JP5072179B2 - Desalination cleaning method for waste - Google Patents
Desalination cleaning method for waste Download PDFInfo
- Publication number
- JP5072179B2 JP5072179B2 JP2004374001A JP2004374001A JP5072179B2 JP 5072179 B2 JP5072179 B2 JP 5072179B2 JP 2004374001 A JP2004374001 A JP 2004374001A JP 2004374001 A JP2004374001 A JP 2004374001A JP 5072179 B2 JP5072179 B2 JP 5072179B2
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- washing
- water
- waste
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004140 cleaning Methods 0.000 title claims description 70
- 238000000034 method Methods 0.000 title claims description 33
- 239000002699 waste material Substances 0.000 title claims description 25
- 238000010612 desalination reaction Methods 0.000 title description 3
- 239000000460 chlorine Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000005406 washing Methods 0.000 claims description 36
- 229910052801 chlorine Inorganic materials 0.000 claims description 34
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 24
- 238000011033 desalting Methods 0.000 claims description 9
- 229910001424 calcium ion Inorganic materials 0.000 claims description 6
- 230000002328 demineralizing effect Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 1
- 239000000428 dust Substances 0.000 description 26
- 239000002002 slurry Substances 0.000 description 18
- 239000004568 cement Substances 0.000 description 17
- 239000000706 filtrate Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005259 measurement Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000010881 fly ash Substances 0.000 description 6
- 239000002440 industrial waste Substances 0.000 description 6
- 239000002956 ash Substances 0.000 description 5
- 230000005465 channeling Effects 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- -1 and in particular Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical class [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- AGKZZTAKVYWQLA-UHFFFAOYSA-N carbamodithioic acid;piperazine Chemical compound NC(S)=S.C1CNCCN1 AGKZZTAKVYWQLA-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Filtration Of Liquid (AREA)
- Processing Of Solid Wastes (AREA)
Description
本発明は廃棄物の脱塩洗浄方法に係り、特に都市ごみ焼却炉や産業廃棄物焼却炉から排出される焼却灰や飛灰、またはセメントキルンで生成されるダスト等の、塩素を含む廃棄物をセメント原料として利用できるように脱塩洗浄するにあたり、少ない洗浄水量で効率的に脱塩洗浄する方法に関する。 The present invention relates to a method for desalinating and washing waste, and in particular, waste containing chlorine, such as incineration ash and fly ash discharged from municipal waste incinerators and industrial waste incinerators, or dust produced in cement kilns. The present invention relates to a method for efficiently desalinating and washing with a small amount of washing water when performing desalting and washing so that can be used as a raw material for cement.
都市ごみ、産業廃棄物の焼却によって発生する焼却灰や焼却飛灰は、従来、主に埋立処分されてきた。しかしながら、最近では既存の埋立処分場の残余年数が減少してきており、また新規の処分場立地の設置も、環境問題などの制約から難しい状況にある。 Conventionally, incineration ash and incineration fly ash generated by incineration of municipal waste and industrial waste have been mainly landfilled. Recently, however, the remaining years of existing landfill sites have decreased, and it is difficult to set up new landfill sites due to constraints such as environmental problems.
ところで、セメントは、CaO、SiO2、Al2O3、Fe2O3などを主成分としており、これらを含む廃棄物を原料として使用することができるので、これまで種々の廃棄物がその製造原料として利用されている。都市ごみ、産業廃棄物などの焼却飛灰やセメントキルンダストをセメント原料として利用する試みも当然なされている。 By the way, cement is mainly composed of CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 and the like, and wastes containing these can be used as raw materials. It is used as a raw material. Attempts have also been made to use incineration fly ash such as municipal waste and industrial waste and cement kiln dust as cement raw materials.
しかしながら、セメントキルンで生成されるダスト、都市ごみや産業廃棄物の焼却灰や焼却飛灰(以下、特に必要でない限り、これらを総称して単に「ダスト」という)中にはかなり高濃度の塩素が含まれているため、これらのダストをセメント原料として利用すると、得られるセメントも塩素を多量に含むものとなる。 However, in the dust produced in cement kilns, incineration ash and incineration fly ash from municipal waste and industrial waste (hereinafter, collectively referred to simply as “dust” unless otherwise required), a considerably high concentration of chlorine Therefore, when these dusts are used as a raw material for cement, the resulting cement also contains a large amount of chlorine.
セメント中に塩素が多量に含まれている場合には、鉄筋が腐食し易くなるので、鉄筋コンクリートの耐久性が低下する。このため、JIS規格(JIS R5210)では、普通セメント中の塩素含有量を350ppm以下と規定しており、高濃度に塩素を含むダストを普通セメントの原料としてそのまま利用しようとすると、使用できる量はかなり限定されることになる。 When a large amount of chlorine is contained in the cement, the reinforcing bars are easily corroded, so that the durability of the reinforced concrete is lowered. For this reason, the JIS standard (JIS R5210) stipulates that the chlorine content in ordinary cement is 350 ppm or less, and if the dust containing high concentration of chlorine is used as a raw material for ordinary cement, the amount that can be used is It will be quite limited.
そこで、ダストを水で洗浄することにより、塩素を除去した後、セメント原料として利用する技術として、特開平10−76247号公報のような方法が提案されている。
ダストを水で洗浄することにより、塩素を除去することができ、セメント原料として有効利用することが可能となるが、従来の脱塩洗浄方法では、脱塩に用いる洗浄水量が多く、コストがかかるという問題があった。 By washing the dust with water, chlorine can be removed and it can be effectively used as a cement raw material. However, in the conventional desalting and cleaning method, the amount of cleaning water used for desalting is large and costly. There was a problem.
本発明は、上記従来技術の問題点を解決し、少ない洗浄水量で効率的にかつ安定的に脱塩洗浄することができる廃棄物の脱塩洗浄方法を提供することを目的とする。 An object of the present invention is to solve the above-described problems of the prior art and to provide a method for desalinating and washing waste, which can efficiently and stably desalinate and wash with a small amount of washing water.
本発明(請求項1)の廃棄物の脱塩洗浄方法は、塩素を含有する廃棄物を水洗浄した後、フィルタープレスで脱水する廃棄物の脱塩洗浄方法において、脱水後の脱水ケーキを貫通洗浄する方法であって、該貫通洗浄とは、フィルタープレスによる圧搾後、フィルタープレスを開枠することなく、フィルタープレス中の脱水ケーキを洗浄する操作であり、該貫通洗浄排液の液性状の測定値に基いて、該貫通洗浄に用いる洗浄水量を決定する方法であり、該貫通洗浄液の液性状が、電気伝導度、Cl濃度、比重、及びpHよりなる群から選ばれる1種又は2種以上であり、該貫通洗浄液として、Caイオンを0.1〜20重量%含む水溶液を用いることを特徴とする。 The method for demineralizing and washing waste according to the present invention (Claim 1) is a method for dewatering and washing waste containing chlorine, and then dewatering with a filter press. The through-cleaning is an operation of washing the dewatered cake in the filter press without opening the filter press after squeezing by the filter press, and the liquid property of the through-cleaning drainage liquid This is a method for determining the amount of water used for the through cleaning based on the measured value, and the liquid properties of the through cleaning liquid are one or two selected from the group consisting of electrical conductivity, Cl concentration, specific gravity, and pH. more der is, as said through washing liquid, characterized Rukoto using an aqueous solution containing Ca ions 0.1 to 20 wt%.
請求項2の廃棄物の脱塩洗浄方法は、請求項1において、該液性状の測定値の変化率に基いて前記洗浄水量を決定することを特徴とする。 The method for demineralizing and washing waste according to claim 2 is characterized in that, in claim 1, the amount of washing water is determined based on a rate of change of the measured value of the liquid property .
本発明によれば、都市ごみ焼却炉や産業廃棄物焼却炉から排出される焼却灰や飛灰、またはセメントキルンで生成されるダスト等の、塩素を含む廃棄物を水洗浄して脱塩、脱水して得られた脱水ケーキを更に貫通洗浄することにより、脱水ケーキ中に含まれる塩素含有水を排出することができ、これにより、脱水ケーキの塩素含有量を低減することができることから、少ない洗浄水量で効率的にかつ安定的に脱塩洗浄して、塩素含有量の少ない処理物を得ることができる。 According to the present invention, wastes containing chlorine, such as incineration ash and fly ash discharged from municipal waste incinerators and industrial waste incinerators, or dust generated in cement kilns, are washed with water and desalted. By further penetrating and washing the dewatered cake obtained by dewatering, the chlorine-containing water contained in the dewatered cake can be discharged, thereby reducing the chlorine content of the dewatered cake, and thus less It is possible to obtain a treated product having a low chlorine content by efficiently and stably performing desalting and washing with the amount of washing water.
本発明で行う貫通洗浄は脱水ケーキに含まれる塩素含有水を除去する有効な方法ではあるが、貫通洗浄が十分でないと脱水ケーキ中に塩素が残存することになる。また、脱水ケーキ中の塩素含有水が除去された後も貫通洗浄を続けると、脱水ケーキ中の可溶成分が溶出して脱水ケーキに穴があき、洗浄水がチャネリングする可能性がある。洗浄水のチャネリングが起きると、脱水ケーキ含水率が高くなり脱水ケーキのハンドリング性が悪くなるなどの不具合が生じる。 The through-cleaning performed in the present invention is an effective method for removing the chlorine-containing water contained in the dehydrated cake. However, if the through-cleaning is not sufficient, chlorine remains in the dehydrated cake. Further, if the through-cleaning is continued even after the chlorine-containing water in the dehydrated cake is removed, there is a possibility that soluble components in the dehydrated cake are eluted and a hole is formed in the dehydrated cake, so that the washed water is channeled. When washing water is channeled, the moisture content of the dehydrated cake increases and the handling properties of the dehydrated cake deteriorates.
本発明の廃棄物の脱塩洗浄方法に従って、貫通洗浄工程において、貫通洗浄排液の液性状を測定することにより、貫通洗浄の終了時点をリアルタイムで把握し、その測定結果を用いて貫通洗浄に用いる洗浄水量を決定することにより、効率的な貫通洗浄を行って、安定した脱塩洗浄を行うことができる。 According to the method for desalinating and cleaning waste of the present invention , in the through-cleaning process, by measuring the liquid properties of the through-cleaning drainage liquid, the end point of the through-cleaning is grasped in real time, and the measurement result is used for through-cleaning By determining the amount of cleaning water to be used, efficient through cleaning can be performed and stable desalting cleaning can be performed.
この方法は、処理状況を遠隔操作で監視して行うこともでき、工業的に有利である。 This method is industrially advantageous because it can be performed by remotely monitoring the processing status.
以下に本発明の廃棄物の脱塩洗浄方法の実施の形態を詳細に説明する。図1は、本発明の廃棄物の脱塩洗浄方法の実施の形態を示す処理工程図である。 Embodiments of the method for demineralizing and washing waste according to the present invention will be described in detail below. FIG. 1 is a process chart showing an embodiment of the waste desalting / cleaning method of the present invention.
図示の如く、本発明においては、まず、脱塩洗浄対象であるダスト、即ち、都市ごみ焼却炉や産業廃棄物焼却炉から排出される焼却灰や飛灰、またはセメントキルンで生成されるダスト等の、塩素を含む廃棄物を水洗浄する。即ち、ダストに水を加えて攪拌するなどして、塩素分を溶出させたスラリーを調製する。この水洗浄に用いる洗浄水量は、ダストの塩素含有量によっても異なるが、塩素分を効率的に溶出させるために、ダストに対して100〜5000重量%、即ち、L(水)/S(ダスト)比=1〜50程度とすることが好ましい。 As shown in the figure, in the present invention, first, dust to be desalted and cleaned, that is, incinerated ash and fly ash discharged from a municipal waste incinerator or industrial waste incinerator, or dust generated in a cement kiln, etc. The waste containing chlorine is washed with water. That is, a slurry in which chlorine is eluted is prepared by adding water to the dust and stirring the mixture. The amount of cleaning water used for this water cleaning varies depending on the chlorine content of the dust, but in order to elute the chlorine content efficiently, it is 100 to 5000% by weight, that is, L (water) / S (dust ) Ratio = 1 to about 50 is preferable.
なお、このような水洗浄で塩素分を溶出させたスラリーには、ダスト中の重金属類も溶出しているため、重金属類を沈殿させるための処理を行ったスラリーを用いても良い。この重金属類の沈殿分離処理としては、後述の実施例2の工程(2)に示すような、キレート剤や酸化剤、凝集剤による処理が挙げられる。 In addition, since the heavy metal in dust is also eluted in the slurry from which the chlorine content is eluted by such water washing, a slurry that has been subjected to a treatment for precipitating the heavy metal may be used. Examples of the precipitation separation treatment of heavy metals include treatment with a chelating agent, an oxidizing agent, and an aggregating agent as shown in step (2) of Example 2 described later.
次いで、水洗浄により得られたダストの水スラリーをフィルタープレスして圧搾された脱水ケーキを得る。この脱水ケーキ中は塩素イオンを含有する水を含む。即ち、ダスト中の塩素分が十分に溶出している場合に、脱水ケーキ中の塩素イオンの大部分は脱水ケーキの保有水中に存在している。 Next, the water slurry of dust obtained by washing with water is filter pressed to obtain a pressed dehydrated cake. This dehydrated cake contains water containing chlorine ions. That is, when the chlorine content in the dust is sufficiently eluted, most of the chlorine ions in the dehydrated cake are present in the retained water of the dehydrated cake.
そこで、本発明では、圧搾された脱水ケーキに対して貫通洗浄を行って、この塩素イオン含有水を脱水ケーキ中から洗い出す。この貫通洗浄とは、フィルタープレスによる圧搾後、フィルタープレスを開枠することなく、フィルタープレス中の脱水ケーキを洗浄する操作である。 Therefore, in the present invention, the squeezed dehydrated cake is subjected to through-cleaning to wash out this chlorine ion-containing water from the dehydrated cake. This through cleaning is an operation of cleaning the dewatered cake in the filter press without opening the filter press after squeezing with the filter press.
この貫通洗浄に用いる水は、Caイオン含有水である。脱水ケーキ中には多量のCaが残存しているため、貫通洗浄を行うと脱水ケーキからCaイオンが貫通洗浄液に溶出してくる。したがって、貫通洗浄液としてCaイオン含有水を用いるとCaイオンの溶出を抑制でき、脱水ケーキに穴があいて貫通洗浄水がチャネリングすることを抑制できる。Caイオン含有水としては、Caイオンを0.1〜20重量%含む水溶液を用いる。 Water used in the through washing, Ru C a ion-containing water der. Since a large amount of Ca remains in the dehydrated cake, when through cleaning is performed, Ca ions are eluted from the dehydrated cake into the through cleaning liquid. Therefore, when Ca ion-containing water is used as the penetration cleaning liquid, elution of Ca ions can be suppressed, and it is possible to suppress the penetration cleaning water from channeling due to a hole in the dewatered cake . The C a ion containing water, a Ca ion Ru with 0.1 to 20 wt% including water.
このように貫通洗浄を行うことにより、脱水ケーキに含まれる塩素含有水を排出することができ、それによって脱水ケーキの塩素含有量を低減することができるが、前述の如く、この貫通洗浄が十分でないと脱水ケーキ中に塩素が残存することになるものの、塩素含有水が除去された後も貫通洗浄を続けると、脱水ケーキ中の可溶成分が溶出して脱水ケーキに穴があき、洗浄水がチャネリングすることにより、脱水ケーキ含水率が高くなり脱水ケーキのハンドリング性が悪くなる。また、洗浄水量の無駄も生じる。 By performing through-cleaning in this way, the chlorine-containing water contained in the dewatered cake can be discharged, thereby reducing the chlorine content of the dehydrated cake. However, as described above, this through-cleaning is sufficient. Otherwise, chlorine will remain in the dehydrated cake, but if the through-cleaning is continued even after the chlorine-containing water has been removed, soluble components in the dehydrated cake will elute, and the dehydrated cake will have holes and will be washed. By channeling, the moisture content of the dehydrated cake is increased and the handling property of the dehydrated cake is deteriorated. Moreover, the amount of washing water is wasted.
そこで、本発明においては、貫通洗浄排液の液性状、例えば、電気伝導度、Cl濃度、比重、pHのうちの一つ以上を連続的又は間欠的に測定し、これらの値が急激な変化を見せた時点で、貫通洗浄を終了させる。このように貫通洗浄排液の液性状の測定をリアルタイムで行って、貫通洗浄の終了を制御することにより、適切な洗浄水量で、効果的に洗浄を行って、塩素含有量及び含水量が共に少ない脱水ケーキを得ることができる。 Therefore, in the present invention, one or more of the liquid properties of the through-cleaning drainage liquid, for example, electrical conductivity, Cl concentration, specific gravity, and pH, are measured continuously or intermittently, and these values change rapidly. at the time it showed, Ru to end a through cleaning. In this way, by measuring the liquid properties of the through-cleaning drainage in real time and controlling the end of the through-cleaning, the cleaning is effectively performed with an appropriate amount of cleaning water, and both the chlorine content and the water content are Less dehydrated cake can be obtained.
本発明で用いられる貫通洗浄排液の液性状の測定装置は、一般に市販されている測定器(例えば、電気伝導度計、Cl濃度計、比重計、pHメーター)を用いることができる。これらの測定装置のうち、原理的にはCl濃度計を用いることが最も好ましいが、一般的には感度や応答速度に優れる電気伝導度計を好適に用いることができる。 A commercially available measuring device (for example, an electric conductivity meter, a Cl concentration meter, a specific gravity meter, a pH meter) can be used as the liquid property measuring device for the through-cleaning drainage used in the present invention. Among these measuring devices, it is most preferable to use a Cl concentration meter in principle, but generally an electric conductivity meter having excellent sensitivity and response speed can be preferably used.
このような本発明の廃棄物の脱塩洗浄方法で得られた脱水ケーキは、塩素含有量が著しく少なく、セメント原料等として有効に用いることができる。 The dehydrated cake obtained by such a method for demineralizing and washing waste according to the present invention has an extremely low chlorine content and can be used effectively as a cement raw material or the like.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
なお、以下において、脱塩洗浄対象の塩素含有ダストとして、セメントキルンから排出されたAダストを用いた。このダストの成分は表1に示す通りである。 In the following, A dust discharged from the cement kiln was used as the chlorine-containing dust to be desalted and washed. The dust components are as shown in Table 1.
比較例1
次の処理手順で脱塩洗浄を行った。
(1) Aダスト10.0kgに脱塩水を30.0L加えて、約6時間攪拌し、表2に示す性状のL/S=3のスラリーを調製した。
(2) (1)で調製したAダストの水スラリーを、表2に示すフィルタープレス条件でフィルタープレスで圧搾し、圧搾後に表2に示す貫通洗浄条件で貫通洗浄を行った。
(3) フィルタープレス時の圧搾濾液を採取し、濾液のpH、電気伝導度、Cl濃度等を測定し、測定結果を表2,3に示した。
(4) 貫通洗浄後の脱水ケーキを採取し、塩素含有量、含水率等の測定を行い、測定結果を表2に示した。また、貫通洗浄時の貫通洗浄濾液(貫通洗浄排液)を分割して採取し、濾液のpH、電気伝導度、Cl濃度等を測定し、測定結果を表3に示した。
Comparative Example 1
Desalination washing was performed according to the following procedure.
(1) 30.0 L of demineralized water was added to 10.0 kg of A dust and stirred for about 6 hours to prepare a slurry of L / S = 3 having the properties shown in Table 2.
(2) The water slurry of A dust prepared in (1) was squeezed with a filter press under the filter press conditions shown in Table 2, and after squeezing, through-cleaning was performed under the through-cleaning conditions shown in Table 2.
(3) The pressed filtrate at the time of filter pressing was collected, and the pH, electrical conductivity, Cl concentration and the like of the filtrate were measured. The measurement results are shown in Tables 2 and 3.
(4) The dewatered cake after through-cleaning was collected and measured for chlorine content, moisture content, etc., and the measurement results are shown in Table 2. Further, the through-cleaning filtrate (through-cleaning drainage) at the time of through-cleaning was divided and collected, and the pH, electrical conductivity, Cl concentration, etc. of the filtrate were measured, and the measurement results are shown in Table 3.
比較例2
比較例1において、圧搾脱水後の貫通洗浄を行わず、圧搾脱水後に脱水ケーキを採取したこと以外は、比較例1と同様の方法で処理を行い、各測定結果を表2に示した。
Comparative Example 2
In Comparative Example 1, the process was performed in the same manner as in Comparative Example 1 except that the through-cleaning after the press dehydration was not performed and the dehydrated cake was collected after the press dehydration, and the measurement results are shown in Table 2.
表2より、貫通洗浄を行わなかった比較例2の脱水ケーキのCl含有量は3.86重量%であるのに対して、貫通洗浄を行った比較例1のCl含有量は0.989重量%であり、本発明法により、大幅にCl含有量を低減できていることがわかる。 From Table 2, the Cl content of the dehydrated cake of Comparative Example 2 that was not subjected to through cleaning was 3.86% by weight, whereas the Cl content of Comparative Example 1 that was subjected to through cleaning was 0.989 wt. It can be seen that the Cl content can be greatly reduced by the method of the present invention.
ただし、比較例1では、貫通洗浄工程において、洗浄液のCl濃度、電気伝導度が低下した後も貫通洗浄を続けたために、脱水ケーキに小さな穴があきチャネリングが起こった。そのため、比較例1の脱水ケーキの含水率は40.5重量%となり、比較例2の含水率36.3重量%よりも高くなった。 However, in Comparative Example 1, in the through cleaning process, since the through cleaning was continued even after the Cl concentration and electric conductivity of the cleaning liquid were reduced, channeling occurred with a small hole in the dehydrated cake. Therefore, the water content of the dehydrated cake of Comparative Example 1 was 40.5% by weight, which was higher than the water content of Comparative Example 2 of 36.3% by weight.
実施例1
次の処理手順で脱塩洗浄を行った。
(1) Aダスト3.0kgに脱塩水を60.0L加えて、約6時間攪拌し、L/S=20のスラリーを調製した。
(2) (1)で調製したAダストの水スラリー60Lに対して、炭酸ガスを6.0L/minの流量で90分間通弁し、スラリーのpHを10.0まで低下させた。その後、ピペラジンジチオカルバミン酸系キレート剤50mg/Lと、塩化第一鉄塩水溶液(FeCl2として31重量%濃度)100mg/Lと、凝集剤(ポリアクリルアミドとアクリル酸Naの共重合物)2mg/Lとを添加して処理を行い、その後、デカンテーションで固液分離した。
(3) Aダスト2.55kgに、(2)で採取した上澄水を51.0L加え、L/S=20のスラリー(第2回濃縮スラリー)を調製した。この第2回濃縮スラリーに対して(2)と同様の処理を行い、再度デカンテーションで固液分離した。
(4) Aダスト2.15kgに、(3)で採取した上澄水を43.0L加え、L/S=20のスラリー(第3回濃縮スラリー)を調製した。この第3回濃縮スラリーに対して(2)と同様の処理を行い、再々度デカンテーションで固液分離した。
(5) Aダスト1.80kgに、(4)で採取した上澄水を36.0L加え、L/S=20のスラリー(第4回濃縮スラリー)を調製した。この第4回濃縮スラリーに対して、(2)と同様の処理を行い、デカンテーションで固液分離し、上澄水を除去した濃縮分(最終濃縮物)を得た。この最終濃縮物の性状は表4に示す通りである。
(6) この最終濃縮物を表4に示すフィルタープレスの条件で、フィルタープレスで圧搾し、圧搾後に表4に示す条件で貫通洗浄を行った。このとき貫通洗浄濾液の電気伝導度、Cl濃度、pHを断続的に測定し、電気伝導度、Cl濃度、pHが急激に低下した時点で貫通洗浄を終了した。
(7) フィルタープレス時の圧搾濾液を採取し、濾液のpH、電気伝導度、Cl濃度等を測定し、測定結果を表4,5に示した。
(8) 貫通洗浄後の脱水ケーキを採取し、塩素含有量、含水率等の測定を行い、測定結果を表4に示した。また、貫通洗浄濾液(貫通洗浄排液)を採取し、濾液のpH、電気伝導度、Cl濃度等を測定し、測定結果を表5に示した。また、貫通洗浄濾液量と電気伝導度との関係を図2に示した。
Example 1
Desalination washing was performed according to the following procedure.
(1) 60.0 L of demineralized water was added to 3.0 kg of A dust, and the mixture was stirred for about 6 hours to prepare a slurry of L / S = 20.
(2) Carbon dioxide gas was passed through 60 L of A dust water slurry prepared in (1) at a flow rate of 6.0 L / min for 90 minutes to lower the pH of the slurry to 10.0. Thereafter, piperazine dithiocarbamate chelating agent 50 mg / L, ferrous chloride aqueous solution (31 wt% concentration as FeCl 2 ) 100 mg / L, flocculant (copolymer of polyacrylamide and Na acrylate) 2 mg / L Were added, and then the solid and liquid were separated by decantation.
(3) 51.0 L of the supernatant collected in (2) was added to 2.55 kg of A dust to prepare a slurry of L / S = 20 (second concentrated slurry). The second concentrated slurry was subjected to the same treatment as (2), and again solid-liquid separated by decantation.
(4) 43.0 L of the supernatant water collected in (3) was added to 2.15 kg of A dust to prepare a slurry of L / S = 20 (third concentrated slurry). The third concentrated slurry was treated in the same manner as (2), and solid-liquid separation was performed again by decantation.
(5) 36.0 L of the supernatant water collected in (4) was added to 1.80 kg of A dust to prepare a slurry of L / S = 20 (fourth concentrated slurry). The fourth concentrated slurry was subjected to the same treatment as (2), and was subjected to solid-liquid separation by decantation to obtain a concentrated component (final concentrate) from which the supernatant water was removed. The properties of this final concentrate are as shown in Table 4.
(6) This final concentrate was squeezed with a filter press under the conditions of the filter press shown in Table 4, and through-washing was performed under the conditions shown in Table 4 after the squeezing. At this time, the electrical conductivity, Cl concentration, and pH of the through-cleaning filtrate were intermittently measured, and the through-cleaning was terminated when the electrical conductivity, Cl concentration, and pH dropped rapidly.
(7) The pressed filtrate at the time of the filter press was collected, and the pH, electrical conductivity, Cl concentration, etc. of the filtrate were measured, and the measurement results are shown in Tables 4 and 5.
(8) The dewatered cake after through-cleaning was collected and measured for chlorine content, moisture content, etc., and the measurement results are shown in Table 4. Further, the through-cleaning filtrate (through-cleaning drainage) was collected, and the pH, electrical conductivity, Cl concentration, etc. of the filtrate were measured, and the measurement results are shown in Table 5. Further, the relationship between the amount of the through-cleaning filtrate and the electric conductivity is shown in FIG.
比較例3
実施例1において、貫通洗浄濾液の電気伝導度、Cl濃度、pHに関係なく、貫通洗浄濾液量が実施例1の3倍になるまで貫通洗浄を実施したこと以外は、実施例1と同様の方法で処理を行い、各測定結果を表4,5及び図2に示した。
Comparative Example 3
In Example 1 , it was the same as Example 1 except that the through-cleaning was performed until the amount of the through-cleaning filtrate was three times that of Example 1 , regardless of the electrical conductivity, Cl concentration, and pH of the through-cleaning filtrate. Processing was performed by the method, and each measurement result is shown in Tables 4 and 5 and FIG.
表4より明らかなように、比較例3では、貫通洗浄工程において洗浄液のCl濃度、電気伝導度が低下した後も貫通洗浄を続けたために、脱水ケーキに小さな穴があきチャネリングが起こった。そのため、含水率は43.7重量%となっているが、Cl含有率は0.057重量%と低下している。これに対して、貫通洗浄濾液のCl濃度、電気伝導度が低下した時に貫通洗浄を終了した実施例1は、脱水ケーキのCl含有量も0.076重量%と低く、かつ含水率も39.1重量%と低い。 As is apparent from Table 4, in Comparative Example 3, since the through cleaning was continued even after the Cl concentration and the electrical conductivity of the cleaning liquid were lowered in the through cleaning process, channeling occurred with small holes in the dewatered cake. Therefore, the water content is 43.7% by weight, but the Cl content is reduced to 0.057% by weight. On the other hand, in Example 1 in which through cleaning was completed when the Cl concentration and electrical conductivity of the through cleaning filtrate were reduced, the Cl content of the dehydrated cake was as low as 0.076% by weight, and the water content was also 39. As low as 1% by weight.
Claims (2)
脱水後の脱水ケーキを貫通洗浄する方法であって、
該貫通洗浄とは、フィルタープレスによる圧搾後、フィルタープレスを開枠することなく、フィルタープレス中の脱水ケーキを洗浄する操作であり、
該貫通洗浄排液の液性状の測定値に基いて、該貫通洗浄に用いる洗浄水量を決定する方法であり、
該貫通洗浄液の液性状が、電気伝導度、Cl濃度、比重、及びpHよりなる群から選ばれる1種又は2種以上であり、
該貫通洗浄液として、Caイオンを0.1〜20重量%含む水溶液を用いることを特徴とする廃棄物の脱塩洗浄方法。 In the desalting and washing method for waste containing chlorine-containing waste and then dewatering with a filter press,
A method of penetrating and washing a dehydrated cake after dehydration,
The through-cleaning is an operation of washing the dewatered cake in the filter press without opening the filter press after squeezing with the filter press,
Based on the measured value of the liquid property of the through-cleaning drainage, a method for determining the amount of cleaning water used for the through-cleaning,
Liquid nature of the through washing liquid, electrical conductivity, Cl concentration, specific gravity, and Ri der least one selected from the group consisting of pH,
As the through washing solution, desalting method of cleaning waste characterized by Rukoto using an aqueous solution containing Ca ions 0.1 to 20 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004374001A JP5072179B2 (en) | 2004-12-24 | 2004-12-24 | Desalination cleaning method for waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004374001A JP5072179B2 (en) | 2004-12-24 | 2004-12-24 | Desalination cleaning method for waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006175410A JP2006175410A (en) | 2006-07-06 |
JP5072179B2 true JP5072179B2 (en) | 2012-11-14 |
Family
ID=36730009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004374001A Expired - Lifetime JP5072179B2 (en) | 2004-12-24 | 2004-12-24 | Desalination cleaning method for waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5072179B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4329906B2 (en) * | 2005-02-02 | 2009-09-09 | 現代建設株式會社 | Method and system for removing chlorine compounds contained in bottom ash |
JP4836204B2 (en) * | 2007-12-18 | 2011-12-14 | 栗田工業株式会社 | Ash washing dehydration equipment |
JP5460988B2 (en) * | 2008-03-12 | 2014-04-02 | 株式会社フジタ | Waste pre-treatment method |
JP2009297639A (en) * | 2008-06-12 | 2009-12-24 | Ohbayashi Corp | Method for treating incineration ash, and system for treating incineration ash |
JP6014409B2 (en) * | 2012-08-07 | 2016-10-25 | 株式会社神鋼環境ソリューション | Fly ash treatment method and treatment apparatus |
JP6279664B2 (en) * | 2016-07-13 | 2018-02-14 | 株式会社神鋼環境ソリューション | Fly ash treatment method and fly ash treatment apparatus |
EP3556447A1 (en) * | 2018-04-16 | 2019-10-23 | Bayer AG | Filtrate measurement-based monitoring of a filtration process |
WO2020053944A1 (en) * | 2018-09-10 | 2020-03-19 | 太平洋セメント株式会社 | Washing treatment method for chlorine-containing powder, and washing treatment system for chlorine-containing powder |
JP7069483B2 (en) * | 2018-11-30 | 2022-05-18 | 株式会社石垣 | How to clean the dewatered cake of the filter press |
KR20220161265A (en) * | 2020-03-31 | 2022-12-06 | 미츠비시 가스 가가쿠 가부시키가이샤 | Manufacturing method of recycled resin |
JP7465184B2 (en) | 2020-09-10 | 2024-04-10 | 川崎重工業株式会社 | Apparatus and method for desalination of charcoal |
CN115180791A (en) * | 2022-07-12 | 2022-10-14 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for washing and desalting iron-containing acidic sludge |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2759697A (en) * | 1996-05-20 | 1997-12-09 | Apex Residue Recovery Inc. | Treatment of fly ash/apc residues including lead salt recovery |
JP2006110508A (en) * | 2004-10-18 | 2006-04-27 | Ebara Corp | Method and apparatus for washing and dehydrating incineration ash and/or cement kiln dust |
-
2004
- 2004-12-24 JP JP2004374001A patent/JP5072179B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006175410A (en) | 2006-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5072179B2 (en) | Desalination cleaning method for waste | |
Mohan et al. | Removal and recovery of metal ions from acid mine drainage using lignite—a low cost sorbent | |
JP6503898B2 (en) | Processing method of incineration ash | |
JP4839653B2 (en) | Method for treating waste containing chlorine and heavy metals | |
CN104741371A (en) | Contaminated land remediation method | |
JP3689094B2 (en) | Purification method for heavy metal contaminated soil | |
JP3924981B2 (en) | Waste material processing method for cement | |
JP5359197B2 (en) | Waste chromium removal method and chromium removal apparatus | |
JP4870423B2 (en) | Heavy metal treatment material and heavy metal treatment method using the same | |
JP4253203B2 (en) | How to remove fluorine from gypsum | |
JP5286698B2 (en) | Hazardous element adsorbent | |
JP2011224464A (en) | Method of treating combustion ash | |
JP2004290777A (en) | Arsenic-containing water treatment method | |
JP2975571B2 (en) | How to remove heavy metals from sludge | |
JP2008055395A (en) | Method of treating burned ash | |
JP6895058B2 (en) | Wastewater reduction treatment method | |
JP4820504B2 (en) | Fly ash treatment method | |
JP4301483B2 (en) | Boron removal method | |
JP2004290967A (en) | Wastewater treatment method | |
CN112552921A (en) | Heavy metal contaminated soil remediation material, preparation method and soil remediation method | |
JP2002126694A (en) | Method for treatment waste | |
JP2002126693A (en) | Method for treatment waste | |
JP2011183305A (en) | Method of treating incineration ash | |
Ried | Heavy metal removal from sewage sludge: practical experiences with acid treatment | |
JP5754819B2 (en) | Calcium elution prevention method at final disposal site |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100308 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101104 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101126 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20101224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5072179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |