JP5079721B2 - Epoxy resin composition and molded article - Google Patents
Epoxy resin composition and molded article Download PDFInfo
- Publication number
- JP5079721B2 JP5079721B2 JP2009039261A JP2009039261A JP5079721B2 JP 5079721 B2 JP5079721 B2 JP 5079721B2 JP 2009039261 A JP2009039261 A JP 2009039261A JP 2009039261 A JP2009039261 A JP 2009039261A JP 5079721 B2 JP5079721 B2 JP 5079721B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- group
- resin composition
- ether
- curing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003822 epoxy resin Substances 0.000 title claims description 106
- 229920000647 polyepoxide Polymers 0.000 title claims description 106
- 239000000203 mixture Substances 0.000 title claims description 56
- 239000003795 chemical substances by application Substances 0.000 claims description 41
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 34
- 150000002989 phenols Chemical class 0.000 claims description 31
- 239000011256 inorganic filler Substances 0.000 claims description 30
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 30
- 230000001588 bifunctional effect Effects 0.000 claims description 18
- 238000000465 moulding Methods 0.000 claims description 15
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 12
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 8
- VWGKEVWFBOUAND-UHFFFAOYSA-N 4,4'-thiodiphenol Chemical compound C1=CC(O)=CC=C1SC1=CC=C(O)C=C1 VWGKEVWFBOUAND-UHFFFAOYSA-N 0.000 claims description 6
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 claims description 5
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000012776 electronic material Substances 0.000 claims description 5
- 125000004957 naphthylene group Chemical group 0.000 claims description 5
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 claims description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 3
- RLSMYIFSFZLJQZ-UHFFFAOYSA-N 4-[4-(4-hydroxyphenoxy)phenoxy]phenol Chemical compound C1=CC(O)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(O)C=C1 RLSMYIFSFZLJQZ-UHFFFAOYSA-N 0.000 claims description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 3
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical class C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 claims description 3
- PVAONLSZTBKFKM-UHFFFAOYSA-N diphenylmethanediol Chemical class C=1C=CC=CC=1C(O)(O)C1=CC=CC=C1 PVAONLSZTBKFKM-UHFFFAOYSA-N 0.000 claims description 2
- 238000001723 curing Methods 0.000 description 43
- 239000000047 product Substances 0.000 description 31
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- -1 aromatic diamine compound Chemical class 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 239000007822 coupling agent Substances 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- IMHDGJOMLMDPJN-UHFFFAOYSA-N biphenyl-2,2'-diol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 4
- 229920006026 co-polymeric resin Polymers 0.000 description 4
- 229910002026 crystalline silica Inorganic materials 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229940079877 pyrogallol Drugs 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004455 differential thermal analysis Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229960001755 resorcinol Drugs 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- GGNQRNBDZQJCCN-UHFFFAOYSA-N benzene-1,2,4-triol Chemical compound OC1=CC=C(O)C(O)=C1 GGNQRNBDZQJCCN-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 238000006735 epoxidation reaction Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- DFQICHCWIIJABH-UHFFFAOYSA-N naphthalene-2,7-diol Chemical compound C1=CC(O)=CC2=CC(O)=CC=C21 DFQICHCWIIJABH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011417 postcuring Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XLHUBROMZOAQMV-UHFFFAOYSA-N 1,4-benzosemiquinone Chemical group [O]C1=CC=C(O)C=C1 XLHUBROMZOAQMV-UHFFFAOYSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-dioxonaphthalene Natural products C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- BOKGTLAJQHTOKE-UHFFFAOYSA-N 1,5-dihydroxynaphthalene Chemical compound C1=CC=C2C(O)=CC=CC2=C1O BOKGTLAJQHTOKE-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- KMRIWYPVRWEWRG-UHFFFAOYSA-N 2-(6-oxobenzo[c][2,1]benzoxaphosphinin-6-yl)benzene-1,4-diol Chemical compound OC1=CC=C(O)C(P2(=O)C3=CC=CC=C3C3=CC=CC=C3O2)=C1 KMRIWYPVRWEWRG-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 description 1
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 1
- HDPBBNNDDQOWPJ-UHFFFAOYSA-N 4-[1,2,2-tris(4-hydroxyphenyl)ethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HDPBBNNDDQOWPJ-UHFFFAOYSA-N 0.000 description 1
- CJLPIPXJJJUBIV-UHFFFAOYSA-N 4-[3-(4-hydroxyphenoxy)phenoxy]phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=CC(OC=2C=CC(O)=CC=2)=C1 CJLPIPXJJJUBIV-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 1
- LYWVNPSVLAFTFX-UHFFFAOYSA-N 4-methylbenzenesulfonate;morpholin-4-ium Chemical compound C1COCCN1.CC1=CC=C(S(O)(=O)=O)C=C1 LYWVNPSVLAFTFX-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- IXCOKTMGCRJMDR-UHFFFAOYSA-N 9h-fluorene;phenol Chemical compound OC1=CC=CC=C1.OC1=CC=CC=C1.C1=CC=C2CC3=CC=CC=C3C2=C1 IXCOKTMGCRJMDR-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- LGKFIVGOMBFMOD-UHFFFAOYSA-N OC1=CC=CC2=CC=CC(=C12)O.OC1=CC=CC2=CC=C(C=C12)O Chemical compound OC1=CC=CC2=CC=CC(=C12)O.OC1=CC=CC2=CC=C(C=C12)O LGKFIVGOMBFMOD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UJNZOIKQAUQOCN-UHFFFAOYSA-N methyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C)C1=CC=CC=C1 UJNZOIKQAUQOCN-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 235000013872 montan acid ester Nutrition 0.000 description 1
- XOOMNEFVDUTJPP-UHFFFAOYSA-N naphthalene-1,3-diol Chemical compound C1=CC=CC2=CC(O)=CC(O)=C21 XOOMNEFVDUTJPP-UHFFFAOYSA-N 0.000 description 1
- PCILLCXFKWDRMK-UHFFFAOYSA-N naphthalene-1,4-diol Chemical compound C1=CC=C2C(O)=CC=C(O)C2=C1 PCILLCXFKWDRMK-UHFFFAOYSA-N 0.000 description 1
- MAWJJKFGKLKRKN-UHFFFAOYSA-N naphthalene-1,5-diol naphthalene-2,6-diol Chemical compound OC1=CC=CC2=C(C=CC=C12)O.OC1=CC2=CC=C(C=C2C=C1)O MAWJJKFGKLKRKN-UHFFFAOYSA-N 0.000 description 1
- FZZQNEVOYIYFPF-UHFFFAOYSA-N naphthalene-1,6-diol Chemical compound OC1=CC=CC2=CC(O)=CC=C21 FZZQNEVOYIYFPF-UHFFFAOYSA-N 0.000 description 1
- JRNGUTKWMSBIBF-UHFFFAOYSA-N naphthalene-2,3-diol Chemical compound C1=CC=C2C=C(O)C(O)=CC2=C1 JRNGUTKWMSBIBF-UHFFFAOYSA-N 0.000 description 1
- MNZMMCVIXORAQL-UHFFFAOYSA-N naphthalene-2,6-diol Chemical compound C1=C(O)C=CC2=CC(O)=CC=C21 MNZMMCVIXORAQL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000009757 thermoplastic moulding Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
本発明は、信頼性に優れた半導体封止、積層板、放熱基板等の電気・電子材料用絶縁材料として有用なエポキシ樹脂組成物及びそれを用いた成形物に関する。 The present invention relates to an epoxy resin composition useful as an insulating material for electrical / electronic materials such as semiconductor sealing, laminated board, heat dissipation board and the like having excellent reliability, and a molded article using the same.
従来、ダイオード、トランジスタ、集積回路等の電気、電子部品や、半導体装置等の封止方法として、例えばエポキシ樹脂やシリコン樹脂等による封止方法やガラス、金属、セラミック等を用いたハーメチックシール法が採用されていたが、近年では信頼性の向上と共に大量生産が可能で、コストメリットのあるトランスファー成形による樹脂封止が主流を占めている。 Conventionally, as a sealing method for electrical and electronic parts such as diodes, transistors, and integrated circuits, and semiconductor devices, for example, a sealing method using an epoxy resin or a silicon resin, or a hermetic sealing method using glass, metal, ceramic, or the like In recent years, resin sealing by transfer molding, which can be mass-produced with improved reliability and cost-effective, has been the mainstream in recent years.
トランスファー成形による樹脂封止に用いられる樹脂組成物においては、エポキシ樹脂と、硬化剤としてフェノール樹脂を主成分とする樹脂組成物からなる封止材料が一般的に使用されている。 In a resin composition used for resin sealing by transfer molding, a sealing material composed of an epoxy resin and a resin composition mainly composed of a phenol resin as a curing agent is generally used.
パワーデバイスなどの素子を保護する目的で使用されるエポキシ樹脂組成物は、素子が放出する多量の熱に対応するため、結晶シリカなどの無機充填材を高密度に充填している。 Epoxy resin compositions used for the purpose of protecting elements such as power devices are filled with an inorganic filler such as crystalline silica at a high density in order to cope with a large amount of heat released from the element.
パワーデバイスには、ICの技術を組み込んだワンチップで構成されるものやモジュール化されたものなどがあり、封止材料に対する熱放散性、耐熱性、熱膨張性の更なる向上が望まれている。 Power devices include one-chip devices incorporating IC technology and modularized devices, and further improvements in heat dissipation, heat resistance, and thermal expansion for sealing materials are desired. Yes.
これらの要求に対応するべく、熱伝導率を向上するために熱伝導率の大きい結晶シリカ、窒化珪素、窒化アルミニウム、球状アルミナ粉末等の無機充填材を含有させるなどの試みがなされている(特許文献1、2)が、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるという問題が生じる。従って、単に無機充填材の含有率を高める方法には限界があった。 In order to meet these demands, attempts have been made to include inorganic fillers such as crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder having high thermal conductivity in order to improve thermal conductivity (patents). As Documents 1 and 2) increase the content of the inorganic filler, there is a problem in that the fluidity decreases with increasing viscosity during molding, and the moldability is impaired. Therefore, there is a limit to the method of simply increasing the content of the inorganic filler.
上記背景から、マトリックス樹脂自体の高熱伝導率化によって組成物の熱伝導率を向上する方法も検討されている。例えば、特許文献3、特許文献4および特許文献5には、剛直なメソゲン基を有する液晶性のエポキシ樹脂およびそれを用いたエポキシ樹脂組成物が提案されている。しかし、これらのエポキシ樹脂組成物に用いる硬化剤としては、芳香族ジアミン化合物を用いており、無機充填材の高充填率化に限界があるとともに、電気絶縁性の点でも問題があった。また、芳香族ジアミン化合物を用いた場合、硬化物の液晶性は確認できるものの、硬化物の結晶化度は低く、高熱伝導性、低熱膨張性、低吸湿性等の点で十分ではなかった。さらには液晶性発現のために、強力な磁場をかけて分子を配向させる必要があり、工業的に広く利用するためには設備的にも大きな制約があった。また、無機充填材との配合系では、マトリックス樹脂の熱伝導率に比べて無機充填材の熱伝導率が圧倒的に大きく、マトリックス樹脂自体の熱伝導率を高くしても、複合材料としての熱伝導率向上には大きく寄与しないという現実があり、十分な熱伝導率向上効果は得られていなかった。なお、非特許文献1にはエーテルエーテルケトン基を持つエポキシ樹脂が示され、硬化剤にジアミン化合物を用いて得られたエポキシ硬化物の物性が開示されているが、フェノール硬化剤、なかでも二官能性フェノール硬化剤から得られる硬化物の物性については教えるものはない。 From the above background, a method for improving the thermal conductivity of the composition by increasing the thermal conductivity of the matrix resin itself has been studied. For example, Patent Literature 3, Patent Literature 4 and Patent Literature 5 propose a liquid crystalline epoxy resin having a rigid mesogenic group and an epoxy resin composition using the same. However, an aromatic diamine compound is used as the curing agent used in these epoxy resin compositions, and there is a limit in increasing the filling rate of the inorganic filler, and there is also a problem in terms of electrical insulation. Further, when an aromatic diamine compound is used, the liquid crystallinity of the cured product can be confirmed, but the crystallinity of the cured product is low, which is not sufficient in terms of high thermal conductivity, low thermal expansion, low hygroscopicity, and the like. Furthermore, in order to exhibit liquid crystallinity, it is necessary to orient the molecules by applying a strong magnetic field, and there are significant restrictions in terms of equipment for wide industrial use. In addition, in the compounding system with the inorganic filler, the thermal conductivity of the inorganic filler is overwhelmingly larger than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, There is a reality that it does not greatly contribute to the improvement of thermal conductivity, and a sufficient effect of improving thermal conductivity has not been obtained. Non-Patent Document 1 discloses an epoxy resin having an etheretherketone group and discloses physical properties of an epoxy cured product obtained by using a diamine compound as a curing agent. There is no teaching about the physical properties of the cured product obtained from the functional phenol curing agent.
従って、本発明の目的は、上記問題点を解消し、成形性に優れ、無機充填材と複合化させた場合の熱伝導率が高く、かつ低熱膨張性で、耐湿性に優れた成形物を与えるエポキシ樹脂組成物を提供し、更にそれを用いた成形物を提供することである。 Therefore, the object of the present invention is to eliminate the above-mentioned problems, to obtain a molded article having excellent moldability, high thermal conductivity when combined with an inorganic filler, low thermal expansion, and excellent moisture resistance. An epoxy resin composition is provided, and a molded article using the composition is further provided.
本発明者らは、エーテルエーテルケトン基を持つエポキシ樹脂と二次元的に反応が進行する特定の二官能の硬化剤を組み合わせた場合において、熱伝導率、耐熱性、低熱膨張性等の物性が特異的に向上することを見出し、本発明に到達した。 When the present inventors combine an epoxy resin having an ether ether ketone group and a specific bifunctional curing agent in which the reaction proceeds two-dimensionally, physical properties such as thermal conductivity, heat resistance, and low thermal expansion are obtained. The inventors have found that it can be improved specifically, and have reached the present invention.
本発明は、エポキシ樹脂及び硬化剤、又はこれらと無機充填材を主成分とするエポキシ樹脂組成物において、エポキシ樹脂の50wt%以上が下記式(1)で表されるエーテルエーテルケトン基を持つエポキシ樹脂であり、硬化剤の50wt%以上が二官能フェノール性化合物であることを特徴とするエポキシ樹脂組成物である。 The present invention relates to an epoxy resin and a curing agent, or an epoxy resin composition mainly composed of these and an inorganic filler, wherein 50 wt% or more of the epoxy resin has an ether ether ketone group represented by the following formula (1). An epoxy resin composition characterized in that it is a resin and 50 wt% or more of the curing agent is a bifunctional phenolic compound.
(但し、Aは1,4−フェニレン基、1,3−フェニレン基、4,4’−ビフェニレン基、4,4’−ジフェニルエーテル基、4,4’−ジフェニルケトン基、4,4’−ジフェニルメタン基、4,4’−ジフェニルスルフィド基またはナフチレン基より選ばれた二価の芳香族基であり、mは1〜10、nは0〜50の数を示す。)
(However, A is 1,4-phenylene group, 1,3-phenylene group, 4,4′-biphenylene group, 4,4′-diphenyl ether group, 4,4′-diphenyl ketone group, 4,4′-diphenylmethane. A divalent aromatic group selected from a group, 4,4′-diphenyl sulfide group or naphthylene group, m is 1 to 10, and n is a number from 0 to 50.)
上記の二官能フェノール性化合物としては、ヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルケトン、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、ジヒドロキシジフェニルメタン類、4,4’−ジヒドロキシジフェニルスルフィドまたはナフタレンジオール類からなる群より選ばれる少なくとも1種の二官能フェノール性化合物が好ましく挙げられる。 Examples of the bifunctional phenolic compound include hydroquinone, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ketone, 1,4-bis (4-hydroxyphenoxy) benzene, Preference is given to at least one bifunctional phenolic compound selected from the group consisting of dihydroxydiphenylmethanes, 4,4′-dihydroxydiphenyl sulfide or naphthalenediols.
本発明のエポキシ樹脂組成物は無機充填材を含むことができ、この場合エポキシ樹脂組成物中に無機充填材を50〜96wt%含有することが好ましい。また、無機充填材としては、球状のアルミナが好ましく挙げられ、この使用量は無機充填材の50wt%以上であることがよい。 The epoxy resin composition of the present invention can contain an inorganic filler. In this case, the epoxy resin composition preferably contains 50 to 96 wt% of the inorganic filler. As the inorganic filler, spherical alumina is preferably exemplified, and the amount used is preferably 50 wt% or more of the inorganic filler.
本発明のエポキシ樹脂組成物は、封止材用又は絶縁基板用等の電子材料用のエポキシ樹脂組成物として適する。 The epoxy resin composition of the present invention is suitable as an epoxy resin composition for an electronic material such as a sealing material or an insulating substrate.
更に、本発明は、上記のエポキシ樹脂組成物を反応させて成形硬化して得られることを特徴とする成形物である。この成形物は、熱伝導率が4W/m・K以上であることが好ましい。 Furthermore, the present invention is a molded product obtained by reacting the above epoxy resin composition and molding and curing it. This molded article preferably has a thermal conductivity of 4 W / m · K or more.
本発明のエポキシ樹脂組成物は、成形性、信頼性に優れ、かつ高熱伝導性、低吸水性、低熱膨張性に優れた成形物を与え、半導体封止、積層板、放熱基板等の電気・電子材料用絶縁材料として好適に応用され、優れた高放熱性および高寸法安定性が発揮される。このような特異的な効果が生ずる理由は、エーテルエーテルケトン基の剛直構造と、硬化剤にフェノール性化合物、なかでも二官能フェノール性化合物を用いたことにより樹脂骨格の配向性が良くなったためと推察される。 The epoxy resin composition of the present invention provides a molded product excellent in moldability and reliability, and excellent in high thermal conductivity, low water absorption, and low thermal expansibility. It is suitably applied as an insulating material for electronic materials and exhibits excellent high heat dissipation and high dimensional stability. The reason why such a specific effect occurs is that the orientation of the resin skeleton is improved by using a rigid structure of the ether ether ketone group and a phenolic compound, especially a bifunctional phenolic compound as a curing agent. Inferred.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のエポキシ樹脂組成物に用いるエポキシ樹脂は、上記式(1)で表されるエーテルエーテルケトン基を持つエポキシ樹脂を50wt%以上含む。 The epoxy resin used for the epoxy resin composition of the present invention contains 50 wt% or more of an epoxy resin having an ether ether ketone group represented by the above formula (1).
式(1)において、-A-は-Ar1-または-Ar2-X-Ar3-で表わされる二価の芳香族基である。ここで、Ar1はフェニレン基またはナフチレン基であり、Ar2およびAr3はフェニレン基であり、Xは直接結合、O、CO、CH2またはSである。具体的には、1,4−フェニレン基、1,3−フェニレン基、4,4’−ビフェニレン基、4,4’−ジフェニルエーテル基、4,4’−ジフェニルケトン基、4,4’−ジフェニルメタン基、4,4’−ジフェニルスルフィド基及びナフチレン基より選ばれた二価の芳香族基を示すが、好ましくは1,4−フェニレン基または1,3−フェニレン基である。 In the formula (1), —A— is a divalent aromatic group represented by —Ar 1 — or —Ar 2 —X—Ar 3 —. Here, Ar 1 is a phenylene group or a naphthylene group, Ar 2 and Ar 3 are phenylene groups, and X is a direct bond, O, CO, CH 2 or S. Specifically, 1,4-phenylene group, 1,3-phenylene group, 4,4′-biphenylene group, 4,4′-diphenyl ether group, 4,4′-diphenyl ketone group, 4,4′-diphenylmethane A divalent aromatic group selected from a group, 4,4′-diphenyl sulfide group and naphthylene group, preferably 1,4-phenylene group or 1,3-phenylene group.
mは1〜10の数を表すが、好ましいmの値は、適用する用途に応じて異なる。例えば、フィラーの高充填率化が要求される半導体封止材の用途には、低粘度であるものが望ましく、mの平均値としては1〜3、好ましくは1.1〜2の範囲がよい。より好ましくは、mが1のものが80wt%以上含まれるものである。 Although m represents the number of 1-10, the preferable value of m changes according to the application to apply. For example, for the use of a semiconductor encapsulant that requires a high filling rate of the filler, a material having a low viscosity is desirable, and the average value of m is in the range of 1 to 3, preferably 1.1 to 2. . More preferably, 80% by weight or more of m is included.
nは0から50の数を表すが、好ましいnの値は、適用する用途に応じて異なる。例えば、フィラーの高充填率化が要求される半導体封止材の用途には、低粘度であるものが望ましく、nは0〜5、好ましくは0〜2の範囲がよい。エポキシ樹脂がnの値が異なる混合物である場合は、nの数平均値として0〜5、好ましくは0.1〜2の範囲がよい。より好ましくは、nが0のものが50wt%以上含まれるものであり、nの数平均値が0.1〜1のものである。これらの低分子量のエポキシ樹脂は、場合により結晶化され、常温で固体として使用される。また、プリント配線板等の用途には、高分子量のエポキシ樹脂が好適に使用され、この場合のnの値は、5〜50、好ましくは10〜40、更に好ましくは、20〜40である。nの値が異なる混合物である場合は、nの数平均値としても、上記の範囲がよい。この場合、数平均値が50以下となれば、nの値が50以上の整数となる分子が含まれてもよい。 n represents a number from 0 to 50, but a preferable value of n varies depending on the application. For example, for a semiconductor encapsulant that requires a high filling factor of filler, one having a low viscosity is desirable, and n is in the range of 0 to 5, preferably 0 to 2. When the epoxy resin is a mixture having different values of n, the number average value of n is preferably from 0 to 5, and preferably from 0.1 to 2. More preferably, those having n of 0 are contained in an amount of 50 wt% or more, and the number average value of n is 0.1 to 1. These low molecular weight epoxy resins are optionally crystallized and used as a solid at room temperature. Moreover, a high molecular weight epoxy resin is used suitably for uses, such as a printed wiring board, The value of n in this case is 5-50, Preferably it is 10-40, More preferably, it is 20-40. In the case of a mixture in which the value of n is different, the above range is also good as the number average value of n. In this case, as long as the number average value is 50 or less, a molecule in which the value of n is an integer of 50 or more may be included.
本発明に用いるエポキシ樹脂の製法は、特に限定されるものではないが、下記式(2)で表わされるエーテルエーテルケトン基を持つフェノール性化合物とエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。 Although the manufacturing method of the epoxy resin used for this invention is not specifically limited, It can manufacture by making the phenolic compound which has the ether ether ketone group represented by following formula (2), and epichlorohydrin react. This reaction can be performed in the same manner as a normal epoxidation reaction.
一般式(2)において、Aは上記一般式(1)のAと同じ意味を有し、好ましくは1,4−フェニレン基又は1,3−フェニレン基である。mも上記一般式(1)のmと同じ意味を有する。このフェノール性化合物をエポキシ樹脂の原料に用いる場合、単一の化合物であっても良いが、mの値が異なる化合物である多量体の混合物であってもよい。 In the general formula (2), A has the same meaning as A in the general formula (1), and is preferably a 1,4-phenylene group or a 1,3-phenylene group. m also has the same meaning as m in the general formula (1). When this phenolic compound is used as a raw material for an epoxy resin, it may be a single compound or a mixture of multimers that are compounds having different values of m.
フェノール性化合物とエピクロルヒドリンとの反応は、例えば、フェノール性化合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50〜150℃、好ましくは、60〜100℃の範囲で1〜10時間反応させる方法が挙げられる。この際の、アルカリ金属水酸化物の使用量は、ジヒドロキシ体中の水酸基1モルに対して、0.8〜2.0モル、好ましくは、0.9〜1.5モルの範囲である。エピクロルヒドリンは、フェノール性化合物中の水酸基に対して過剰量が用いられ、通常は、フェノール性化合物中の水酸基1モルに対して、1.5〜15モルである。フェノール性化合物に対するエピクロルヒドリンの使用割合を変化させることにより、一般式(1)におけるnを制御することができる。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。 The reaction between the phenolic compound and epichlorohydrin is, for example, after dissolving the phenolic compound in excess epichlorohydrin and then in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, preferably at 50 to 150 ° C., preferably The method of making it react for 1 to 10 hours in the range of 60-100 degreeC is mentioned. In this case, the amount of the alkali metal hydroxide used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.5 mol, with respect to 1 mol of the hydroxyl group in the dihydroxy body. Epichlorohydrin is used in an excess amount with respect to the hydroxyl group in the phenolic compound, and is usually 1.5 to 15 mol with respect to 1 mol of the hydroxyl group in the phenolic compound. By changing the use ratio of epichlorohydrin to the phenolic compound, n in the general formula (1) can be controlled. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target epoxy is removed by distilling off the solvent. A resin can be obtained.
本発明のエポキシ樹脂組成物に用いるエポキシ樹脂は、エーテルエーテルケトン基を持つフェノール性化合物とエーテルエーテルケトン基を持たない他のフェノール性化合物と混合させたものを用いて合成することもできる。この場合のエーテルエーテルケトン基を持つフェノール性化合物の混合比率は50wt%以上である。また、他のフェノール性化合物には特に制約はなく、一分子中に水酸基を2個以上有するものの中から選択される。 The epoxy resin used in the epoxy resin composition of the present invention can also be synthesized using a mixture of a phenolic compound having an ether ether ketone group and another phenolic compound not having an ether ether ketone group. In this case, the mixing ratio of the phenolic compound having an ether ether ketone group is 50 wt% or more. Other phenolic compounds are not particularly limited and are selected from those having two or more hydroxyl groups in one molecule.
本発明のエポキシ樹脂組成物に用いるエポキシ樹脂のエポキシ当量は、通常250から600の範囲であるが、無機フィラーの高充填率化および流動性向上の観点からは低粘度性のものが良く、エポキシ当量が250から400の範囲のものが好ましい。 The epoxy equivalent of the epoxy resin used in the epoxy resin composition of the present invention is usually in the range of 250 to 600. However, from the viewpoint of increasing the filling rate of inorganic filler and improving fluidity, it is preferable that the epoxy resin has a low viscosity. Those having an equivalent weight in the range of 250 to 400 are preferred.
このエーテルエーテルケトン基を持つエポキシ樹脂は、通常、常温で結晶性を有するものが好適に使用される。好ましい融点の範囲は70℃〜250℃であり、より好ましくは100℃〜200℃の範囲である。これより低いとブロッキング等が起こりやすくなり固体としての取扱い性に劣り、これより高いと硬化剤等との相溶性、溶剤への溶解性等が低下する。 As the epoxy resin having an ether ether ketone group, those having crystallinity at normal temperature are preferably used. The range of preferable melting | fusing point is 70 to 250 degreeC, More preferably, it is the range of 100 to 200 degreeC. If it is lower than this, blocking and the like are likely to occur, resulting in poor handling as a solid, and if it is higher than this, compatibility with a curing agent or the like, solubility in a solvent, and the like are reduced.
本発明のエポキシ樹脂組成物に用いるエポキシ樹脂またはエーテルエーテルケトン基を持つエポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本明細書でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N−AgNO3水溶液で電位差滴定を行い得られる値である。 The purity of the epoxy resin or the epoxy resin having an ether ether ketone group, particularly the amount of hydrolyzable chlorine used in the epoxy resin composition of the present invention is preferably smaller than the viewpoint of improving the reliability of the applied electronic component. Although it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less. In addition, hydrolyzable chlorine as used in this specification means the value measured by the following method. That is, the potential difference the sample 0.5g were dissolved in dioxane 30 ml, 1N-KOH, after the added boiled under reflux for 30 minutes 10 ml, cooled to room temperature, 80% aqueous acetone 100ml was added, with 0.002 N-AgNO 3 aqueous solution This is a value obtained by titration.
本発明のエポキシ樹脂組成物には、必須成分として使用されるエーテルエーテルケトン基を持つエポキシ樹脂以外に、エポキシ樹脂成分として分子中にエポキシ基を2個以上有する他のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、ビスフェノールF、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、フルオレンビスフェノール、2,2’−ビフェノール、レゾルシン、カテコール、t‐ブチルカテコール、t‐ブチルハイドロキノン、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o‐クレゾールノボラック、m‐クレゾールノボラック、p‐クレゾールノボラック、キシレノールノボラック、ポリ‐p‐ヒドロキシスチレン、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t‐ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4‐ベンゼントリオール、2,3,4‐トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を用いることができる。また、他のエポキシ樹脂としては、メソゲン基を持つエポキシ樹脂が好ましく使用でき、これらは1種または2種以上を用いることができる。 In addition to the epoxy resin having an ether ether ketone group used as an essential component, the epoxy resin composition of the present invention may be used in combination with another epoxy resin having two or more epoxy groups in the molecule as an epoxy resin component. Good. Examples include bisphenol A, bisphenol F, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenyl sulfide, Divalent phenols such as fluorene bisphenol, 2,2'-biphenol, resorcin, catechol, t-butylcatechol, t-butylhydroquinone, allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, or phenol novolak Bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, tris- (4-hydroxyphenyl) meta 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fluoroglycinol, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3, There are glycidyl ethers derived from 4-trihydroxybenzophenone, phenol aralkyl resins, naphthol aralkyl resins, trivalent or higher phenols such as dicyclopentadiene resins, or halogenated bisphenols such as tetrabromobisphenol A . These epoxy resins can be used alone or in combination of two or more. Moreover, as another epoxy resin, the epoxy resin which has a mesogen group can be used preferably, and these can use 1 type (s) or 2 or more types.
本発明のエポキシ樹脂組成物に用いるエーテルエーテルケトン基を持つエポキシ樹脂の配合割合は、全エポキシ樹脂の50wt%以上であり、好ましくは70wt%以上、より好ましくは90wt%以上である。さらには、二官能性エポキシ樹脂の合計量が90wt%以上、好ましくは95wt%以上であることが望ましい。これより少ないと硬化物とした際の熱伝導率等の物性向上効果が小さい。これは、エーテルエーテルケトン基を持つエポキシ樹脂の含有率が高く、かつ二官能性エポキシ樹脂の含有率が高いものほど、成形物としての配向度が高くなるためである。 The compounding ratio of the epoxy resin having an ether ether ketone group used in the epoxy resin composition of the present invention is 50 wt% or more, preferably 70 wt% or more, more preferably 90 wt% or more of the total epoxy resin. Furthermore, it is desirable that the total amount of the bifunctional epoxy resin is 90 wt% or more, preferably 95 wt% or more. If it is less than this, the effect of improving physical properties such as thermal conductivity when cured is small. This is because the higher the content of the epoxy resin having an ether ether ketone group and the higher the content of the bifunctional epoxy resin, the higher the degree of orientation as a molded product.
エーテルエーテルケトン基を持つエポキシ樹脂以外の他のエポキシ樹脂としては、下記一般式(3)で表されるビスフェノール系エポキシ樹脂が好ましい。
(但し、Zは単結合、メチレン基、酸素原子または硫黄原子、rは0または1を示す。)
As an epoxy resin other than an epoxy resin having an ether ether ketone group, a bisphenol-based epoxy resin represented by the following general formula (3) is preferable.
(However, Z represents a single bond, a methylene group, an oxygen atom or a sulfur atom, and r represents 0 or 1.)
これらのエポキシ樹脂は、例えば、ヒドロキノン、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエーテル、または4,4’−ジヒドロキシジフェニルスルフィドを原料として、通常のエポキシ化反応を行うことで合成することができる。これらのエポキシ樹脂は、原料段階で単独または任意の割合でこれらのジヒドロキシ化合物と混合させたものを用いて合成してもよいし、これら以外の他のジヒドロキシ化合物を混合させたものを用いて合成してもよい。 These epoxy resins are synthesized, for example, by performing a normal epoxidation reaction using hydroquinone, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, or 4,4′-dihydroxydiphenyl sulfide as a raw material. be able to. These epoxy resins may be synthesized alone or in combination with any of these dihydroxy compounds at the raw material stage, or may be synthesized using a mixture of other dihydroxy compounds other than these. May be.
硬化剤として用いる二官能フェノール性化合物は、一分子中に2個のフェノール性水酸基を有するものであり、特に限定されるものではないが、例えば、ビスフェノールA、ビスフェノールF、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエーテル、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、ヒドロキノン、レゾルシン、t‐ブチルハイドロキノン、1,2‐ジヒドロキシナフタレン、1,3‐ジヒドロキシナフタレン、1,4‐ジヒドロキシナフタレン、1,5‐ジヒドロキシナフタレン、1,6‐ジヒドロキシナフタレン、1,7‐ジヒドロキシナフタレン、1,8‐ジヒドロキシナフタレン、2,3‐ジヒドロキシナフタレン、2,6‐ジヒドロキシナフタレン、2,7‐ジヒドロキシナフタレン、さらには、上記式(2)のエーテルエーテルケトン基を持つビスフェノール化合物等を挙げることができる。これらは2種類以上を使用しても良い。 The bifunctional phenolic compound used as the curing agent has two phenolic hydroxyl groups in one molecule and is not particularly limited. For example, bisphenol A, bisphenol F, 4,4′-dihydroxy Diphenylmethane, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 4,4′-dihydroxydiphenyl sulfide, 4,4′- Dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phospha Phenanthrene-10-oxide, hydroxy , Resorcin, t-butylhydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, and bisphenol compounds having an ether ether ketone group of the above formula (2) Can do. Two or more of these may be used.
好ましい二官能フェノール性化合物としては、次の一般式で表わされる二官能フェノール性化合物がある。
HO-Ar4-OH、またはHO-Ar5-Y-Ar5-OH
ここで、Ar4はフェニレン基またはナフチレン基が好ましく、より好ましくは1,4-フェニレン基である。Ar5はフェニレン基が好ましく、より好ましくは1,4-フェニレン基である。Yは単結合、CH2、O、フェニレン基、S、COまたはSO2が好ましい。
As a preferable bifunctional phenolic compound, there is a bifunctional phenolic compound represented by the following general formula.
HO-Ar 4 -OH or HO-Ar 5 -Y-Ar 5 -OH
Here, Ar 4 is preferably a phenylene group or a naphthylene group, more preferably a 1,4-phenylene group. Ar 5 is preferably a phenylene group, more preferably a 1,4-phenylene group. Y is preferably a single bond, CH 2 , O, a phenylene group, S, CO, or SO 2 .
硬化剤として用いる二官能フェノール性化合物としては、メソゲン基を有するものが好ましく用いられ、具体的には、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルケトン、1,5−ナフタレンジオール、2,6−ナフタレンジオール、2,7−ナフタレンジオール、さらには、上記式(2)のエーテルエーテルケトン基を持つビスフェノール化合物を例示することができる。また、メソゲン基を持たないもので、好ましい二官能フェノール性化合物としては、ヒドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエーテル、1,4−ビス(4−ヒドロキシフェノキシ)ベンゼン、4,4’−ジヒドロキシジフェニルスルフィドを挙げることができる。 As the bifunctional phenolic compound used as a curing agent, those having a mesogenic group are preferably used. Specifically, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ketone, 1,5-naphthalenediol 2,6-naphthalenediol, 2,7-naphthalenediol, and bisphenol compounds having the ether ether ketone group of the above formula (2). In addition, those having no mesogenic group and preferred bifunctional phenolic compounds include hydroquinone, resorcin, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) Mention may be made of benzene and 4,4′-dihydroxydiphenyl sulfide.
硬化剤として用いる二官能フェノール性化合物の使用量は全硬化剤の50wt%以上、好ましくは70wt%以上、より好ましくは80wt%以上である。これより少ないと硬化物とした際の熱伝導率等の物性向上効果が小さい。これは、二官能フェノール性化合物の含有率が高いものほど、成形物としての配向度が高くなるためである。 The amount of the bifunctional phenolic compound used as the curing agent is 50 wt% or more of the total curing agent, preferably 70 wt% or more, more preferably 80 wt% or more. If it is less than this, the effect of improving physical properties such as thermal conductivity when cured is small. This is because the higher the content of the bifunctional phenolic compound, the higher the degree of orientation as a molded product.
本発明のエポキシ樹脂組成物にて用いる硬化剤としては、上記の二官能フェノール性化合物以外に、硬化剤として一般的に知られている他の硬化剤を併用して用いることができる。例を挙げれば、アミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。これら他の硬化剤の配合量は、配合する硬化剤の種類や得られる熱伝導性エポキシ樹脂成形体の物性を考慮して適宜設定すればよい。しかし、全硬化剤の50wt%を超えない。 As a hardening | curing agent used with the epoxy resin composition of this invention, the other hardening agent generally known as a hardening | curing agent other than said bifunctional phenolic compound can be used in combination. Examples include amine curing agents, acid anhydride curing agents, phenolic curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, block isocyanate curing agents, and the like. What is necessary is just to set the compounding quantity of these other hardening | curing agents suitably considering the kind of hardening | curing agent to mix | blend and the physical property of the heat conductive epoxy resin molded object obtained. However, it does not exceed 50 wt% of the total curing agent.
本発明のエポキシ樹脂組成物では、エポキシ樹脂と硬化剤の配合比率は、エポキシ基と硬化剤中の官能基が当量比で0.8〜1.5の範囲であることが好ましい。この範囲外では硬化後も未反応のエポキシ基、または硬化剤中の官能基が残留し、電子部品用絶縁材料に関しての信頼性が低下する。 In the epoxy resin composition of the present invention, the mixing ratio of the epoxy resin and the curing agent is preferably in the range of 0.8 to 1.5 in terms of an equivalent ratio of the epoxy group and the functional group in the curing agent. Outside this range, unreacted epoxy groups or functional groups in the curing agent remain after curing, and the reliability of the insulating material for electronic parts is lowered.
本発明のエポキシ樹脂組成物には、無機充填材が配合されることが好ましい。この場合の無機充填材の添加量は、通常、エポキシ樹脂組成物に対して50〜96wt%であるが、好ましくは75〜96wt%、さらに好ましくは85〜96wt%である。これより少ないと高熱伝導性、低熱膨張性、高耐熱性、難燃性等の効果が十分に発揮されない。これらの効果は、無機充填材の添加量が多いほど向上するが、その体積分率に応じて向上するものではなく、特定の添加量以上となった時点から飛躍的に向上する。これらの物性は、高分子状態での高次構造が制御された効果によるものであり、この高次構造が主に無機充填材表面で達成されることから、特定量の無機充填材を必要とするものであると考えられる。一方、無機充填材の添加量がこれより多いと粘度が高くなり、成形性が悪化する。 The epoxy resin composition of the present invention preferably contains an inorganic filler. In this case, the amount of the inorganic filler added is usually 50 to 96 wt% with respect to the epoxy resin composition, preferably 75 to 96 wt%, and more preferably 85 to 96 wt%. If it is less than this, effects such as high thermal conductivity, low thermal expansion, high heat resistance and flame retardancy will not be sufficiently exhibited. These effects are improved as the added amount of the inorganic filler is increased, but are not improved in accordance with the volume fraction, and are drastically improved from the point when the added amount exceeds the specific amount. These physical properties are due to the effect of controlling the higher order structure in the polymer state, and since this higher order structure is achieved mainly on the surface of the inorganic filler, a specific amount of inorganic filler is required. It is thought to be. On the other hand, when the added amount of the inorganic filler is larger than this, the viscosity is increased and the moldability is deteriorated.
無機充填材を配合する場合、無機充填材は球状のものが好ましく、断面が楕円上であるものも含めて球状であれば特に限定されるものではないが、流動性改善の観点からは、極力真球状に近いものであることが特に好ましい。これにより、面心立方構造や六方稠密構造等の最密充填構造をとり易く、充分な充填量を得ることができる。球形でない場合、充填量が増えると充填材同士の摩擦が増え、上記の上限に達する前に流動性が極端に低下して粘度が高くなり、成形性が悪化するため、充填量が抑えられる恐れがある。 In the case of blending an inorganic filler, the inorganic filler is preferably spherical, and is not particularly limited as long as it has a spherical shape including those having a cross section on an ellipse. It is particularly preferable that the shape is close to a true sphere. Thereby, it is easy to take a close-packed structure such as a face-centered cubic structure or a hexagonal close-packed structure, and a sufficient filling amount can be obtained. If it is not spherical, if the filling amount increases, the friction between the fillers increases, and before reaching the above upper limit, the fluidity is extremely lowered, the viscosity becomes high, and the moldability deteriorates, so the filling amount may be suppressed. There is.
熱伝導率向上の観点からは、無機充填材の50wt%以上、好ましくは80wt%以上を、熱伝導率が5W/m・K以上のものとすることがよい。かかる無機充填材としては、アルミナ、窒化アルミニウム、結晶シリカ等が好適である。これらの中でも、球状アルミナが優れる。その他、必要に応じて形状に関係なく無定形無機充填材、例えば溶融シリカ、結晶シリカなどを併用しても良い。 From the viewpoint of improving thermal conductivity, it is preferable that 50 wt% or more, preferably 80 wt% or more of the inorganic filler has a thermal conductivity of 5 W / m · K or more. As such an inorganic filler, alumina, aluminum nitride, crystalline silica and the like are suitable. Among these, spherical alumina is excellent. In addition, an amorphous inorganic filler such as fused silica or crystalline silica may be used in combination, if necessary, regardless of the shape.
また、無機充填材の平均粒径は30μm以下であることが好ましい。平均粒径がこれより大きいとエポキシ樹脂組成物の流動性が損なわれ、また強度も低下する。 Moreover, it is preferable that the average particle diameter of an inorganic filler is 30 micrometers or less. If the average particle size is larger than this, the fluidity of the epoxy resin composition is impaired, and the strength is also lowered.
本発明のエポキシ樹脂組成物には、従来より公知の硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルポレート、N−メチルモルホリン・テトラフェニルポレートなどのテトラフェニルボロン塩などがある。これらは単独で用いても良く、併用しても良い。 A conventionally well-known hardening accelerator can be used for the epoxy resin composition of this invention. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenyl Rate, tetra-substituted phosphonium tetra-substituted borate such as tetrabutylphosphonium-tetrabutyl borate, 2-ethyl-4-methylimidazole · tetraphenyl port rate, and the like tetraphenyl boron salts such as N- methylmorpholine-tetraphenyl port rate. These may be used alone or in combination.
上記硬化促進剤の添加量は、エポキシ樹脂と硬化剤の合計に対して、0.1〜10.0wt%が好ましい。0.1wt%未満ではゲル化時間が遅くなって加熱反応時の剛性低下による作業性の低下をもたらし、逆に10.0wt%を超えると成形途中で反応が進んでしまい、未充填が発生し易くなる。 As for the addition amount of the said hardening accelerator, 0.1-10.0 wt% is preferable with respect to the sum total of an epoxy resin and a hardening | curing agent. If it is less than 0.1 wt%, the gelation time will be delayed, resulting in a decrease in workability due to a decrease in rigidity during the heating reaction. Conversely, if it exceeds 10.0 wt%, the reaction will progress during the molding and unfilling will occur. It becomes easy.
本発明のエポキシ樹脂組成物においては、上記成分の他に、離型剤、カップリング剤、熱可塑性のオリゴマー類、その他の一般的にエポキシ樹脂組成物に使用可能なものを適宜配合して用いることができる。例えば、リン系難燃剤、ブロム化合物や三酸化アンチモン等の難燃剤、及びカーボンブラックや有機染料等の着色剤等を使用することができる。 In the epoxy resin composition of the present invention, in addition to the above components, a mold release agent, a coupling agent, a thermoplastic oligomer, and other components that can be generally used for an epoxy resin composition are appropriately blended and used. be able to. For example, phosphorus-based flame retardants, flame retardants such as bromine compounds and antimony trioxide, and colorants such as carbon black and organic dyes can be used.
離型剤としては、ワックスが使用できる。ワックスとしては、例えばステアリン酸、モンタン酸、モンタン酸エステル、リン酸エステル等が使用可能である。 Wax can be used as the release agent. As the wax, for example, stearic acid, montanic acid, montanic acid ester, phosphoric acid ester and the like can be used.
カップリング剤としては、例えばエポキシシランが使用可能である。カップリング剤の添加量は、エポキシ樹脂組成物に対して、0.1〜2.0wt%が好ましい。0.1wt%未満では樹脂と基材のなじみが悪く成形性が悪くなり、逆に2.0wt%を超えると連続成形性での成形品汚れが生じる。カップリング剤は無機充填材と樹脂成分の接着力を向上させるために用いられる。 As the coupling agent, for example, epoxy silane can be used. The addition amount of the coupling agent is preferably 0.1 to 2.0 wt% with respect to the epoxy resin composition. If it is less than 0.1 wt%, the resin and the base material will not be well-matched, and the moldability will be poor. Conversely, if it exceeds 2.0 wt%, the molded product will become dirty with continuous moldability. The coupling agent is used to improve the adhesion between the inorganic filler and the resin component.
熱可塑性のオリゴマー類としては、C5系およびC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示さえる。添加量としては、通常、エポキシ樹脂100重量部に対して、2〜30重量部の範囲である。熱可塑性のオリゴマー類は、エポキシ樹脂組成物の成形時の流動性改良およびリードフレーム等の基材との密着性向上のために用いられる。 Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophene. Examples thereof include copolymer resins. As addition amount, it is the range of 2-30 weight part normally with respect to 100 weight part of epoxy resins. Thermoplastic oligomers are used to improve fluidity during molding of the epoxy resin composition and to improve adhesion to a substrate such as a lead frame.
本発明のエポキシ樹脂組成物は、エポキシ樹脂と硬化剤を必須成分として含み、無機充填材等の成分を含む配合成分(カップリング剤を除く)をミキサー等によって均一に混合した後、カップリング剤を添加し、加熱ロール、ニーダー等によって混練して製造することができる。これらの成分の配合順序にはカップリング剤を除き特に制限はない。更に、混練後に溶融混練物の粉砕を行い、パウダー化することやタブレット化することも可能である。 The epoxy resin composition of the present invention comprises an epoxy resin and a curing agent as essential components, and a blending component (excluding a coupling agent) containing components such as an inorganic filler is uniformly mixed by a mixer or the like, and then a coupling agent. And knead | mixing with a heating roll, a kneader, etc. can manufacture. There is no restriction | limiting in particular in the mixing | blending order of these components except a coupling agent. Further, after kneading, the melt-kneaded material can be pulverized to be powdered or tableted.
本発明のエポキシ樹脂組成物は、特に電子部品封止用および放熱基板用として優れるので、電子材料用のエポキシ樹脂組成物として適する。 The epoxy resin composition of the present invention is particularly suitable as an epoxy resin composition for electronic materials because it is excellent for electronic component sealing and heat dissipation substrates.
本発明のエポキシ樹脂組成物は、ガラス繊維等の繊維状基材と複合させて複合材とすることができる。例えば、エポキシ樹脂および硬化剤を主成分としたエポキシ樹脂組成物を有機溶剤に溶解させたものを、シート状繊維基材に含浸し加熱乾燥して、エポキシ樹脂を部分反応させて、プリプレグとすることができる。 The epoxy resin composition of the present invention can be combined with a fibrous base material such as glass fiber to form a composite material. For example, a sheet fiber base material impregnated with an epoxy resin composition mainly composed of an epoxy resin and a curing agent in an organic solvent is impregnated and dried by heating to partially react the epoxy resin to obtain a prepreg. be able to.
本発明のエポキシ樹脂組成物を用いて成形物を得るためには、例えば、トランスファー成形、プレス成形、注型成形、射出成形、押出成形等の加熱成形方法が適用されるが、量産性の観点からは、トランスファー成形が好ましい。加熱成形により、硬化と成形がなされ硬化成形物となるが、ここで硬化はエポキシ樹脂と硬化剤の反応が十分に進行することをいう。 In order to obtain a molded product using the epoxy resin composition of the present invention, for example, a heat molding method such as transfer molding, press molding, cast molding, injection molding, extrusion molding or the like is applied. From the above, transfer molding is preferred. By thermoforming, curing and molding are performed to obtain a cured molded product. Here, curing means that the reaction between the epoxy resin and the curing agent proceeds sufficiently.
本発明のエポキシ樹脂組成物は、エポキシ樹脂および硬化剤がともに二官能性のもののみから構成された場合においても、加熱反応させた場合、エポキシ樹脂と硬化剤が反応して生成する水酸基の一部がさらにエポキシ樹脂中のエポキシ基と反応するため、通常は三次元硬化物を与えるが、場合により有機溶剤の使用、硬化促進剤種の選択、および反応温度等の加熱反応条件の制御により、実質的に二次元高分子のみで構成された熱可塑性の成形物とすることができる。 Even when the epoxy resin composition of the present invention is composed only of a bifunctional epoxy resin and a curing agent, when the epoxy resin and the curing agent are heated and reacted, the epoxy resin and the curing agent react with each other. Since this part further reacts with the epoxy group in the epoxy resin, it usually gives a three-dimensional cured product, but in some cases, by use of an organic solvent, selection of a curing accelerator type, and control of heating reaction conditions such as reaction temperature, It can be set as the thermoplastic molding substantially comprised only by the two-dimensional polymer.
本発明の硬化成形物は、高耐熱性、低熱膨張性および高熱伝導性の観点から結晶性を有するものであることが好ましい。成形物の結晶性の発現は、走査示差熱分析で結晶の融解に伴う吸熱ピークを融点として観測することにより確認することができる。好ましい融点は120℃から280℃の範囲であり、より好ましくは150℃から250℃の範囲である。また、硬化成形物の好ましい熱伝導率は4W/m・K以上であり、特に好ましく6W/m・K以上である。 The cured molded product of the present invention preferably has crystallinity from the viewpoints of high heat resistance, low thermal expansion and high thermal conductivity. The expression of the crystallinity of the molded product can be confirmed by observing an endothermic peak accompanying melting of the crystal as a melting point by scanning differential thermal analysis. A preferred melting point is in the range of 120 ° C. to 280 ° C., more preferably in the range of 150 ° C. to 250 ° C. Moreover, the preferable thermal conductivity of the cured molded product is 4 W / m · K or more, and particularly preferably 6 W / m · K or more.
ここで結晶性発現の効果を簡単に説明する。一般的に、エポキシ樹脂硬化物においては耐熱性の指標としてガラス転移点が用いられる。これは、通常のエポキシ樹脂硬化物が結晶性を持たないアモルファス状(ガラス状)の成形物でありガラス転移点を境として物性が大きく変化するためである。従って、エポキシ樹脂硬化物の耐熱性を高くするため、すなわちガラス転移点を高くするためには架橋密度を高くする必要があるが、逆に可撓性が低下し脆くなる欠点があった。これに対して、本発明の硬化成形物は、結晶性を発達させる点に特徴があるが、融点まで物性変化が少ないことから融点を耐熱性の指標とすることができる。高分子物質は、融点の方がガラス転移点よりも高い温度にあるため、本発明の硬化成形物は、低い架橋密度により高い可撓性を維持しつつ、高い耐熱性を確保できる。また、結晶性発現は、高い分子間力を意味しており、これにより分子の運動が抑制され、低熱膨張性の達成とともに、高い熱拡散率が発揮され熱伝導率が向上する。 Here, the effect of crystallinity will be briefly described. Generally, in a cured epoxy resin, a glass transition point is used as an index of heat resistance. This is because a normal epoxy resin cured product is an amorphous (glassy) molded product having no crystallinity, and the physical properties greatly change at the glass transition point. Therefore, in order to increase the heat resistance of the cured epoxy resin, that is, to increase the glass transition point, it is necessary to increase the crosslink density. On the other hand, the cured molded product of the present invention is characterized in that crystallinity is developed, but since the change in physical properties is small up to the melting point, the melting point can be used as an index of heat resistance. Since the polymer material has a melting point higher than the glass transition point, the cured molded product of the present invention can ensure high heat resistance while maintaining high flexibility due to low crosslink density. In addition, the expression of crystallinity means a high intermolecular force, which suppresses the movement of molecules, achieves low thermal expansibility, exhibits high thermal diffusivity, and improves thermal conductivity.
従って、本発明の硬化成形物の結晶化度は高いものほどよい。ここで結晶化の程度は走査示差熱分析での結晶の融解に伴う吸熱量から評価することができる。好ましい吸熱量は、充填材を除いた樹脂成分の単位重量あたり10J/g以上である。より好ましくは30J/g以上であり、特に好ましくは50J/g以上である。これより小さいと成形物としての耐熱性、低熱膨張性および熱伝導率の向上効果が小さい。なお、ここでいう吸熱量は、示差走査熱分析計により、約10mgを精秤した試料を用いて、窒素気流下、昇温速度10℃/分の条件で測定して得られる吸熱量を指す。また、結晶化した本発明の硬化成形物は、広角X線回折においても、明確なピークとして観察することができる。この場合、結晶化度は、全体のピーク面積から結晶化していないアモルファス状樹脂のピークを差引いた面積を全体のピーク面積で除することにより求めることができる。このようにして求めた望ましい結晶化度は15%以上、より望ましくは30%以上、特に望ましくは50%以上である。 Accordingly, the higher the degree of crystallinity of the cured molded product of the present invention, the better. Here, the degree of crystallization can be evaluated from the endothermic amount accompanying the melting of the crystal in the scanning differential thermal analysis. A preferable endothermic amount is 10 J / g or more per unit weight of the resin component excluding the filler. More preferably, it is 30 J / g or more, Most preferably, it is 50 J / g or more. When smaller than this, the improvement effect of the heat resistance, low thermal expansibility, and thermal conductivity as a molded product is small. The endothermic amount referred to here refers to the endothermic amount obtained by measuring with a differential scanning calorimeter using a sample accurately weighed about 10 mg in a nitrogen stream under a temperature rising rate of 10 ° C./min. . Further, the crystallized cured molded product of the present invention can be observed as a clear peak even in wide-angle X-ray diffraction. In this case, the crystallinity can be obtained by dividing the area obtained by subtracting the peak of the amorphous resin that is not crystallized from the entire peak area by the entire peak area. The desired crystallinity thus obtained is 15% or more, more preferably 30% or more, and particularly preferably 50% or more.
本発明の硬化成形物は、上記成形方法により加熱反応させることにより得ることができるが、通常、成形温度としては80℃から250℃であるが、成形物の結晶化度を上げるためには、成形物の融点よりも低い温度で反応させることが望ましい。好ましい成形温度は100℃から200℃の範囲であり、より好ましくは130℃から180℃である。また、好ましい成形時間は30秒から1時間であり、より好ましくは1分から30分である。さらに成形後、ポストキュアにより、さらに結晶化度を上げることができる。通常、ポストキュア温度は130℃から250℃であり、時間は1時間から20時間の範囲であるが、示差熱分析における吸熱ピーク温度よりも5℃から40℃低い温度で、1時間から24時間かけてポストキュアを行うことが望ましい。 The cured molded product of the present invention can be obtained by heat reaction by the above molding method. Usually, the molding temperature is 80 ° C. to 250 ° C. In order to increase the crystallinity of the molded product, It is desirable to react at a temperature lower than the melting point of the molded product. A preferable molding temperature is in the range of 100 ° C to 200 ° C, more preferably 130 ° C to 180 ° C. The preferable molding time is 30 seconds to 1 hour, more preferably 1 minute to 30 minutes. Further, after molding, the crystallinity can be further increased by post-cure. Usually, the post-cure temperature is 130 ° C. to 250 ° C., and the time is in the range of 1 hour to 20 hours. However, the temperature is 5 ° C. to 40 ° C. lower than the endothermic peak temperature in the differential thermal analysis. It is desirable to perform post-cure.
以下実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
参考例1
2Lセパラブルフラスコに4,4’−ジフルオロベンゾフェノン87.3 g(0.4 mol)、ヒドロキノン176.2 g(1.6 mol)、86.0%炭酸カリウム98.7 g、N−メチルピロリドン(NMP) 941 g 、トルエン145gを仕込み窒素気流下において室温で一時間攪拌した。その後、140℃に昇温し水を留去しながら、4時間攪拌した。その後さらに205℃に昇温し、NMPを留去しながら4時間攪拌した。冷却後、大量の水(5L)に少しずつ反応物を滴下し、生成物をガラスフィルターでろ過した。さらに1500mlの水で水洗し、生成物を回収した。その後、30%硫酸水溶液で中和した後、乾燥して固体(一般式(2)において、Aが1,4-フェニレン基であるフェノール性化合物) 150.8gを得た。キャピラリー法に基づく融点のピークは208.3℃から215.4℃であった。OH当量は214.0g/eqであった。
Reference example 1
In a 2 L separable flask, 87.3 g (0.4 mol) of 4,4′-difluorobenzophenone, 176.2 g (1.6 mol) of hydroquinone, 98.7 g of 86.0% potassium carbonate, N-methylpyrrolidone (NMP) 941 g and toluene 145 g were charged and stirred at room temperature for 1 hour under a nitrogen stream. Then, it heated up at 140 degreeC and stirred for 4 hours, distilling off water. Thereafter, the mixture was further heated to 205 ° C. and stirred for 4 hours while distilling off NMP. After cooling, the reaction product was added dropwise to a large amount of water (5 L), and the product was filtered through a glass filter. The product was further recovered by washing with 1500 ml of water. Then, after neutralizing with 30% sulfuric acid aqueous solution, it was dried to obtain 150.8 g of a solid (phenolic compound in which A is a 1,4-phenylene group in the general formula (2)). The melting point peak based on the capillary method was 208.3 ° C. to 215.4 ° C. The OH equivalent was 214.0 g / eq.
参考例2
参考例1で得たフェノール性化合物40.0g、エピクロルヒドリン864.5g、ジエチレングリコールジメチルエーテル120gを仕込み、減圧下(約130Torr)、65℃にて48.8%水酸化ナトリウム水溶液18.0gを3時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続し脱水した。その後、エピクロルヒドリンを濃縮し、これを2LのMeOHに滴下して生じた生成物をろ過、エタノール洗浄、乾燥して、白色の粉末状固体29.5gを得た。GPC測定から、n=1が97.9%、n=2体が2.1%であった。エポキシ当量は262g/eq、キャピラリー法により昇温速度2℃/分で得られる融点は192.7℃から194.6℃であった。
Reference example 2
40.0 g of the phenolic compound obtained in Reference Example 1, 864.5 g of epichlorohydrin and 120 g of diethylene glycol dimethyl ether were charged, and 18.0 g of 48.8% aqueous sodium hydroxide solution was added at 65 ° C. under reduced pressure (about 130 Torr) over 3 hours. And dripped. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour and dehydrated. Thereafter, epichlorohydrin was concentrated, and the resulting product was added dropwise to 2 L of MeOH. The resulting product was filtered, washed with ethanol, and dried to obtain 29.5 g of a white powdery solid. From GPC measurement, n = 1 was 97.9%, and n = 2 bodies was 2.1%. The epoxy equivalent was 262 g / eq, and the melting point obtained by the capillary method at a heating rate of 2 ° C./min was 192.7 ° C. to 194.6 ° C.
参考例3
ヒドロキノンの代わりにレゾルシノールを用いて参考例1と同様に反応を行った。反応後、NMPを減圧留去し、MIBK700mLを加え、30%硫酸水溶液で中和した後、水洗した。その後、減圧留去して、褐色状樹脂124gを得た。GPC測定から、n=1が40%、n=2体が32%、n≧3体が28%であった。軟化点は、102.5℃、150℃での溶融粘度は1.5Pa・s、OH当量は172.0g/eqであった。
Reference example 3
The reaction was carried out in the same manner as in Reference Example 1 using resorcinol instead of hydroquinone. After the reaction, NMP was distilled off under reduced pressure, 700 mL of MIBK was added, neutralized with 30% aqueous sulfuric acid solution, and then washed with water. Thereafter, the solvent was distilled off under reduced pressure to obtain 124 g of a brown resin. From GPC measurement, n = 1 was 40%, n = 2 bodies were 32%, and n ≧ 3 bodies were 28%. The softening point was 102.5 ° C., the melt viscosity at 150 ° C. was 1.5 Pa · s, and the OH equivalent was 172.0 g / eq.
参考例4
参考例3で得たフェノール性化合物40.0gを用いて、参考例2と同様に反応を行った。その後、エピクロルヒドリンを減圧留去し、MIBK150mLを加え、ろ過、水洗後、MIBKを減圧留去して、褐色状樹脂30.4gを得た。GPC測定から、n=1が36%、n=2体が30%、n≧3体が34%であった。軟化点は、83℃、150℃での溶融粘度は0.6Pa・s、エポキシ当量は239g/eqであった。
Reference example 4
The reaction was performed in the same manner as in Reference Example 2 using 40.0 g of the phenolic compound obtained in Reference Example 3. Thereafter, epichlorohydrin was distilled off under reduced pressure, 150 mL of MIBK was added, and after filtration and washing with water, MIBK was distilled off under reduced pressure to obtain 30.4 g of a brown resin. From GPC measurement, n = 1 was 36%, n = 2 bodies were 30%, and n ≧ 3 bodies were 34%. The softening point was 83 ° C., the melt viscosity at 150 ° C. was 0.6 Pa · s, and the epoxy equivalent was 239 g / eq.
実施例1〜4、比較例1〜3
エポキシ樹脂として、参考例2、4で得たエポキシ樹脂(エポキシ樹脂A、B)、ビフェニル系エポキシ樹脂(エポキシ樹脂C:ジャパンエポキシレジン製、YX−4000H、エポキシ当量193、融点105℃)を使用する。硬化剤としてビスフェノールF(硬化剤A;本州化学製、二核体純度92.5wt%)、ジヒドロキシジフェニルケトン(硬化剤B)、フェノ−ルノボラック(硬化剤C:群栄化学製、PSM−4261;OH当量103、軟化点 80℃)を使用する。硬化促進剤としてトリフェニルホスフィン、無機充填材として、球状アルミナ(平均粒径12.2μm)を使用する。
Examples 1-4, Comparative Examples 1-3
As an epoxy resin, the epoxy resins (epoxy resins A and B) obtained in Reference Examples 2 and 4 and a biphenyl epoxy resin (epoxy resin C: manufactured by Japan Epoxy Resin, YX-4000H, epoxy equivalent 193, melting point 105 ° C.) are used. To do. Bisphenol F (curing agent A; manufactured by Honshu Chemical Co., dinuclear purity 92.5 wt%), dihydroxy diphenyl ketone (curing agent B), phenol novolak (curing agent C: manufactured by Gunei Chemical Co., PSM-4261) OH equivalent weight 103, softening point 80 ° C.). Triphenylphosphine is used as a curing accelerator, and spherical alumina (average particle size 12.2 μm) is used as an inorganic filler.
表1に示す成分を配合し、ミキサーで十分混合した後、加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ実施例1〜4、比較例1〜3のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて170℃、5分の条件で成形後、170℃で12時間ポストキュアを行い成形物を得て硬化成形物を得て、その物性を評価した。結果をまとめて表1に示す。なお、表1中の各成分の数字は重量部を表す。 After blending the components shown in Table 1 and thoroughly mixing with a mixer, the mixture kneaded for about 5 minutes with a heating roll was cooled and ground to obtain the epoxy resin compositions of Examples 1 to 4 and Comparative Examples 1 to 3, respectively. Obtained. Using this epoxy resin composition, after molding at 170 ° C. for 5 minutes, post-curing was carried out at 170 ° C. for 12 hours to obtain a molded product to obtain a cured molded product, and its physical properties were evaluated. The results are summarized in Table 1. In addition, the number of each component in Table 1 represents parts by weight.
[評価]
(1)熱伝導率
熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
(2)熱(線)線膨張係数、ガラス転移温度
熱膨張係数およびガラス転移温度は、セイコーインスツル(株)製TMA120C型熱機械測定装置を用いて、昇温速度10℃/分にて測定した。
(3)吸水率
直径50mm、厚さ3mmの円盤を成形し、ポストキュア後、85℃、相対湿度85%の条件で100時間吸湿させた後の重量変化率とした。
[Evaluation]
(1) Thermal conductivity Thermal conductivity was measured by the unsteady hot wire method using an LFA447 type thermal conductivity meter manufactured by NETZSCH.
(2) Thermal (linear) linear expansion coefficient, glass transition temperature The thermal expansion coefficient and glass transition temperature were measured at a heating rate of 10 ° C./min using a TMA120C type thermomechanical measuring device manufactured by Seiko Instruments Inc. did.
(3) Water absorption rate A disk having a diameter of 50 mm and a thickness of 3 mm was formed, and after post-curing, the weight change rate after absorbing for 100 hours under the conditions of 85 ° C. and relative humidity of 85% was used.
Claims (5)
(但し、Aは1,4−フェニレン基、1,3−フェニレン基、4,4’−ビフェニレン基、4,4’−ジフェニルエーテル基、4,4’−ジフェニルケトン基、4,4’−ジフェニルメタン基、4,4’−ジフェニルスルフィド基またはナフチレン基より選ばれた二価の芳香族基であり、mは1〜10、nは0〜50の数を示す。) In an epoxy resin composition containing an epoxy resin and a curing agent, 50 wt% or more of the epoxy resin is an epoxy resin having an ether ether ketone group represented by the following formula (1), and 50 wt% or more of the curing agent is a bifunctional phenol. An epoxy resin composition, which is a functional compound.
(However, A is 1,4-phenylene group, 1,3-phenylene group, 4,4′-biphenylene group, 4,4′-diphenyl ether group, 4,4′-diphenyl ketone group, 4,4′-diphenylmethane. A divalent aromatic group selected from a group, 4,4′-diphenyl sulfide group or naphthylene group, m is 1 to 10, and n is a number from 0 to 50.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009039261A JP5079721B2 (en) | 2009-02-23 | 2009-02-23 | Epoxy resin composition and molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009039261A JP5079721B2 (en) | 2009-02-23 | 2009-02-23 | Epoxy resin composition and molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010195854A JP2010195854A (en) | 2010-09-09 |
JP5079721B2 true JP5079721B2 (en) | 2012-11-21 |
Family
ID=42820904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009039261A Expired - Fee Related JP5079721B2 (en) | 2009-02-23 | 2009-02-23 | Epoxy resin composition and molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5079721B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046616A (en) * | 2010-08-26 | 2012-03-08 | Nippon Steel Chem Co Ltd | Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product |
JP2012046615A (en) * | 2010-08-26 | 2012-03-08 | Nippon Steel Chem Co Ltd | Epoxy resin, production method of the same, epoxy resin composition and cured product |
CN107699581A (en) * | 2017-08-21 | 2018-02-16 | 上海交通大学 | 3,7 dihydroxy Zhuo phenolic ketone biological synthesis gene clusters and its application |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014062153A (en) * | 2012-09-20 | 2014-04-10 | Nippon Steel & Sumikin Chemical Co Ltd | Epoxy resin composition for electronic material and electronic component |
WO2018123454A1 (en) * | 2016-12-27 | 2018-07-05 | 新日鉄住金化学株式会社 | Curable epoxy resin composition, and fiber-reinforced composite material using same |
CN116096793A (en) * | 2020-09-30 | 2023-05-09 | 日铁化学材料株式会社 | Precursor mixture for in-situ polymerization type thermoplastic epoxy resin, epoxy resin composition sheet, prepreg, and in-situ polymerization type thermoplastic fiber-reinforced plastic using the same |
JP7590174B2 (en) | 2020-12-18 | 2024-11-26 | 日鉄ケミカル&マテリアル株式会社 | Aromatic ether ether ketone polymer, its method of production, and resin composition and cured resin using said polymer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09165433A (en) * | 1995-12-18 | 1997-06-24 | Dainippon Ink & Chem Inc | Method for producing epoxy resin, epoxy resin composition and semiconductor encapsulating material |
-
2009
- 2009-02-23 JP JP2009039261A patent/JP5079721B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046616A (en) * | 2010-08-26 | 2012-03-08 | Nippon Steel Chem Co Ltd | Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product |
JP2012046615A (en) * | 2010-08-26 | 2012-03-08 | Nippon Steel Chem Co Ltd | Epoxy resin, production method of the same, epoxy resin composition and cured product |
CN107699581A (en) * | 2017-08-21 | 2018-02-16 | 上海交通大学 | 3,7 dihydroxy Zhuo phenolic ketone biological synthesis gene clusters and its application |
CN107699581B (en) * | 2017-08-21 | 2020-12-29 | 上海交通大学 | 3,7-Dihydroxytropinone biosynthetic gene cluster and its application |
Also Published As
Publication number | Publication date |
---|---|
JP2010195854A (en) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5314911B2 (en) | Epoxy resin composition and molded article | |
JP5330013B2 (en) | Epoxy resin composition and cured product | |
JP5199804B2 (en) | Epoxy resin composition and molded article | |
JP5166610B2 (en) | Epoxy resin, production method thereof, epoxy resin composition and cured product using the same | |
JP5584538B2 (en) | Epoxy resin composition, molded product, varnish, film adhesive and copper foil with film adhesive | |
KR20100134594A (en) | Modified epoxy resin, epoxy resin composition and cured product | |
JP5079721B2 (en) | Epoxy resin composition and molded article | |
JP5209556B2 (en) | Epoxy resin composition and molded article | |
JP5312447B2 (en) | Epoxy resin composition and molded article | |
JP5091052B2 (en) | Epoxy resin composition and molded article | |
JP5734603B2 (en) | Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product | |
JP5037370B2 (en) | Epoxy resin composition and cured product | |
JP2009073862A (en) | Epoxy resin composition for sealing and semiconductor device using the same | |
JP5314912B2 (en) | Epoxy resin composition and molded article | |
JP5681151B2 (en) | Epoxy resin composition and molded article | |
JP2012197366A (en) | Epoxy resin composition and molding | |
JP5199847B2 (en) | Epoxy resin composition and molded article | |
JP2023000691A (en) | Epoxy resin composition and cured article thereof | |
JP2013119608A (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
WO2022186292A1 (en) | Epoxy resin, method for producing same, epoxy resin composition using same, and cured product | |
JP5681152B2 (en) | Epoxy resin composition and molded article | |
JP2013237860A (en) | Epoxy resin composition and cured product | |
JP2023148076A (en) | Epoxy resin composition and cured product | |
JP2021091799A (en) | Epoxy resin composition and molding | |
JP2021195459A (en) | Epoxy resin composition and molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5079721 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |