JP5081384B2 - Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery - Google Patents
Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery Download PDFInfo
- Publication number
- JP5081384B2 JP5081384B2 JP2005370430A JP2005370430A JP5081384B2 JP 5081384 B2 JP5081384 B2 JP 5081384B2 JP 2005370430 A JP2005370430 A JP 2005370430A JP 2005370430 A JP2005370430 A JP 2005370430A JP 5081384 B2 JP5081384 B2 JP 5081384B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- zinc alloy
- battery
- particle size
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 76
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002245 particle Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 18
- 239000007773 negative electrode material Substances 0.000 claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 8
- 238000007873 sieving Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 12
- 238000009689 gas atomisation Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 3
- -1 zinc halide Chemical class 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- Y02E60/12—
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、電池用亜鉛合金粉末の製造方法、電池用亜鉛合金粉末およびアルカリ電池に関し、とくに密閉型のアルカリ乾電池に適用して有効なものに関する。 The present invention relates to a method for producing a zinc alloy powder for a battery, a zinc alloy powder for a battery, and an alkaline battery, and particularly relates to an effective method applied to a sealed alkaline dry battery.
アルカリ乾電池等の電池では、負極材として亜鉛または亜鉛合金の粉末が主に用いられている。亜鉛は、水素過電圧が高いことや価格が比較的低廉であることから、電池の負極材として好んで用いられてきた。しかし、亜鉛だけでは電池使用時に水素ガスが発生しやすいという問題が生じる。このガス発生を抑えることができないと、電池内圧が高くなって漏液の発生原因となる。 In batteries such as alkaline batteries, zinc or zinc alloy powder is mainly used as a negative electrode material. Zinc has been favorably used as a negative electrode material for batteries because of its high hydrogen overvoltage and relatively low price. However, there is a problem that hydrogen gas is likely to be generated when the battery is used only with zinc. If this gas generation cannot be suppressed, the internal pressure of the battery will increase and cause leakage.
ガス発生を抑制するために、以前は、水銀で亜鉛をアマルガム化した汞化亜鉛が用いられていた。しかし、水銀の使用は環境問題を引き起こすため、現在では水銀を含まない負極材が使用されている。 In order to suppress gas generation, zinc halide obtained by amalgamating zinc with mercury has been used in the past. However, since the use of mercury causes environmental problems, negative electrode materials that do not contain mercury are currently used.
水銀を含まない負極材としては、たとえば、インジウム、ビスマス、アルミニウムなどを添加した亜鉛合金粉末が使用されている(特許文献1,2参照)。この亜鉛合金粉末は、水銀を使用しなくてもガス発生を抑制する効果とパルス放電性を改善する効果があるとされている。
As the negative electrode material not containing mercury, for example, zinc alloy powder to which indium, bismuth, aluminum or the like is added is used (see
電池用亜鉛合金の粉末化はガスアトマイズ法によって行われている。ガスアトマイズ法は、機械加工によらず、溶融金属を直接粉体化することができる。このガスアトマイズ法で製造された亜鉛合金粉末を篩い分けによって粒度選別(例えば20−250メッシュの粒度)したものが、電池用負極材料として使用されていた(特許文献2,3参照)。
近年、たとえばデジタルカメラように、消費電流の大きな携帯用電子機器普及して来た。これにともない、その機器で使用するアルカリ乾電池の放電性能とくに大電流放電特性と電気容量の向上に対する要求が高まっている。この場合、放電性能の向上は耐漏液性を損なわずに行う必要がある。 In recent years, portable electronic devices with large current consumption, such as digital cameras, have become widespread. Along with this, there is an increasing demand for improvement in discharge performance, particularly large current discharge characteristics and electric capacity of alkaline batteries used in the equipment. In this case, it is necessary to improve the discharge performance without impairing the leakage resistance.
負極材として亜鉛合金粉末を使用することは、ガス発生を抑制して漏液を防止するのに有効である。大電流放電特性については、その亜鉛合金粉末の粒度を細かくすることにより向上させることができる。これは、亜鉛合金粉末の粒度を細かくすることにより、反応性に関係する表面積が大きくなって負極活物質としての反応性が増すためと考えられる。しかし、反応性が増すにともない、水素ガスの発生も多くなって耐漏液性が低下してしまうという背反が生じる。 Use of zinc alloy powder as the negative electrode material is effective in suppressing gas generation and preventing leakage. The high current discharge characteristics can be improved by reducing the particle size of the zinc alloy powder. This is considered to be because by reducing the particle size of the zinc alloy powder, the surface area related to the reactivity increases and the reactivity as the negative electrode active material increases. However, as the reactivity increases, the generation of hydrogen gas increases and the leakage resistance deteriorates.
電池用亜鉛合金粉末において、ガス発生の制御に用いて有効な合金添加金属としては、アルミニウム、インジウム、ビスマスなどが知られている。アルミニウムは亜鉛と合金化することにより、合金粉末微粒子の表面を平滑化する効果があり、これにより、反応性に関係する表面積を減少させてガス発生を抑制する効果が生じる。インジウムは、合金粉末表面の水素過電圧を高めることにより、電池として保存中の腐食によるガス発生を抑制する作用がある。ビスマスは、インジウムと同様に放電前のガス発生を抑制する効果があるが、放電後のガス発生を増大させる傾向がある。上述のように、電池用亜鉛合金粉末では、その粒度状態や添加金属の種類等が電池特性や耐漏液性に大きく関与する。 In the zinc alloy powder for batteries, aluminum, indium, bismuth, and the like are known as alloy-added metals effective for controlling gas generation. Aluminum has the effect of smoothing the surface of the alloy powder fine particles by alloying with zinc, thereby reducing the surface area related to reactivity and suppressing gas generation. Indium has the effect of suppressing gas generation due to corrosion during storage as a battery by increasing the hydrogen overvoltage on the surface of the alloy powder. Bismuth, like indium, has the effect of suppressing gas generation before discharge, but tends to increase gas generation after discharge. As described above, in the zinc alloy powder for a battery, the particle size state, the kind of the additive metal, and the like are greatly involved in the battery characteristics and the leakage resistance.
ここで、本発明者は、電池用亜鉛合金粉末において、大電流放電特性と共に性能向上の要求が高い電池の電気容量について検討したところ、従来の電池用亜鉛合金粉末ではその性能向上に限界があることが判明した。 Here, the present inventor examined the electric capacity of a battery that has a high current discharge characteristic and a high demand for performance improvement in the zinc alloy powder for a battery. It has been found.
電池の電気容量を向上させるのには、活物質材料とくに負極材である亜鉛合金粉末の増量がもっとも確実で有効である。しかし、外形サイズが規格化されたアルカリ乾電池では負極材の充填容積に一定の制約があって、その増量は困難である。 In order to improve the electric capacity of the battery, an increase in the amount of the active material, particularly the zinc alloy powder as the negative electrode material, is the most reliable and effective. However, in an alkaline dry battery with a standardized outer size, there is a certain limitation on the filling volume of the negative electrode material, and it is difficult to increase the amount.
そこで、本発明者は、負極材の充填容積が制約された状況下で、その負極材の充填量を実質的に増量させるために、亜鉛合金粉末の見掛け密度を大きくすることを検討した。この見掛け密度に着目した本発明者の研究によれば、亜鉛合金粉末の見掛け密度は粉末の粒度状態に関係し、粒度分布が狭い範囲内に集中している方が見掛け密度を大きくできることが判明した。 In view of this, the present inventor examined increasing the apparent density of the zinc alloy powder in order to substantially increase the filling amount of the negative electrode material in a situation where the filling volume of the negative electrode material is restricted. According to the inventor's research focusing on this apparent density, the apparent density of the zinc alloy powder is related to the particle size state of the powder, and it is found that the apparent density can be increased if the particle size distribution is concentrated in a narrow range. did.
一方、従来のガスアトマイズ法で製造された亜鉛合金粉末は、その粉末の粒度分布範囲が広く、粒径バラツキが大きい。この亜鉛合金粉末の見掛け密度を大きくするためには、篩い分けによる粒度選別を行う必要がある。この場合、見かけ密度を有意に大きくするためには、粉末の粒度分布が狭い範囲内に集中するように、篩い分けを細かく行わなければならない。 On the other hand, the zinc alloy powder produced by the conventional gas atomization method has a wide particle size distribution range and large particle size variation. In order to increase the apparent density of the zinc alloy powder, it is necessary to perform particle size selection by sieving. In this case, in order to significantly increase the apparent density, it is necessary to finely screen the powder so that the particle size distribution of the powder is concentrated within a narrow range.
しかし、篩い分けによる粒度選別を細かく行おうとすると、工程が増えて複雑化するとともに、選別外の粉末量が増えて収率が低下し、この結果、生産性が低下してコスト高になるという問題を生じることが判明した。 However, when trying to finely select the particle size by sieving, the number of processes increases and the process becomes complicated, and the amount of powder outside the selection increases, resulting in a decrease in yield. It turned out to cause problems.
本発明は以上のような問題を解決するものであって、その目的は、生産性を低下させることなく、また電池の耐漏液性も損なわず、電池性能とくに電気容量の大幅な向上を可能にした電池用亜鉛合金粉末の製造方法、電池用亜鉛合金粉末およびアルカリ電池を提供することにある。 The present invention solves the problems as described above, and its purpose is to make it possible to significantly improve battery performance, particularly electric capacity, without reducing productivity and without impairing battery leakage resistance. The present invention provides a zinc alloy powder for a battery, a zinc alloy powder for a battery, and an alkaline battery.
本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。 Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.
本発明が提供する解決手段は以下のとおりである。 The solution provided by the present invention is as follows.
(1)アルカリ電池の負極に用いられる亜鉛合金粉末の製造方法であって、
前記亜鉛合金粉末を、メッシュを用いた篩い分けをせずに、遠心噴霧法のみで造粉することで製造し、
当該遠心噴霧法では、アルミニウム(Al)、ビスマス(Bi)、インジウム(In)を、それぞれ0.001wt%〜0.03wt%、0.001wt%〜0.02wt%、0.01wt%〜0.07wt%含ませるとともに、粒度75μm以下の亜鉛合金粉末を10%〜20%存在させるように前記亜鉛合金粉末を造粉する、
ことを特徴とする電池用亜鉛合金粉末の製造方法。
(1) A method for producing a zinc alloy powder used for a negative electrode of an alkaline battery,
The zinc alloy powder is manufactured by only the centrifugal spray method without sieving using a mesh,
In the centrifugal spraying method, aluminum (Al), bismuth (Bi), and indium (In) are added in amounts of 0.001 wt% to 0.03 wt%, 0.001 wt% to 0.02 wt%, and 0.01 wt% to 0.00, respectively. The zinc alloy powder is milled so that it is contained in an amount of 07 wt% and a zinc alloy powder having a particle size of 75 μm or less is present at 10% to 20%.
The manufacturing method of the zinc alloy powder for batteries characterized by the above-mentioned.
(2)上記手段(1)に記載の製造方法によって造粉された電池用亜鉛合金粉末。
(3)負極活物質として亜鉛を用いるアルカリ電池であって、負極亜鉛として上記手段(2)に記載の電池用亜鉛合金粉末を用いたことを特徴とするアルカリ電池。
(2) A zinc alloy powder for a battery that is powdered by the production method described in the above means (1) .
(3) An alkaline battery using zinc as a negative electrode active material, wherein the zinc alloy powder for a battery described in the above means (2) is used as the negative electrode zinc.
生産性を低下させることなく、また電池の耐漏液性も損なわず、電池性能とくに電気容量の大幅な向上を可能にした電池用亜鉛合金粉末およびアルカリ電池を提供することができる。 It is possible to provide a zinc alloy powder for a battery and an alkaline battery that can significantly improve the battery performance, particularly the electric capacity, without reducing the productivity and without impairing the leakage resistance of the battery.
上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。 Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.
図1は、本発明の技術が適用されたLR型アルカリ乾電池の一実施形態を示す。同図に示す電池はアルカリ一次電池であって、有底筒状の金属製正極缶11内に、正極合剤21、セパレータ22、負極合剤23からなる発電要素20がアルカリ電解液と共に収容されている。
FIG. 1 shows an embodiment of an LR type alkaline dry battery to which the technology of the present invention is applied. The battery shown in FIG. 1 is an alkaline primary battery, and a
正極缶11にはニッケルメッキ鋼板を深絞り加工したものが使用されている。この正極缶11は正極集電体おおよび正極端子を兼ねていて、その底部には凸状の正極端子部12が一体形成されている。 The positive electrode can 11 is a deep-drawn nickel-plated steel plate. The positive electrode can 11 serves as a positive electrode current collector and a positive electrode terminal, and a convex positive electrode terminal portion 12 is integrally formed at the bottom thereof.
正極缶11の開口部は負極端子板32と樹脂製ガスケット35を用いて封止されている。負極端子板32の内側には棒状の負極集電子31が固設され、この集電子31がゲル状の負極合剤23中に挿入されている。
The opening of the positive electrode can 11 is sealed using a negative
正極合剤21は、正極活物質に黒鉛等の導電助剤を添加したものを所定の合剤形状に成形したものであるが、その正極活物質には二酸化マンガン(EMD)および/またはオキシ水酸化ニッケルが使用されている。負極合剤23には、亜鉛合金粉末を用いたゲル状亜鉛が使用されている。
The positive electrode mixture 21 is formed by adding a conductive additive such as graphite to a positive electrode active material into a predetermined mixture shape. The positive electrode active material includes manganese dioxide (EMD) and / or oxywater. Nickel oxide is used. For the
上記電池の構造的構成は従来のものと基本的に同じである。この発明の電池が従来のものと異なる特徴事項は、負極合剤23に用いた亜鉛合金粉末の粉末状態とその合金組成にある。
The structural configuration of the battery is basically the same as the conventional one. The features of the battery of the present invention that are different from conventional ones are the powder state of the zinc alloy powder used in the
すなわち、亜鉛合金粉末は、従来のガスアトマイズ法で製造された亜鉛合金粉末ではなく、遠心噴霧法で造紛された粉末体が使用されている。また、その粉末体は、アルミニウム(Al)0.001wt%〜0.03wt%、ビスマス(Bi)0.001wt%〜0.02wt%、インジウム(In)0.01wt%〜0.07wt%がそれぞれ合金成分として添加されている。さらに、その粉末体は、少なくとも、粒度250μm以下の亜鉛合金粉末が85%以上の頻度で存在するように造紛されている。 That is, the zinc alloy powder is not a zinc alloy powder produced by a conventional gas atomizing method, but a powdered body formed by centrifugal spraying. Further, the powder bodies are aluminum (Al) 0.001 wt% to 0.03 wt%, bismuth (Bi) 0.001 wt% to 0.02 wt%, indium (In) 0.01 wt% to 0.07 wt%, respectively. It is added as an alloy component. Further, the powder body is formed so that at least a zinc alloy powder having a particle size of 250 μm or less is present at a frequency of 85% or more.
ここで、本発明者は、電池用亜鉛合金粉末が、ガスアトマイズ法で製造されたものと、遠心噴霧法で造紛された電池用亜鉛合金粉末とでは、その特性に大きな相違があり、とくに、一定の条件下でアルカリ電池の負極材として用いた場合、その電池性能に大きな違いが生じることを知得した。 Here, the present inventors have a large difference in characteristics between the battery zinc alloy powder produced by the gas atomization method and the battery zinc alloy powder formed by the centrifugal spray method, It has been found that when used as a negative electrode material for alkaline batteries under certain conditions, there is a great difference in battery performance.
すなわち、ガスアトマイズ法で製造された亜鉛合金粉末は、図2の粒度分布曲線Aのように、粉末の粒度分布状態がブロードで、粒度バラツキが非常に大きい。このような粒度状態の亜鉛合金粉末ではガス発生の抑制と大電流放電特性の向上を両立させる最適化設定が難しい。このため、ガスアトマイズ法で製造された亜鉛合金粉末では、篩い分けによる精密な粒度選別が不可欠であった。 That is, the zinc alloy powder produced by the gas atomization method has a broad particle size distribution state and very large particle size variation as shown in the particle size distribution curve A of FIG. With such a zinc alloy powder in a particle size state, it is difficult to optimize the setting to achieve both suppression of gas generation and improvement of large current discharge characteristics. For this reason, in the zinc alloy powder manufactured by the gas atomization method, precise particle size selection by sieving is indispensable.
これに対し、遠心噴霧法で造紛された電池用亜鉛合金粉末は、篩い分けによる粒度選別を行わなくても、図2の粒度分布曲線BまたはCのように、粉末の粒度分布状態がシャープで、粒度バラツキ範囲が狭いという特質が得られる。 On the other hand, the zinc alloy powder for batteries made by centrifugal spraying has a sharp particle size distribution state as shown in the particle size distribution curve B or C in FIG. 2 without performing particle size selection by sieving. Thus, the characteristic that the range of particle size variation is narrow is obtained.
このため、ガスアトマイズ法では不可欠であった篩い分けの工程を不要にすることができる。さらに、遠心噴霧法で造紛された電池用亜鉛合金粉末は、噴霧条件等の造紛条件を可変設定することで、亜鉛合金粉末の中心粒度を再現性良く可変設定できることが確認された。たとえば、曲線Bのような粒度分布や曲線Cのような粒度分布は、遠心噴霧法の噴霧条件を変えることによって自由に選択することができる。これにより、生産性を向上させるとともに、ガス発生の抑制と大電流放電特性の向上を両立させる最適化設定を良好に行うことができる。 For this reason, the sieving step, which is indispensable in the gas atomization method, can be eliminated. Furthermore, it was confirmed that the zinc alloy powder for batteries powdered by the centrifugal spraying method can variably set the central particle size of the zinc alloy powder with good reproducibility by variably setting the powdering conditions such as spraying conditions. For example, a particle size distribution such as curve B and a particle size distribution such as curve C can be freely selected by changing the spraying conditions of the centrifugal spraying method. Thereby, while improving productivity, the optimization setting which balances the suppression of gas generation and the improvement of a large current discharge characteristic can be performed favorably.
さらに注目すべきことは、遠心噴霧法で造紛された本発明に係る電池用亜鉛合金粉末は、粉体の粒径パラツキが小さいことなどにより、ガスアトマイズ法で製造された従来の電池用亜鉛合金粉末に対して、見掛け密度が大きくなることも判明した。このことは、外形サイズが規格化されたアルカリ乾電池において、負極材の充填量を実質増量させることによる電気容量の増大という想定外の大きな効果をもたらす。 Further, it should be noted that the zinc alloy powder for a battery according to the present invention, which has been formed by the centrifugal spray method, is manufactured by a gas atomization method due to a small particle size variation of the powder. It has also been found that the apparent density is greater for the powder. This brings about an unexpected great effect of increasing the electric capacity by substantially increasing the filling amount of the negative electrode material in the alkaline dry battery whose outer size is standardized.
なお、遠心噴霧法については、たとえば特許文献4に開示されている遠心ディスク噴霧装置を用いて好適に実施することができる。
上記亜鉛合金粉末について、本発明者はさらに詳細に検討を重ねたところ、電池の耐漏液性能と電池性能とくに電気容量を共に向上させるには、次のような構成条件を備えることがとくに有効であることが判明した。
In addition, about the centrifugal spraying method, it can implement suitably using the centrifugal disc spraying apparatus currently disclosed by patent document 4, for example.
As for the above-mentioned zinc alloy powder, the present inventor has further studied in detail, and in order to improve both the leakage resistance performance of the battery and the battery performance, particularly the electric capacity, it is particularly effective to have the following constitutional conditions. It turned out to be.
すなわち、亜鉛合金粉末は、アルミニウム(Al)0.001wt%〜0.03wt%、ビスマス(Bi)0.001wt%〜0.02wt%、インジウム(In)0.01wt%〜0.07wt%がそれぞれ合金成分として添加されることがとくに望ましい。 That is, the zinc alloy powder contains aluminum (Al) 0.001 wt% to 0.03 wt%, bismuth (Bi) 0.001 wt% to 0.02 wt%, and indium (In) 0.01 wt% to 0.07 wt%. It is particularly desirable to add it as an alloy component.
亜鉛合金粉末は、少なくとも粒度250μm以下の亜鉛合金粉末が85%以上存在することが必要である(図2の曲線B参照)。しかし、より望ましくは、粒度75μm以下の亜鉛合金粉末が10%〜20%存在する粉末形態が上記効果を得る上でとくに有効である(図2の曲線B参照)。 The zinc alloy powder needs to contain at least 85% zinc alloy powder having a particle size of 250 μm or less (see curve B in FIG. 2). However, more desirably, a powder form in which a zinc alloy powder having a particle size of 75 μm or less is present in an amount of 10% to 20% is particularly effective in obtaining the above effect (see curve B in FIG. 2).
以下、本発明の典型的な実施例を示す。 The following are typical examples of the present invention.
表1に示すように、粒度状態および元素組成の異なる亜鉛合金粉末(または亜鉛粉末)の粒度状態および添加金属(元素)の組成が異なる多種類のLR6(単3)型アルカリ乾電池を試験サンプル(No.1〜No.25)として作製し、サンプルごとに60℃10日間保存後の電池内ガス量を測定した。表1において、電池内ガス量は2cc/1セル以上あったものをXで表示し、それ未満を○で表示した。 As shown in Table 1, various kinds of LR6 (AA) alkaline batteries having different particle size states and zinc alloy powders (or zinc powder) having different particle size states and elemental compositions and different compositions of added metals (elements) were tested ( No. 1 to No. 25), and the amount of gas in the battery after storage at 60 ° C. for 10 days was measured for each sample. In Table 1, when the amount of gas in the battery was 2 cc / 1 cell or more, X was indicated, and less than that was indicated by ◯.
放電特性は、デジタルカメラを想定したサイクル放電試験であって、1500mWで2秒放電、650mWで28秒放電のサイクルを1時間当り10回行って終止電圧が1.05Vになるまでのサイクル数を計数し、サイクル数90回以下を×、90〜100回を△、100〜110回を○、110回超を◎でそれぞれ表示した。 The discharge characteristic is a cycle discharge test assuming a digital camera. The number of cycles until the end voltage becomes 1.05 V after 10 cycles per hour of discharge at 1500 mW for 2 seconds and 650 mW for 28 seconds is shown. Counting was performed, and the number of cycles of 90 or less was indicated by x, 90-100 times by Δ, 100-110 times by ◯, and more than 110 times by ◎.
表1に示した試験結果は本発明者が行ってきた多くの試験結果中の典型例(一部)であるが、この表1からは、本発明では、亜鉛合金粉末の合金組成は、アルミニウム(Al)0.001wt%〜0.03wt%、ビスマス(Bi)0.001wt%〜0.02wt%、インジウム(In)0.01wt%〜0.07wt%の範囲が、ガス発生の抑制に有効であることが確認される。 The test results shown in Table 1 are typical examples (parts) of many test results conducted by the present inventor. From Table 1, the present invention shows that the alloy composition of the zinc alloy powder is aluminum. The range of (Al) 0.001 wt% to 0.03 wt%, bismuth (Bi) 0.001 wt% to 0.02 wt%, and indium (In) 0.01 wt% to 0.07 wt% is effective in suppressing gas generation. It is confirmed that
また、たとえば、サンプルNo.16の合金組成を有する亜鉛合金粉末について、その亜鉛合金粉末の粒度状態を変えた場合の放電特性とガス特性の変化について試験を行ったところ、表2に示すような結果が得られた。 Also, for example, sample no. When the zinc alloy powder having an alloy composition of 16 was tested for changes in discharge characteristics and gas characteristics when the particle size state of the zinc alloy powder was changed, the results shown in Table 2 were obtained.
表2において、放電特性は、表1と同様、デジタルカメラを想定したサイクル放電試験であって、サイクル数の多少を×、△、○、◎で表示した。ガス特性は、表1と同様、電池内ガス量の多少を○と×で表示した。 In Table 2, the discharge characteristics are cycle discharge tests assuming a digital camera as in Table 1, and the number of cycles is indicated by ×, Δ, ○, ◎. As for the gas characteristics, as in Table 1, the amount of gas in the battery was indicated by ○ and ×.
表2に示した試験結果も本発明者が行ってきた多くの試験結果中の典型例(一部)であるが、この表2からは、図2の分布曲線Bのような粒度分布を有することに加えて、粒度250μm以下の亜鉛合金粉末が85%以上存在すること、とくに、粒度75μm以下の亜鉛合金粉末が10%〜20%存在することが、放電特性とくに電気容量の向上にとくに有効であることが確認される。 The test results shown in Table 2 are also typical examples (parts) of many test results conducted by the present inventor. From Table 2, the test results have a particle size distribution such as the distribution curve B in FIG. In addition, the presence of 85% or more of zinc alloy powder having a particle size of 250 μm or less, particularly the presence of 10% to 20% of zinc alloy powder having a particle size of 75 μm or less, is particularly effective for improving discharge characteristics, particularly electric capacity. It is confirmed that
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、本発明の負極材はアルカリ一次電池だけではなく、アルカリ二次電池にも好適に使用可能である。
生産性を低下させることなく、また電池の耐漏液性も損なわず、電池性能とくに電気容量の大幅な向上を可能にした電池用亜鉛合金粉末およびアルカリ電池を提供することができる。 It is possible to provide a zinc alloy powder for a battery and an alkaline battery that can significantly improve the battery performance, particularly the electric capacity, without reducing the productivity and without impairing the leakage resistance of the battery.
11 正極缶
12 正極端子部
20 発電要素
21 正極合剤
22 セパレータ
23 負極合剤(亜鉛合金粉末を使用)
31 負極集電子
32 負極端子板
35 ガスケット
DESCRIPTION OF SYMBOLS 11 Positive electrode can 12 Positive
31 Negative
Claims (3)
前記亜鉛合金粉末を、メッシュを用いた篩い分けをせずに、遠心噴霧法のみで造粉することで製造し、
当該遠心噴霧法では、アルミニウム(Al)、ビスマス(Bi)、インジウム(In)を、それぞれ0.001wt%〜0.03wt%、0.001wt%〜0.02wt%、0.01wt%〜0.07wt%含ませるとともに、粒度75μm以下の亜鉛合金粉末を10%〜20%存在させるように前記亜鉛合金粉末を造粉する、
ことを特徴とする電池用亜鉛合金粉末の製造方法。 A method for producing a zinc alloy powder used in a negative electrode of an alkaline battery,
The zinc alloy powder is manufactured by only the centrifugal spray method without sieving using a mesh,
In the centrifugal spraying method, aluminum (Al), bismuth (Bi), and indium (In) are added in amounts of 0.001 wt% to 0.03 wt%, 0.001 wt% to 0.02 wt%, and 0.01 wt% to 0.00, respectively. The zinc alloy powder is milled so that it is contained in an amount of 07 wt% and a zinc alloy powder having a particle size of 75 μm or less is present at 10% to 20%.
The manufacturing method of the zinc alloy powder for batteries characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005370430A JP5081384B2 (en) | 2005-12-22 | 2005-12-22 | Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005370430A JP5081384B2 (en) | 2005-12-22 | 2005-12-22 | Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007173097A JP2007173097A (en) | 2007-07-05 |
JP5081384B2 true JP5081384B2 (en) | 2012-11-28 |
Family
ID=38299367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005370430A Active JP5081384B2 (en) | 2005-12-22 | 2005-12-22 | Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5081384B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101404348B1 (en) | 2005-05-19 | 2014-06-09 | 유미코르 | Alkali zinc powder for alkaline batteries containing perforated particles |
PL1889312T3 (en) * | 2005-05-19 | 2009-05-29 | Everzinc Belgium Sa | Alloyed zinc powders for alkaline batteries with particles pierced with at least one hole |
JP5455182B2 (en) * | 2008-06-30 | 2014-03-26 | 日立マクセル株式会社 | Alkaline battery |
JP6241737B2 (en) * | 2014-01-16 | 2017-12-06 | パナソニックIpマネジメント株式会社 | Alkaline battery and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1003415A6 (en) * | 1989-11-10 | 1992-03-17 | Acec Union Miniere | Zinc powder for alkaline batteries. |
JPH07254103A (en) * | 1994-03-14 | 1995-10-03 | Sharp Corp | Rotary drum device |
JP2007524190A (en) * | 2003-06-17 | 2007-08-23 | ザ ジレット カンパニー | Battery anode |
-
2005
- 2005-12-22 JP JP2005370430A patent/JP5081384B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007173097A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5743780B2 (en) | Cylindrical nickel-hydrogen storage battery | |
WO2020154516A1 (en) | Alkaline electrochemical cells comprising increased zinc oxide levels | |
JP2018156854A (en) | Alkaline battery | |
JPH02239566A (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
JP5081384B2 (en) | Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery | |
JP6259670B2 (en) | Alkaline battery | |
JP5568185B1 (en) | Alkaline battery | |
JP2007227011A (en) | Alkaline cell | |
WO2016117127A1 (en) | Alkaline cell | |
JP2008041490A (en) | Alkaline battery | |
JP6691738B2 (en) | Alkaline battery | |
JP6322430B2 (en) | Alkaline battery | |
JP5102970B2 (en) | Alkaline battery | |
JP5097357B2 (en) | Method for producing zinc powder for alkaline battery, method for producing negative electrode gel for alkaline battery | |
WO2019181538A1 (en) | Alkaline battery | |
JP3198891B2 (en) | Positive electrode for alkaline storage battery | |
JP3968248B2 (en) | Aluminum battery | |
US20120070739A1 (en) | Galvanic element having a mercury-free negative electrode | |
JPS61208755A (en) | Pasted negative cadmium plate for sealed alkaline storage battery | |
JP2002117859A (en) | Alkaline battery | |
JPS6322019B2 (en) | ||
JP2007048623A (en) | Alkaline dry cell | |
JP3587213B2 (en) | Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same | |
JP3343413B2 (en) | Alkaline secondary battery | |
JP5541692B2 (en) | Alkaline battery and positive electrode mixture for alkaline battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20080903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5081384 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |