JP5078009B2 - Ultra-high-strength hardened cement and method for producing the same - Google Patents
Ultra-high-strength hardened cement and method for producing the same Download PDFInfo
- Publication number
- JP5078009B2 JP5078009B2 JP2007233953A JP2007233953A JP5078009B2 JP 5078009 B2 JP5078009 B2 JP 5078009B2 JP 2007233953 A JP2007233953 A JP 2007233953A JP 2007233953 A JP2007233953 A JP 2007233953A JP 5078009 B2 JP5078009 B2 JP 5078009B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- mass
- cement
- parts
- alumina cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000011230 binding agent Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 10
- 229910021487 silica fume Inorganic materials 0.000 claims description 10
- 238000004898 kneading Methods 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 4
- 238000013007 heat curing Methods 0.000 claims description 2
- 238000005452 bending Methods 0.000 description 21
- 239000000835 fiber Substances 0.000 description 12
- 238000001723 curing Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Road Paving Structures (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に土木・建築分野において使用される水硬性硬化体、及びその製造方法に関する。 The present invention relates to a hydraulic cured body mainly used in the field of civil engineering and architecture, and a method for producing the same.
耐酸性、耐化学抵抗性に優れるセメントとして、アルミナセメントが使用されている。アルミナセメントは普通ポルトランドセメントに比べて初期強度の発現性に優れるが、水和物の相転移(コンバージョン)によって長期強度が低下するといった問題があった。相転移による強度低下は、水結合材比を低減することで抑制することができ、このような水硬性硬化体の製造方法としては、従来、材料を混練後に真空脱泡処理を行ない、成形後に100℃以上の温度で乾燥養生する方法が知られていた(例えば非特許文献1、特許文献1を参照)。 Alumina cement is used as a cement excellent in acid resistance and chemical resistance. Alumina cement is more excellent in initial strength than ordinary Portland cement, but has a problem that long-term strength is reduced due to phase transition (conversion) of hydrate. The decrease in strength due to the phase transition can be suppressed by reducing the water binder ratio, and as a method for producing such a hydraulic cured body, conventionally, vacuum defoaming treatment is performed after kneading the material, and after molding A method of drying and curing at a temperature of 100 ° C. or higher has been known (see, for example, Non-Patent Document 1 and Patent Document 1).
従来の製造方法では、水結合材比が16重量%未満である材料の混練が困難であり、混練工程とは別に真空脱泡工程を設ける必要があった。また、曲げ強度の向上を図るため、有機繊維や鋼繊維を加える必要があった。
本発明の課題は、有機繊維や鋼繊維を加えることなく曲げ強度の発現性に優れる低水結合材比の高強度水硬性硬化体、及び従来に比べて工程数の少ない高強度水硬性硬化体の製造方法を提供することである。
In the conventional manufacturing method, it is difficult to knead a material having a water binder ratio of less than 16% by weight, and it is necessary to provide a vacuum defoaming step separately from the kneading step. Moreover, in order to improve bending strength, it was necessary to add organic fiber or steel fiber.
An object of the present invention is to provide a high-strength hydraulic cured body with a low water binder ratio that is excellent in the expression of bending strength without adding organic fibers or steel fibers, and a high-strength hydraulic cured body with a smaller number of processes than conventional ones. It is to provide a manufacturing method.
本発明は、(1)アルミナセメントと、アルミナセメント100質量部に対して、3〜67質量部のシリカフュームを含有する結合材、骨材、及び水を含有し、水結合材比が15質量%以下であるセメント組成物を、自転・公転方式のミキサーを用いて混練し、成形後に40〜90℃で加熱養生してなることを特徴とする高強度水硬性硬化体であり、(2)前記(1)に記載の高強度水硬性硬化体の製造方法を提供することである。 The present invention includes (1) alumina cement and a binder containing 3 to 67 parts by mass of silica fume , an aggregate, and water with respect to 100 parts by mass of alumina cement , and the water binder ratio is 15 % by mass . The following cement composition is kneaded using a rotating / revolving mixer, and is heat-cured at 40 to 90 ° C. after molding, and is a high-strength hydraulic cured body characterized in that ( 2 ) (1 ) It is providing the manufacturing method of the high intensity | strength hydraulic hardening body as described in.
本発明により、有機繊維や鋼繊維を加えることなく曲げ強度の発現性に優れる低水結合材比の高強度水硬性硬化体、及び従来に比べて工程数の少ない高強度水硬性硬化体の製造方法を提供することができる。 According to the present invention, the production of a high-strength hydraulic cured body with a low water binder ratio that is excellent in the expression of bending strength without adding organic fibers and steel fibers, and a high-strength hydraulic cured body with fewer steps than before A method can be provided.
本発明で使用する部や%は、特に規定のない限り質量基準である。
また、本発明でいうセメント組成物とは、セメントペースト、モルタル、及びコンクリートを総称するものである。
The parts and% used in the present invention are based on mass unless otherwise specified.
The cement composition as used in the present invention is a general term for cement paste, mortar, and concrete.
本発明で使用するアルミナセメントとは、主要成分としてCaO・Al2O3やCaO・2Al2O3、そして12CaO・Al2O3などのカルシウムアルミネートを含むセメントを指す。市販品では、例えば電気化学工業株式会社製の商品名「アルミナセメント1号」、「アルミナセメント2号」、及び「ハイアルミナセメント」、「アルミナセメントスーパー」、ケルネオス社製の商品名「セカール71」や「セカール80」、旭硝子株式会社製の商品名「アサヒフォンデュ」などを用いることができる。 The alumina cement used in the present invention, CaO · Al 2 O 3 and CaO · 2Al 2 O 3 as the main component, and refers to a cement comprising calcium aluminate such as 12CaO · Al 2 O 3. Commercially available products include, for example, trade names “Alumina Cement No. 1”, “Alumina Cement No. 2”, and “High Alumina Cement”, “Alumina Cement Super” manufactured by Denki Kagaku Kogyo Co., Ltd. ”,“ SECAL 80 ”, trade name“ Asahi Fondue ”manufactured by Asahi Glass Co., Ltd. or the like can be used.
本発明で使用する結合材は、流動性の改善を目的にシリカフュームを混和する。
シリカフュームの混和量は、アルミナセメント100質量部に対して、3〜67質量部であり、好ましくはアルミナセメント100質量部に対して3〜55質量部である。この範囲外では、結合材粒子の充填性が不良となり、曲げ強度や圧縮強度の向上が認められなくなるので好ましくない。
Binders for use in the present invention, mix the silica fume aims to improve the liquidity.
Mixing amount of silica fume with respect to the alumina cement 100 parts by weight of 3 to 67 parts by mass der is, preferably 3 to 55 parts by weight per 100 parts by weight alumina cement. Outside this range, the filling property of the binder particles becomes poor, and an improvement in bending strength and compressive strength is not recognized.
本発明で使用する骨材は特に限定されるものではなく、川砂、砕砂、海砂、珪砂、石灰砂、砕石、石灰石等の通常、硬化体の製造に使用される材料のほか、シリカ、アルミナ、ムライト、炭化ケイ素等の酸化物、非酸化物系セラミックス、もしくは鉄粉、ステンレス粉等の金属骨材の使用も可能である。骨材の使用量は特に限定されるものではなく、結合材100質量部に対して50〜1,000質量部が好ましい。 The aggregate used in the present invention is not particularly limited. In addition to materials usually used for producing hardened bodies such as river sand, crushed sand, sea sand, quartz sand, lime sand, crushed stone, limestone, silica, alumina It is also possible to use oxides such as mullite and silicon carbide, non-oxide ceramics, or metal aggregates such as iron powder and stainless steel powder. The usage-amount of an aggregate is not specifically limited, 50-1,000 mass parts is preferable with respect to 100 mass parts of binders.
また、本発明の水硬性硬化体には、減水剤、高性能減水剤、AE減水剤、流動化剤、増粘剤、防錆剤、防凍剤、収縮低減剤、凝結調整剤、アルミナ微粉、石灰石微粉、酸化鉄微粉、ベントナイト等の粘土鉱物及びハイドロタルサイト等のアニオン交換体のうち、一種または二種以上を本発明の目的を阻害しない範囲で使用することができる。また、本発明である高強度水硬性硬化体は、有機繊維や鋼繊維を加えることなくして曲げ強度を向上することができるが、さらに曲げ強度を向上するためにビニロン繊維、アクリル繊維、炭素繊維、鋼繊維等の繊維状物質のうち一種又は二種以上を本発明の目的を阻害しない範囲で使用することができる。 Further, the hydraulic cured body of the present invention includes a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a fluidizing agent, a thickening agent, a rust preventive agent, a defrosting agent, a shrinkage reducing agent, a setting modifier, an alumina fine powder, Among the limestone fine powder, iron oxide fine powder, clay minerals such as bentonite and anion exchangers such as hydrotalcite, one or two or more kinds can be used within a range that does not impair the object of the present invention. In addition, the high-strength hydraulic cured body according to the present invention can improve the bending strength without adding organic fiber or steel fiber, but in order to further improve the bending strength, vinylon fiber, acrylic fiber, carbon fiber One or two or more kinds of fibrous materials such as steel fibers can be used as long as the object of the present invention is not impaired.
本発明の高強度水硬性硬化体を製造するには、自転・公転式ミキサーを用いて材料を混練してセメント組成物を製造することが必須である。本発明で使用する自転・公転式ミキサーとは、材料を挿入した容器に自転運動を加え、かつ容器を固定する支持体には自転運動の方向とは反対方向に公転運動を加えて混合するものである。このような自転と公転運動の組み合わせにより混合することで、セメント組成物にせん断応力が加わり、短時間で均一混合が可能になるほか、脱泡処理も同時に可能となる。市販品では、例えば株式会社シンキー社製の商品名「あわとり練太郎」などを用いることができる。また、練り混ぜ材料の分散性をよくするため、セメント組成物へ分散剤を添加することが好ましい。分散剤としては、低い水結合材比での作業性を確保するために、ポリカルボン酸系高性能減水剤を用いることが好ましい。 In order to produce the high-strength hydraulic cured body of the present invention, it is essential to produce a cement composition by kneading materials using a rotation / revolution mixer. The rotation / revolution mixer used in the present invention applies a rotation motion to a container into which a material is inserted, and a support that fixes the container is subjected to a rotation motion in a direction opposite to the rotation motion and mixed. It is. By mixing by a combination of such rotation and revolving motion, a shear stress is applied to the cement composition, enabling uniform mixing in a short time and defoaming treatment at the same time. As a commercial product, for example, “Awatori Nertaro” manufactured by Shinky Co., Ltd. can be used. In order to improve the dispersibility of the kneaded material, it is preferable to add a dispersant to the cement composition. As the dispersant, it is preferable to use a polycarboxylic acid-based high-performance water reducing agent in order to ensure workability at a low water binder ratio.
本発明の高強度水硬性硬化体は、自転・公転式ミキサーを用いて混練した後、加熱養生(蒸気養生)することにより、緻密でありかつ長期的な強度低下が生じない硬化体を短時間、かつ効率的に製造することができる。これは、本発明で使用するアルミナセメントの主成分であるCaO・Al2O3やCaO・2Al2O3の水和反応により生成する水和生成物として、高温安定型であるC3AH6が生成することに起因する。蒸気養生の温度は40〜90℃である。35℃より低い温度では、低温安定型であるCAH10やC2AH8が生成して相転移が生じ、製造した水硬性硬化体の強度安定性が確保できなくなるため好ましくない。さらに、最高温度での保持時間は特に限定されるものではないが、通常1〜6時間程度が好ましい。養生温度が前記範囲を下回ると、短時間で効率的に高強度水硬性硬化体を製造することができなくなる場合があり、前記範囲を上回ると不経済になる場合がある。また、供試体を20℃環境下で製造して1日間養生後、供試体を水中に沈めた状態で蒸気養生を実施することによって、硬化体の水和がより一層進行し、緻密で耐久性に優れる高強度水硬性硬化体を製造することが可能となる。 High strength hydraulic cured product of the present invention, after kneading with the planetary centrifugal mixer, by heating curing (steam nutrient raw), the cured product is dense and long-term strength reduction does not occur short It can be manufactured in time and efficiently. This is as CaO · Al 2 O 3 and CaO · 2Al hydration products produced by hydration of 2 O 3 is the main component of alumina cement to be used in the present invention, C 3 AH 6 is a high temperature stable Due to the generation. Temperature of the vapor nourishment production is 40 to 90 ° C.. At lower 35 ° C. temperature, low temperature stable CAH 10 and C 2 AH 8 is generates phase transition occurs, the intensity stability of the hydraulic cured body produced could no made for not an unwanted ensured. Et al is, but not particularly limited retention time at the maximum temperature, usually about 1-6 hours are preferred. If the curing temperature is below the above range, it may not be possible to produce a high-strength hydraulic cured body efficiently in a short time, and if it exceeds the above range, it may be uneconomical. Also, one day after curing the specimens manufactured under 20 ° C. environment, by carrying out the vapor nutrient raw in a state where the specimen was submerged, hydration of the cured body is further advanced, dense durable It is possible to produce a high-strength hydraulic cured body having excellent properties.
本発明の高強度水硬性硬化体を製造する場合、水結合材比が15質量%以下である。水結合材比が20質量%より大きくなると、本発明の特徴である曲げ強度の向上が認められなくなるため好ましくない。 When manufacturing the high intensity | strength hydraulic hardening body of this invention, a water binder ratio is 15 mass% or less. If the water binder ratio is larger than 20% by mass , an improvement in bending strength, which is a feature of the present invention, is not recognized, which is not preferable.
以下の実施例に示されるように、本発明においては、曲げ強度に優れる高強度水硬性硬化体、及びその製造方法が提供される。使用される材料の種類、量等は、実施例に限定されるものではなく、特許請求の範囲に記載された範囲内で適宜変更し得るものである。 As shown in the following examples, in the present invention, a high-strength hydraulic cured body excellent in bending strength and a method for producing the same are provided. The kind, amount, and the like of the material used are not limited to the examples, and can be appropriately changed within the scope described in the claims.
(実施例1)
結合材にアルミナセメント100質量部に対してシリカフュームを11質量部混和した結合材を使用し、表1に示す配合でセメント組成物を自転・公転式ミキサー(株式会社シンキー社製、商品名「あわとり練太郎」、AR−100型)を用いて調製した。調製後、ただちに20℃環境下で型枠に流し込み成形し、40℃環境下で7日間、湿空養生して供試体を作製した。結果を表1に示す。
Example 1
As a binder, a binder in which 11 parts by mass of silica fume is mixed with 100 parts by mass of alumina cement is used. "Tori Netaro", AR-100 type). Immediately after the preparation, it was cast into a mold in a 20 ° C. environment, and was cured for 7 days in a 40 ° C. environment to prepare a specimen. The results are shown in Table 1.
(使用材料)
アルミナセメント:電気化学工業株式会社製、商品名「アルミナセメント1号」、密度3.00g/cm3、ブレーン値4,700cm2/g
シリカフューム:ノルウェー産、密度2.29g/cm3、BET比表面積19m2/g
減水剤:ポリカルボン酸系高性能減水剤、市販品
砂:セメント協会製、商品名「セメント強さ試験用標準砂」
水:水道水
(Materials used)
Alumina cement: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Alumina cement 1”, density 3.00 g / cm 3 , brain value 4,700 cm 2 / g
Silica fume: Norway, density 2.29 g / cm 3 , BET specific surface area 19 m 2 / g
Water reducing agent: Polycarboxylic acid-based high-performance water reducing agent, commercially available sand: manufactured by Cement Association, trade name "Standard sand for cement strength test"
Water: tap water
(測定方法)
圧縮強度:40℃環境下で7日間養生後、JIS R5201に準じて測定した。
曲げ強度:40℃環境下で7日間養生後、JIS R5201に準じて測定した。
(Measuring method)
Compressive strength: Measured according to JIS R5201 after curing for 7 days in a 40 ° C. environment.
Bending strength: Measured according to JIS R5201 after curing for 7 days in a 40 ° C. environment.
表1より、水結合材比が20%以下であるセメント組成物を、自転・公転方式のミキサーを用いて混練して得た実験No.1−2〜1−4の実施例の水硬性硬化体は、圧縮強度及び曲げ強度が共に高いに対し、水結合材比が30%であるセメント組成物を用いた実験No.1−1の比較例の硬化体は、圧縮強度及び曲げ強度が低く、特に曲げ強度の発現性が十分でないことが分かる。したがって、水結合材比は20%以下とすることが好ましい。また、水結合材比が低くなる程、硬化体の曲げ強度の発現性に優れるから、水結合材比は15%以下とすることがより好ましい。 From Table 1, Experiment No. obtained by kneading a cement composition having a water binder ratio of 20% or less using a rotating / revolving mixer. The hydraulic hardened bodies of Examples 1-2 to 1-4 were high in compressive strength and bending strength, whereas the No. 1 test using a cement composition having a water binder ratio of 30% was used. It can be seen that the cured body of Comparative Example 1-1 has low compressive strength and bending strength, and in particular, the expression of bending strength is not sufficient. Accordingly, the water binder ratio is preferably 20% or less. Moreover, since the expression of the bending strength of a hardening body is excellent, so that a water binder ratio becomes low, it is more preferable that a water binder ratio shall be 15% or less.
(実施例2)
シリカフュームの置換率を変えたこと以外は、実施例1と同様に行なった。結果を表2に示す。
(Example 2)
The same procedure as in Example 1 was performed except that the substitution rate of silica fume was changed. The results are shown in Table 2.
表2より、シリカフュームをアルミナセメント100質量部に対して0〜67質量部の割合で含有する結合材を用いた実験No.2−1、2−3、2−5、No.1−2〜1−4の実施例の硬化体は、圧縮強度及び曲げ強度が共に高いに対し、シリカフュームをアルミナセメント100質量部に対して67質量部を超える割合で含有する結合材を用いた実験2−2、2−4、2−6の比較例の硬化体は、圧縮強度及び曲げ強度が低く、特に曲げ強度の発現性が十分でないことが分かる。したがって、シリカフュームの含有量は、アルミナセメント100質量部に対して0〜67質量部とすることが好ましい。 From Table 2, Experiment No. using the binder containing silica fume at a ratio of 0 to 67 parts by mass with respect to 100 parts by mass of the alumina cement. 2-1, 2-3, 2-5, no. The cured bodies of Examples 1-2 to 1-4 used a binder containing silica fume in a proportion exceeding 67 parts by mass with respect to 100 parts by mass of alumina cement, while both the compressive strength and the bending strength were high. It turns out that the hardening body of the comparative example of experiment 2-2, 2-4, 2-6 has low compressive strength and bending strength, and especially the expression property of bending strength is not enough. Therefore, the content of silica fume is preferably 0 to 67 parts by mass with respect to 100 parts by mass of the alumina cement.
(実施例3)
養生温度を変えて養生91日後の圧縮強度と曲げ強度を加えて測定した以外は、実施例1と同様にして行なった。結果を表3に示す。
(Example 3)
This was carried out in the same manner as in Example 1 except that the measurement was performed by changing the curing temperature and adding the compressive strength and bending strength after 91 days of curing. The results are shown in Table 3.
表3より、養生温度が高い方が、硬化体の圧縮強度及び曲げ強度が高いことが分かるから、養生温度は、35℃以上が好ましく、40℃以上がより好ましい。また、養生温度が40℃以上の場合、水結合材比が低くなる程、硬化体の曲げ強度の発現性に優れるから、水結合材比は15%以下とすることがより好ましい。 From Table 3, it can be seen that the higher the curing temperature is, the higher the compressive strength and bending strength of the cured body. Therefore, the curing temperature is preferably 35 ° C. or higher, more preferably 40 ° C. or higher. Further, when the curing temperature is 40 ° C. or higher, the lower the water binder ratio is, the more excellent the bending strength of the cured body is. Therefore, the water binder ratio is more preferably 15% or less.
以上の実施例に示されるように、アルミナセメントを含有する結合材、骨材、及び水を含有し、水結合材比が20%以下であるセメント組成物を、自転・公転方式のミキサーを用いて混練し、成形後に加熱養生してなる硬化体は、圧縮強度及び曲げ強度が共に高く、有機繊維や鋼繊維を加えなくても曲げ強度の発現性に優れるものであった。 As shown in the above examples, a cement composition containing an alumina cement-containing binder, aggregate, and water and having a water binder ratio of 20% or less is used with a rotating / revolving mixer. The cured product obtained by kneading and heat-curing after molding had high compressive strength and bending strength, and was excellent in expression of bending strength without adding organic fibers or steel fibers.
本発明の高強度水硬性硬化体及びその製造方法は、主に土木・建築分野において使用することができる。 The high-strength hydraulic cured body and the method for producing the same of the present invention can be used mainly in the field of civil engineering and construction.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233953A JP5078009B2 (en) | 2007-09-10 | 2007-09-10 | Ultra-high-strength hardened cement and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233953A JP5078009B2 (en) | 2007-09-10 | 2007-09-10 | Ultra-high-strength hardened cement and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009062254A JP2009062254A (en) | 2009-03-26 |
JP5078009B2 true JP5078009B2 (en) | 2012-11-21 |
Family
ID=40557193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007233953A Active JP5078009B2 (en) | 2007-09-10 | 2007-09-10 | Ultra-high-strength hardened cement and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5078009B2 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2565361B2 (en) * | 1987-12-28 | 1996-12-18 | 電気化学工業株式会社 | Method for producing high strength hydraulically cured product |
JPH0731957A (en) * | 1993-07-16 | 1995-02-03 | Hideo Tomoyasu | Method for recycling collected ash of petroleum combustion boiler |
JP2001163685A (en) * | 1999-12-13 | 2001-06-19 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing inorganic lightweight molding |
JP4180949B2 (en) * | 2003-03-27 | 2008-11-12 | 日本下水道事業団 | Acid resistant cement composition |
JP4709498B2 (en) * | 2004-04-21 | 2011-06-22 | 学校法人早稲田大学 | Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances |
JP2006298661A (en) * | 2005-04-15 | 2006-11-02 | Ube Ind Ltd | Quick hardening hydraulic composition, and mortar and cured product thereof |
JP2006298663A (en) * | 2005-04-15 | 2006-11-02 | Ube Ind Ltd | Repairable mortars and their cured products |
JP2006328321A (en) * | 2005-05-30 | 2006-12-07 | Nippon Shokubai Co Ltd | Method for granulating water-containing soil and agent for treating water-containing soil |
JP2007070153A (en) * | 2005-09-06 | 2007-03-22 | Japan Sewage Works Agency | Highly acid-resistant mortar composition with improved coating workability |
JP2007076972A (en) * | 2005-09-15 | 2007-03-29 | Hokkaido Univ | Self-shrinkage reducing agent |
JP2007160258A (en) * | 2005-12-15 | 2007-06-28 | Daicel Chem Ind Ltd | Mud modifying agent and mud modifying method using the same |
-
2007
- 2007-09-10 JP JP2007233953A patent/JP5078009B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009062254A (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109400076B (en) | High-strength concrete and preparation process thereof | |
TWI478891B (en) | Expandable material and its manufacturing method | |
CN103253916B (en) | Early strength agent for improving strength of phosphogypsum-based cement concrete and preparation method thereof | |
CN110776303B (en) | Magnesium phosphate cement repair mortar and preparation method thereof | |
JP2015231927A (en) | Manufacturing method of cement cured body and cement cured body | |
CN106946530A (en) | Ultra-retardation concrete | |
CN106495646A (en) | Seawater mixes and stirs coral potassium magnesium phosphate cement-based material and preparation method thereof, test piece maintenance method | |
JP5728545B2 (en) | Hardened salt-resistant cement | |
CN1317219C (en) | Method of controlling expansion of steel pipe concrete precisely | |
JP5078009B2 (en) | Ultra-high-strength hardened cement and method for producing the same | |
CN111875329A (en) | Plastering mortar prepared from phosphogypsum-based hydraulic composite cementing material and preparation thereof | |
KR20120119676A (en) | Shrinkage-reducing and ultra high early strength cement binder composition and method for producing secondary goods of precast concrete using the same | |
JP5144849B2 (en) | Cement composition, hardened cement concrete, and method for producing hardened cement concrete | |
JP4462538B2 (en) | Method for producing high crystalline tobermorite content concrete and kneading material for producing high crystalline tobermorite content concrete | |
WO2021246288A1 (en) | Cement admixture and cement composition | |
JP4028966B2 (en) | Method for producing cement-based composition | |
JP5255240B2 (en) | Cement concrete hardened body, method for producing the same, and cement concrete used therefor | |
JP4157546B2 (en) | Quick hardening cement concrete and quick setting cement concrete | |
JP2018002519A (en) | Early-strength admixture and cement composition | |
JP6207992B2 (en) | Cement admixture and cement composition-hardened cement using the same | |
JP4587448B2 (en) | Additive for rapid hardening accelerator and rapid hardening admixture, rapid hardening composition and quick hardening self-leveling composition containing the same | |
JP6401951B2 (en) | Cement composition and method for producing the same | |
JP7574091B2 (en) | High-strength underwater non-segregating mortar composition for high-temperature environments and mortar using the same | |
JP6003900B2 (en) | Cement admixture manufacturing method | |
JP2008050231A (en) | Method for producing calcium oxide-mixed cement and calcium oxide-mixed cement cured body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120823 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5078009 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |