経つとその検出能力が無くなるというものである(非特許文献1参照)。この理由としては、TlBr結晶中の伝導イオンが検出器の中で分極現象を引き起こすためと考えられている(非特許文献2参照)。
However, thallium halide radiation detectors such as thallium bromide have the following serious problems.
This is because the detection capability disappears after a while after a bias voltage is applied to a thallium halide radiation detector such as thallium bromide (see Non-Patent Document 1). The reason is considered to be that conduction ions in the TlBr crystal cause a polarization phenomenon in the detector (see Non-Patent Document 2).
すなわちTlBr等のタリウムハロゲン化物結晶の対向する面にAu電極が形成された臭化タリウム等のタリウムハロゲン化物放射線検出器では、電極間に電圧をかけると、伝導イオンであるBr−イオンが陽極に移動し、陽極にはBr−イオンが、陰極には結果としてTl+イオンが集積する。これらのイオンを中和する反応速度が集積速度より遅いので、この結果通常の臭化タリウム放射線では分極が生じることになる。 That is, in a thallium halide radiation detector such as thallium bromide in which an Au electrode is formed on the opposite surface of a thallium halide crystal such as TlBr, when a voltage is applied between the electrodes, the Br- ion which is a conductive ion is applied to the anode. As a result, Br− ions accumulate on the anode and Tl + ions accumulate on the cathode as a result. This results in polarization with normal thallium bromide radiation because the reaction rate neutralizing these ions is slower than the rate of accumulation.
CdTe結晶も同様に分極の問題があるが、一度装置をシャットダウンすると分極が解消される。これに対し臭化タリウム等のタリウムハロゲン化物では金属イオンが動いてしまうため、シャットダウンしても分極が解消されない。このためTlBr結晶自体の寿命が4時間程度しかなく実用化には至っていなかった。なおこの分極現象を防ぐ唯一の方法として、−20℃の下で例えばTlBr結晶を使用することが知られているが、常時検出器を冷却しておく必要があり実用的ではない。
本発明はTlBr等のタリウムハロゲン化物結晶における分極現象を防止し、安価で寿命が長いタリウムハロゲン化物放射線検出器を提供することを課題とするものである。 It is an object of the present invention to provide a thallium halide radiation detector that prevents a polarization phenomenon in a thallium halide crystal such as TlBr and that is inexpensive and has a long lifetime.
上記の課題を解決するために本発明は、次のような放射線検出器及びこれを備えた装置を提供するものである。
(1)タリウムハロゲン化物結晶の対向する2つの面にTl電極を有するタリウムハロゲン化物放射線検出器。
(2)対向する2つの面にTl電極を有するタリウムハロゲン化物結晶を、2枚重ね合わせ、外側の2枚のTl電極を導通して一方の電極とし、内側の重ね合わさった2枚のTl電極をもう一方の電極とすることを特徴とするタリウムハロゲン化物放射線検出器。
(3)上記Tl電極上にTlと反応しにくく導電性の良い金属の電極がさらに設けられた(1)又は(2)に記載のタリウムハロゲン化物放射線検出器。
(4)上記金属の電極は、Au電極であることを特徴とする(3)に記載のタリウムハロゲン化物放射線検出器。
(5)タリウムハロゲン化物結晶に印加する電圧の極性を変えて使用することを特徴とする(1)乃至(4)のいずれかに記載のタリウムハロゲン化物放射線検出器。
(6)上記タリウムハロゲン化物は、臭化タリウムであることを特徴とする(1)乃至(5)のいずれかに記載のタリウムハロゲン化物放射線検出器。
(7)(1)乃至(6)のいずれかに記載のタリウムハロゲン化物放射線検出器を備えた陽電子断層撮影装置。
(8)(1)乃至(6)のいずれかに記載のタリウムハロゲン化物放射線検出器を備えた単光子放射線コンピュータ断層撮影装置。
なお本発明においてタリウムハロゲン化物は、TlCl、TlBr、TlI又はこれらの混晶を指す。
In order to solve the above-mentioned problems, the present invention provides the following radiation detector and an apparatus including the same.
(1) A thallium halide radiation detector having Tl electrodes on two opposing faces of a thallium halide crystal.
(2) a thallium halide crystal having Tl electrode on opposing two surfaces, superimposed two, as one electrode conducting a two Tl electrode of the outer, inner the superimposed two Tl electrode thallium halide radiation detector, characterized in that the the other electrode.
(3) The thallium halide radiation detector according to (1) or (2), wherein an electrode made of a metal having a good conductivity that hardly reacts with Tl is further provided on the Tl electrode.
(4) The thallium halide radiation detector according to (3), wherein the metal electrode is an Au electrode.
(5) The thallium halide radiation detector according to any one of (1) to (4), wherein the voltage applied to the thallium halide crystal is changed in polarity.
(6) The thallium halide radiation detector according to any one of (1) to (5), wherein the thallium halide is thallium bromide.
(7) A positron emission tomography apparatus comprising the thallium halide radiation detector according to any one of (1) to (6).
(8) A single photon radiation computed tomography apparatus comprising the thallium halide radiation detector according to any one of (1) to (6).
In the present invention, thallium halide refers to TlCl, TlBr, TlI or a mixed crystal thereof.
本発明によれば、TlBr等のタリウムハロゲン化物結晶中の伝導イオンが検出器の中で分極現象を引き起こすことがないため、安価で寿命が長いタリウムハロゲン化物放射線検出器が得られる。 According to the present invention, since a conduction ion in a thallium halide crystal such as TlBr does not cause a polarization phenomenon in the detector, a thallium halide radiation detector having a low cost and a long lifetime can be obtained.
本発明は、TlBr結晶等のタリウムハロゲン化物結晶の対向する面にTl膜を蒸着することにより、タリウムハロゲン化物結晶中のTlイオン及びハロゲンイオンがそれぞれTlメタルとタリウムハロゲン化物に変化するため、分極が発生しないという知見に基づくものである。 In the present invention, Tl ions and halogen ions in a thallium halide crystal are changed to Tl metal and thallium halide, respectively, by depositing a Tl film on the opposing surface of a thallium halide crystal such as a TlBr crystal. This is based on the knowledge that no occurrence occurs.
タリウムハロゲン化物結晶であるTlBr結晶についていうと、TlBr結晶の対向する両面を蒸着等によってTlの薄層を形成し、電極とすると、陰極においては、Tl+イオンは電子と一緒になり、Tl金属となる。陽極においては、Br−イオンがTlと結合してTlBrとなり、電子が生成される。この反応によって生成されるTl金属、TlBrはイオンではなく、電荷を持たない。したがって、Tl電極付きTlBr検出器中では、イオンが集積しても直後に中性化され、分極を起こさないというものである。 As for the TlBr crystal, which is a thallium halide crystal, a thin Tl layer is formed by vapor deposition or the like on both opposing surfaces of the TlBr crystal, and at the cathode, Tl + ions are combined with electrons at the cathode. Become. At the anode, Br− ions combine with Tl to become TlBr, and electrons are generated. The Tl metal produced by this reaction, TlBr, is not an ion and has no charge. Therefore, in the TlBr detector with a Tl electrode, even if ions are accumulated, they are neutralized immediately and do not cause polarization.
以下本発明に係るタリウムハロゲン化物放射線検出器について、臭化タリウム放射線検出器を例示して、詳細に説明する。
図1は、本発明の原理を説明する構造模式図である。基本的な構成は、図6に示す従来の臭化タリウム放射線検出器と同様であるが、TlBr結晶の対向する面にTl電極が形成されている。
また図2は、本発明の臭化タリウム放射線検出器と図6に示す従来の臭化タリウム放射線検出器との特性比較のため、Tl電極上にAu電極をさらに設けたものである。
Hereinafter, the thallium halide radiation detector according to the present invention will be described in detail with reference to a thallium bromide radiation detector.
FIG. 1 is a structural schematic diagram for explaining the principle of the present invention. The basic configuration is the same as that of the conventional thallium bromide radiation detector shown in FIG. 6, except that Tl electrodes are formed on opposing surfaces of the TlBr crystal.
FIG. 2 is a graph in which an Au electrode is further provided on the Tl electrode for comparison of characteristics between the thallium bromide radiation detector of the present invention and the conventional thallium bromide radiation detector shown in FIG.
放射線検出器に用いるTlBr結晶は、99.999%の市販のTlBrパウダーをゾーン精製法によって作製した。TlBr結晶をワイヤーソーで厚さ約1mmのウエハーに切断した後、ウエハーの表面をエメリー・シート(#800)で磨き、厚さを約0.6mmとした。次に直径3mmのTl、Au電極を蒸着によって形成した。電極と外部回路との接続はバネ接点によって行った。 The TlBr crystal used for the radiation detector was produced by zone purification of 99.999% of commercially available TlBr powder. After cutting the TlBr crystal into a wafer having a thickness of about 1 mm with a wire saw, the surface of the wafer was polished with an emery sheet (# 800) to a thickness of about 0.6 mm. Next, a Tl, Au electrode having a diameter of 3 mm was formed by vapor deposition. The connection between the electrode and the external circuit was made by a spring contact.
スペクトルの計測は、標準エレクトロニクス・システム(電荷敏感型プリアンプ(クリアーパルス580K)、シェーピングアンプ(Aptec 6300、シェーピングタイム14μ秒及びマルチ・チャンネル波高分析器)を用いて行った。放射線検出器の長期間安定性を評価するために、室温で30時間、22Na線源を測定した。TlBr結晶のバイアス電圧は、−200Vとして行った。 Spectral measurements were made using a standard electronics system (charge sensitive preamplifier (clear pulse 580K), shaping amplifier (Aptec 6300, shaping time 14μs and multi-channel wave height analyzer). In order to evaluate the stability, a 22 Na radiation source was measured at room temperature for 30 hours, and the bias voltage of the TlBr crystal was set to -200V.
図3は、バイアス電圧の印加後の0時間及び30時間での、図6に示す従来の放射線検出器(Au/TlBr/Au放射線検出器)で得られた22Naスペクトルを示す。
図3から分かるように、分極現象によるエネルギー分解能の低下が30時間後のスペクトルに観察された。これは、図6で示した従来の放射線検出器は、30時間後では検出器として使えないことが分かる。
FIG. 3 shows 22 Na spectra obtained with the conventional radiation detector (Au / TlBr / Au radiation detector) shown in FIG. 6 at 0 and 30 hours after application of the bias voltage.
As can be seen from FIG. 3, a decrease in energy resolution due to the polarization phenomenon was observed in the spectrum after 30 hours. This shows that the conventional radiation detector shown in FIG. 6 cannot be used as a detector after 30 hours.
次に図2に示す放射線検出器(Au/Tl/TlBr/Tl/Au放射線検出器)で得られたスペクトルを図4に示す。図4から分かるように、本発明に係る放射線検出器では、電圧印加後30時間経っても、スペクトルは変わらず、分極現象が起きていないことが分かる。 Next, the spectrum obtained by the radiation detector (Au / Tl / TlBr / Tl / Au radiation detector) shown in FIG. 2 is shown in FIG. As can be seen from FIG. 4, in the radiation detector according to the present invention, the spectrum does not change and no polarization phenomenon occurs even after 30 hours from the voltage application.
なお本発明ではTl膜を蒸着することにより、Tlイオン及びBrイオンがそれぞれTlメタルとTlBrに変化するため、分極が発生しないが、Tl膜が薄くなる現象が発生する。すなわち検出器に電圧を印加することによって、陰極ではTl金属、陽極ではTlBr結晶が生成され、その結果陰極のTl層は厚くなり、陽極のTl層は薄くなる。
しかし、Tl金属及びTlBr結晶の生成反応は、可逆反応であるので、TlBr結晶に印加する電圧の極性を変えて、使用時間を同じにすることによって、元に戻すことができる。これによって、Tl電極を有する臭化タリウム放射線検出器を恒久的に使用することができる。
In the present invention, when a Tl film is deposited, Tl ions and Br ions are changed to Tl metal and TlBr, respectively, so that polarization does not occur but a phenomenon that the Tl film becomes thin occurs. That is, by applying a voltage to the detector, a Tl metal is produced at the cathode and a TlBr crystal at the anode, resulting in a thicker Tl layer at the cathode and a thinner Tl layer at the anode.
However, since the formation reaction of the Tl metal and the TlBr crystal is a reversible reaction, it can be restored by changing the polarity of the voltage applied to the TlBr crystal to make the usage time the same. This makes it possible to permanently use a thallium bromide radiation detector with a Tl electrode.
以上従来の臭化タリウム放射線検出器との比較のため、Tl膜上にAu電極を形成した臭化タリウム放射線検出器を例示したが、Tl膜上にはTlと反応しにくく導電性の良い金属を形成することが望ましい。特にAlを蒸着することによって、非常に酸素と反応し易いTlの酸化を防ぐことができる。またTl膜上に複数の金属を多層に形成してもよい。 For comparison with the conventional thallium bromide radiation detector, the thallium bromide radiation detector in which the Au electrode is formed on the Tl film is exemplified. However, the Tl film does not easily react with Tl and has good conductivity. It is desirable to form. In particular, by depositing Al, it is possible to prevent oxidation of Tl which is very easy to react with oxygen. A plurality of metals may be formed in multiple layers on the Tl film.
次に本発明に係る臭化タリウム放射線検出器のPETへの適用について説明する。
PET用検出器としては、同時計数の時間分解能が数十ナノ秒でなければならない。このためTlBr結晶の電極間を薄くして高時間分解能を得る必要がある。
ところが結晶が薄くなると、ガンマ線を検出できる体積が減る。そこで、図5に示すように、2枚のTlBr結晶を重ね合わせ、対向する2表面を導通して一方の電極とし、重ね合わさった中間層をもう一方の電極にすることによって、厚みを2倍にした放射線検出器とする。この薄片2層の構造によってPETに使用できる時間分解能として数十ナノ秒を確保し、且つ検出感度も確保できた。
Next, application of the thallium bromide radiation detector according to the present invention to PET will be described.
As a detector for PET, the time resolution of coincidence must be several tens of nanoseconds. For this reason, it is necessary to obtain a high time resolution by thinning the gap between the electrodes of the TlBr crystal.
However, as the crystal becomes thinner, the volume in which gamma rays can be detected decreases. Therefore, as shown in FIG. 5, two TlBr crystals are superposed, the two opposing surfaces are conducted to make one electrode, and the overlapped intermediate layer is made the other electrode, so that the thickness is doubled. A radiation detector is used. This two-layer structure of the flakes ensured several tens of nanoseconds as the time resolution that can be used for PET and also secured the detection sensitivity.
さらに検出器のサイズを1mm角で長さ1〜2mmのものを薄い絶縁板(セラミック樹脂板)に並べ、それをさらに重ね、各放射線検出器からの信号をASIC増幅器に繋げることにより、高空間分解能で高感度の高いPET用ガンマ線3次元検出器ブロックを実現することができる。 Furthermore, by arranging detectors with a size of 1 mm square and a length of 1 to 2 mm on a thin insulating plate (ceramic resin plate), and further stacking them, the signals from each radiation detector are connected to an ASIC amplifier, thereby increasing the space. A PET gamma ray three-dimensional detector block with high resolution and high sensitivity can be realized.
以上本発明に係る臭化タリウム放射線検出器について、PET用の放射線検出器への適用について説明したが、本発明はこれに限定されずSPECTその他、放射線検出器を必要とする装置に適用することができる。
なお本発明にかかるタリウムハロゲン化物放射線検出器は、単体でも、放射線検出器として十分機能することはいうまでもないことである。
The application of the thallium bromide radiation detector according to the present invention to a radiation detector for PET has been described above. However, the present invention is not limited to this, and is applied to SPECT and other devices that require a radiation detector. Can do.
In addition, it goes without saying that the thallium halide radiation detector according to the present invention functions sufficiently as a radiation detector alone.
また臭化タリウム放射線検出器を例示して本発明を説明したが、本発明はTlBrと同様のイオン結合結晶である、TlCl、TlIを用いた放射線検出器についても適用することができる。さらにTlCl、TlI及びTlBrの混晶であってもよい。
本発明では、TlCl、TlI、TlBr及びこれらの混晶をタリウムハロゲン化物と総称する。
Although the present invention has been described with reference to a thallium bromide radiation detector, the present invention can also be applied to a radiation detector using TlCl or TlI, which is an ion-bonded crystal similar to TlBr. Further, it may be a mixed crystal of TlCl, TlI and TlBr.
In the present invention, TlCl, TlI, TlBr and mixed crystals thereof are collectively referred to as thallium halide.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007337766A JP5083964B2 (en) | 2007-12-27 | 2007-12-27 | Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007337766A JP5083964B2 (en) | 2007-12-27 | 2007-12-27 | Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009156800A JP2009156800A (en) | 2009-07-16 |
JP5083964B2 true JP5083964B2 (en) | 2012-11-28 |
Family
ID=40960963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007337766A Active JP5083964B2 (en) | 2007-12-27 | 2007-12-27 | Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5083964B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018012209A1 (en) | 2016-07-11 | 2018-01-18 | 浜松ホトニクス株式会社 | Radiation detector |
WO2022130748A1 (en) | 2020-12-14 | 2022-06-23 | 浜松ホトニクス株式会社 | Radiation detector, detector module, and radiation detector production method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4902759B2 (en) | 2010-03-10 | 2012-03-21 | 株式会社日立製作所 | Radiation measuring device and nuclear medicine diagnostic device |
JP5485197B2 (en) | 2011-02-10 | 2014-05-07 | 株式会社日立製作所 | Radiation measuring device and nuclear medicine diagnostic device |
JP5753802B2 (en) * | 2012-01-27 | 2015-07-22 | 株式会社日立製作所 | Semiconductor radiation detector and nuclear medicine diagnostic equipment |
JP2015102340A (en) * | 2013-11-21 | 2015-06-04 | 日立アロカメディカル株式会社 | Radiation detection element, radiation detector including the same, nuclear medicine diagnosis apparatus, and method for manufacturing radiation detection element |
JP6430610B2 (en) * | 2017-11-08 | 2018-11-28 | 浜松ホトニクス株式会社 | Radiation detector |
JP6970801B2 (en) * | 2018-10-31 | 2021-11-24 | 浜松ホトニクス株式会社 | Radiation detector manufacturing method |
JP6688861B1 (en) * | 2018-11-12 | 2020-04-28 | 浜松ホトニクス株式会社 | Radiation detector and manufacturing method thereof |
JP7051928B2 (en) * | 2020-04-06 | 2022-04-11 | 浜松ホトニクス株式会社 | How to manufacture a radiation detector |
WO2025053141A1 (en) * | 2023-09-04 | 2025-03-13 | 国立大学法人北海道大学 | Radiation detector and method for manufacturing same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2687122B2 (en) * | 1987-01-26 | 1997-12-08 | 株式会社ジャパンエナジー | Multilayer CdTe radiation detection element |
WO2000003266A1 (en) * | 1998-07-09 | 2000-01-20 | Mitsubishi Denki Kabushiki Kaisha | Radiation detector |
JP4264243B2 (en) * | 2002-09-30 | 2009-05-13 | 三菱重工業株式会社 | Radiation equipment |
JP3863890B2 (en) * | 2004-07-02 | 2006-12-27 | 株式会社日立製作所 | Positron emission tomography system |
JP2006080206A (en) * | 2004-09-08 | 2006-03-23 | Toshiba Corp | Radiation detector |
-
2007
- 2007-12-27 JP JP2007337766A patent/JP5083964B2/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018012209A1 (en) | 2016-07-11 | 2018-01-18 | 浜松ホトニクス株式会社 | Radiation detector |
EP3675184A1 (en) | 2016-07-11 | 2020-07-01 | Hamamatsu Photonics K.K. | Radiation detector |
US10782427B2 (en) | 2016-07-11 | 2020-09-22 | Hamamatsu Photonix K.K. | Radiation detector having an alloyed electrode |
US10859717B2 (en) | 2016-07-11 | 2020-12-08 | Hamamatsu Photonics K.K. | Radiation detector |
EP3907767A1 (en) | 2016-07-11 | 2021-11-10 | Hamamatsu Photonics K.K. | Radiation detector |
US11307315B2 (en) | 2016-07-11 | 2022-04-19 | Hamamatsu Photonics K.K. | Radiation detector |
US11555934B2 (en) | 2016-07-11 | 2023-01-17 | Hamamatsu Photonics K.K. | Radiation detector |
EP4213225A1 (en) | 2016-07-11 | 2023-07-19 | Hamamatsu Photonics K. K. | Method for manufacturing a radiation detector |
WO2022130748A1 (en) | 2020-12-14 | 2022-06-23 | 浜松ホトニクス株式会社 | Radiation detector, detector module, and radiation detector production method |
KR20230117671A (en) | 2020-12-14 | 2023-08-08 | 하마마츠 포토닉스 가부시키가이샤 | Radiation detector, detector module and radiation detector manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2009156800A (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5083964B2 (en) | Radiation detector, positron tomography apparatus equipped with the same, single photon radiation computed tomography apparatus | |
Liu et al. | Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy | |
JP6381638B2 (en) | Semiconductor scintillation detector | |
JP5419099B2 (en) | Direct conversion radiation detector and method for converting ionizing radiation directly into current | |
Hitomi et al. | Recent development of TlBr gamma-ray detectors | |
JP5155808B2 (en) | Semiconductor radiation detector and nuclear medicine diagnostic equipment | |
US6771730B1 (en) | Boron-carbide solid state neutron detector and method of using the same | |
JP5753802B2 (en) | Semiconductor radiation detector and nuclear medicine diagnostic equipment | |
US10031244B2 (en) | Detectors, system and method for detecting ionizing radiation using high energy current | |
Hitomi et al. | TlBr capacitive Frisch grid detectors | |
JP6049166B2 (en) | Semiconductor radiation detector and nuclear medicine diagnostic apparatus using the same | |
Ariño-Estrada et al. | Development of TlBr detectors for PET imaging | |
JP2687122B2 (en) | Multilayer CdTe radiation detection element | |
Chaudhari et al. | A review on BiI3 perovskites and composites for direct X-ray detection | |
TWI667491B (en) | Radiation detector | |
WO2012108277A1 (en) | Radiation measurement device and nuclear medicine diagnosis device | |
Hitomi et al. | TlBr gamma-ray spectrometers using the depth sensitive single polarity charge sensing technique | |
WO2018017909A9 (en) | Inorganic ternary halide semiconductors for hard radiation detection | |
Hou et al. | Materials innovation and electrical engineering in X-ray detection | |
WO2015076033A1 (en) | Radiation detection element, radiation detector provided with same, nuclear medicine diagnosis device and method for producing radiation detection element | |
Onodera et al. | Evaluation of Antimony Tri‐Iodide Crystals for Radiation Detectors | |
JP2003344548A (en) | Radiation detector | |
Onodera et al. | Fabrication of indium iodide X-and gamma-ray detectors | |
Kargar et al. | Design of capacitive Frisch grid TlBr detectors for radionuclide identification | |
Lintereur et al. | Iodine based compound semiconductors for room temperature gamma-ray spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120831 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5083964 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |