JP5071706B2 - HVOF spraying equipment - Google Patents
HVOF spraying equipment Download PDFInfo
- Publication number
- JP5071706B2 JP5071706B2 JP2006277286A JP2006277286A JP5071706B2 JP 5071706 B2 JP5071706 B2 JP 5071706B2 JP 2006277286 A JP2006277286 A JP 2006277286A JP 2006277286 A JP2006277286 A JP 2006277286A JP 5071706 B2 JP5071706 B2 JP 5071706B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- film
- mixing
- chamber
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
Description
本発明は、溶射法によって、Tiの酸化を抑えて、耐食性に優れた緻密なTi皮膜を形成するものであるTi皮膜の形成方法に用いられるHVOF溶射装置に関し、より詳しくは、導管(2)の一端部に、燃料ガスを燃焼してノズル(4)より他端に向かってジェット流を噴射する燃焼室(1)を設け、前記導管(2)の途中に噴射用の粒子を前記ジェット流に混合する粒子混合部(3)が設けてあるHVOF溶射装置に関するものである。 The present invention relates to an HVOF thermal spraying apparatus used in a Ti film forming method for suppressing the oxidation of Ti by a thermal spraying method to form a dense Ti film having excellent corrosion resistance. More specifically, the present invention relates to a conduit (2). Is provided with a combustion chamber (1) that burns fuel gas and injects a jet stream from the nozzle (4) toward the other end, and injects particles for injection into the conduit (2). The present invention relates to an HVOF thermal spraying apparatus in which a particle mixing part (3) for mixing is provided.
チタンは優れた耐食性を有するために海洋構造物やプラントの耐食材として重要であり、また、生体に対しての毒性がなく、インプラント材にも用いられている。この場合には、適当なポア(100ミクロン以上)が骨との結合に有効であるとされている。 Titanium is important as an anticorrosive material for offshore structures and plants because it has excellent corrosion resistance, and is not toxic to living organisms, and is also used as an implant material. In this case, an appropriate pore (100 microns or more) is said to be effective for bonding with bone.
溶射法によってこのような特徴のあるチタンの皮膜をコーティングする方法については従来より検討されてきているが、チタンは高温で酸素、窒素との反応性が高く、通常の溶射装置では大気中で溶射すると酸化物や窒化物が大部分で緻密度の低い膜しかできないという問題がある。 Although a method for coating a titanium film having such characteristics by a thermal spraying method has been studied in the past, titanium is highly reactive with oxygen and nitrogen at a high temperature. As a result, there is a problem that most of oxides and nitrides can be formed only with a low-density film.
現在、チタンを金属としてコーティングする溶射法には減圧プラズマ溶射とコールドスプレーが知られている。減圧プラズマ溶射では、チャンバー内を不活性減圧雰囲気にして、原料のチタン粉末をプラズマジェットによって溶融して成膜する。この方法は、実際には、チタン合金製生体インプラントにポーラスチタン層を付与するために使用されている。しかし、この減圧プラズマ溶射では、皮膜の品質は高いが、コストも非常に高いという問題がある。 At present, low-pressure plasma spraying and cold spray are known as thermal spraying methods for coating titanium as a metal. In the low pressure plasma spraying, the inside of the chamber is set to an inert low pressure atmosphere, and the raw material titanium powder is melted by a plasma jet to form a film. This method is actually used to apply a porous titanium layer to a titanium alloy bioimplant. However, this low-pressure plasma spraying has a problem that the quality of the coating is high but the cost is very high.
一方、コールドスプレーでは電気ヒータで500℃程度まで加熱した不活性ガスを加圧して超音速ノズルから噴出し、この中に原料粉末を供給し、加速して成膜する。この方法によれば、AlやCuなどの軟質金属では緻密な膜が得られる。しかしながら、チタンではポーラスな膜しか得られない。 On the other hand, in cold spray, an inert gas heated to about 500 ° C. with an electric heater is pressurized and ejected from a supersonic nozzle, and raw material powder is supplied into the nozzle and accelerated to form a film. According to this method, a dense film can be obtained with a soft metal such as Al or Cu. However, only a porous film can be obtained with titanium.
本発明は、以上のとおりの背景から、従来の溶射法によるTi皮膜の形成方法の問題点を解決し、大気中においてより経済性、生産性の良好なプロセスとして、溶射法によって、緻密な膜からポーラスなものまで幅広く組織制御を可能とし、特に、Tiの酸化を抑えて緻密な金属TiもしくはTi合金の皮膜を形成することのできるようにするためのHVOF溶射装置を提供することを課題としている。 The present invention solves the problem of the conventional method of forming a Ti film by the thermal spraying method from the background as described above, and as a process that is more economical and productive in the atmosphere, a dense film is formed by the thermal spraying method. An object is to provide an HVOF thermal spraying device that can control a wide range of materials from porous to porous, and in particular, can form a dense metal Ti or Ti alloy film while suppressing oxidation of Ti. Yes.
本発明は、上記の課題を解決するものとして、導管(2)の一端部に、燃料ガスを燃焼してノズル(4)より他端に向かってジェット流を噴射する燃焼室(1)を設け、前記導管(2)内のジェット流に噴射用の粒子を混合する粒子混合部(3)が設けてあるHVOF溶射装置において、前記燃焼室(1)のノズル(4)側に、冷却用ガスを混合する混合室(5)が設けてあり、前記混合室(5)に前記冷却用ガスの導入管が接続されており、前記冷却用ガスの導入管の軸方向が前記導管(2)の軸方向に垂直とされており、前記燃焼室に前記混合室が直結されており、前記燃焼室の径に対して前記混合室の径が小さくされていることを特徴とする。
In order to solve the above problems, the present invention is provided with a combustion chamber (1) that burns fuel gas and injects a jet flow from the nozzle (4) toward the other end at one end of the conduit (2). In the HVOF thermal spraying apparatus provided with a particle mixing section (3) for mixing particles for injection into the jet flow in the conduit (2) , a cooling gas is provided on the nozzle (4) side of the combustion chamber (1 ). the mixing chamber for mixing (5) is provided with, the mixed-chamber (5) to the inlet pipe before Symbol cooling gas are connected, axially said conduit inlet pipe of the cooling gas ( It is perpendicular to the axial direction of 2), the mixing chamber is directly connected to the combustion chamber, and the diameter of the mixing chamber is smaller than the diameter of the combustion chamber .
このようにすることで、従来は困難とされた粒子の溶融温度未満における超音速噴射が可能になり、さらに低い温度域での超音速噴射も可能にしたものである。
つまり、不活性ガスの供給量を制御することで、燃料の供給量をも制御され、不活性ガスを増大すれば燃料が減少し、逆に不活性ガスの供給量を減少すれば燃料が増大することとなり、不活性ガスによる燃焼ガスの希釈のみならず、燃料の増減によっても温度制御を行うことができた。
By doing so, it is possible to perform supersonic injection below the melting temperature of particles, which has been difficult in the past, and to perform supersonic injection in a lower temperature range.
In other words, by controlling the amount of inert gas supplied, the amount of fuel supplied can also be controlled. If the amount of inert gas increases, the amount of fuel decreases. Conversely, if the amount of inert gas supplied decreases, the amount of fuel increases. As a result, the temperature could be controlled not only by diluting the combustion gas with an inert gas but also by increasing or decreasing the fuel.
灯油と酸素との混合ガスを燃焼させて生成させた高速フレームにより金属、合金等の粉末を加熱して基材表面に高速で衝突させる高速フレーム溶射(HVOF)法について、発明者は実験的検証とその改良を詳しく検討し、すでにこれまでに、粉末供給後に不活性ガスを混合するガスシュラウド(Gasshroud)部を通過させる方法とその装置について特許を取得している(特許3612568)。このような知見をも踏まえてのTi皮膜の形成に関しての詳しい検討から、Tiの酸化を抑えて、耐食性にも優れた緻密なTi皮膜を形成するための手段として、粒子の溶融温度未満での超音速噴射が有効でありそれを実現する装置を提供することができた。 The inventor experimentally verified the high-speed flame spraying (HVOF) method in which a powder such as metal or alloy is heated by a high-speed flame generated by burning a gas mixture of kerosene and oxygen and collides with the substrate surface at high speed. In detail, a patent has already been obtained for a method of passing a gas shroud portion for mixing an inert gas after supplying powder and a device therefor (Patent 3612568). From a detailed examination on the formation of Ti film based on such knowledge, as a means for suppressing the oxidation of Ti and forming a dense Ti film excellent in corrosion resistance, it is less than the melting temperature of particles. The supersonic injection is effective, and an apparatus for realizing it can be provided.
本装置により耐食性構造材や生体関連材料等として有用な金属Ti(チタン)またはTi合金の皮膜を、Tiの酸化を抑え、耐食性に優れ、しかも緻密な組織を有する、酸素含有量1mass%以下、気孔率2vol%以下という特徴のある皮膜が形成可能である。 With this apparatus, a film of metal Ti (titanium) or Ti alloy useful as a corrosion-resistant structural material or a bio-related material is suppressed in oxidation of Ti, has excellent corrosion resistance, and has a dense structure, an oxygen content of 1 mass% or less, A film having a characteristic of porosity of 2 vol% or less can be formed.
また耐食性をさらに顕著に向上させることも可能な被膜を得ることも可能である。 It is also possible to obtain a coating film that can further significantly improve the corrosion resistance.
本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。 The present invention has the features as described above, and an embodiment thereof will be described below.
本発明の高速フレーム溶射(以下「HVOF」とする)においては、その装置手段としては、たとえば図1に例示したように、灯油等の燃料と酸素ガスの混合による燃焼が行われる燃焼室(Chamber)(1)と、その出口のノズル(4)を介して連続する導管(2)と、この導管(2)内において、燃焼ガスに対して金属TiまたはTi合金の粉末(Powder)が供給されて加熱されるバレル(Barrel)部とを有し、全体として冷却水により冷却されるようにしたものがその基本的な構成となる。このような構成の装置を用いたTi皮膜の形成方法では、上記粉末の供給時のガス中の酸素濃度を5vol%に、また、ガス温度を1500℃以下に制御する。本発明は、この制御を、燃焼ガス中への不活性ガスの混合により行う。 In the high-speed flame spraying (hereinafter referred to as “HVOF”) of the present invention, as its device means, for example, as illustrated in FIG. 1, a combustion chamber (Chamber) in which combustion is performed by mixing fuel such as kerosene and oxygen gas is performed. ) (1), a continuous conduit (2) via the nozzle (4) at its outlet, and in this conduit (2), powder of metal Ti or Ti alloy is supplied to the combustion gas. The basic structure is that which has a barrel portion heated and is cooled by cooling water as a whole. In the Ti film forming method using the apparatus having such a configuration, the oxygen concentration in the gas when supplying the powder is controlled to 5 vol%, and the gas temperature is controlled to 1500 ° C. or lower. In the present invention, this control is performed by mixing an inert gas into the combustion gas.
図1の装置構成の例では、燃焼室(Chamber)(1)内にガス混合室(5)を設け、ここに不活性ガスが供給混合されるようにしている。このための装置構成やその細部については各種の態様が考慮されてよいことは言うまでもない。 In the example of the apparatus configuration of FIG. 1, a gas mixing chamber (5) is provided in a combustion chamber (Chamber) (1), and an inert gas is supplied and mixed therein. It goes without saying that various aspects may be taken into consideration for the device configuration and the details thereof.
不活性ガスの混合により、ガス温度と酸素濃度の制御が可能とされる。 The gas temperature and oxygen concentration can be controlled by mixing the inert gas.
そして本発明では、図1に示した基材(Substrate)への加熱された粒子の衝突速度を500m/s以上とする。 In the present invention, the collision speed of the heated particles on the substrate (Substrate) shown in FIG. 1 is set to 500 m / s or more.
酸素濃度が5vol%を超える場合、ガス温度が1500℃を超える場合、さらには衝突速度が500m/s未満の場合には、上記のとおりのTiの酸化を抑えることや、緻密な組織を得ることは難しくなる。一方、酸素濃度の下限については、高速フレームを生成させる燃焼反応後の酸素含有割合として可能な限り低いことが望ましい。ガス温度は、Ti金属またはその合金粒子の加熱状態と、その流速を左右する。その下限については装置のスケールや粉末の供給料、粉末の種類等によっても相違するが、一般的には900℃以上とすることが目安となる。 When the oxygen concentration exceeds 5 vol%, when the gas temperature exceeds 1500 ° C., and when the collision speed is less than 500 m / s, the oxidation of Ti as described above is suppressed and a dense structure is obtained. Becomes difficult. On the other hand, the lower limit of the oxygen concentration is desirably as low as possible as the oxygen content ratio after the combustion reaction that generates the high-speed flame. The gas temperature affects the heating state of the Ti metal or its alloy particles and its flow rate. The lower limit varies depending on the scale of the apparatus, the powder supply, the type of powder, and the like, but in general, the lower limit is 900 ° C. or more.
以上のことを考慮して、実際の操作では、装置スケール等をも考慮することで、不活性ガスの供給量、供給速度が定められることになる。 In consideration of the above, in the actual operation, the supply amount and supply speed of the inert gas are determined by considering the apparatus scale and the like.
不活性ガスの種類については、たとえば代表的にはN2(窒素ガス)や、Ar(アルゴン)、He(ヘリウム)等の希ガスが好適なものとして示される。また、条件によってはCO2等の他のものであってもよい。 As for the kind of the inert gas, for example, a rare gas such as N 2 (nitrogen gas), Ar (argon), or He (helium) is typically shown as a preferable one. Moreover, other things such as CO 2 may be used depending on conditions.
そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。 Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.
灯油を燃料とするHVOF溶射装置を図1に示すように構成し、中段にガス混合室(5)として、窒素を混合するための混合チャンバを設け、チタン粉末を投入する位置でのガス温度、組成、流速の制御を可能とした。これによりチタン粉末投入位置でのガス温度を3000℃から800℃まで、酸素濃度を15%から1%にまで制御可能とした。 The HVOF thermal spraying apparatus using kerosene as a fuel is configured as shown in FIG. 1, a gas mixing chamber (5) is provided in the middle stage, a mixing chamber for mixing nitrogen is provided, and the gas temperature at the position where titanium powder is charged, The composition and flow rate can be controlled. As a result, the gas temperature at the titanium powder charging position can be controlled from 3000 ° C. to 800 ° C., and the oxygen concentration from 15% to 1%.
以上の装置を用い、次の表1の条件によって金属Ti皮膜を基材としての鉄の表面に形成した。 Using the above apparatus, a metal Ti film was formed on the surface of iron as a base material under the conditions shown in Table 1 below.
表2は、窒素混合時のガス温度とバレル内流速の計算値を例示したものである。この際には、表3の事項が仮定されている。 Table 2 exemplifies the calculated values of the gas temperature and the in-barrel flow rate during nitrogen mixing. At this time, the items in Table 3 are assumed.
図2は、窒素ガス流量と混合ガス温度との関係を例示したものである。窒素ガスを導入することによりガス温度が低下し、窒素ガスの導入によってガス温度の制御が可能であることがわかる。 FIG. 2 illustrates the relationship between the nitrogen gas flow rate and the mixed gas temperature. It can be seen that the introduction of nitrogen gas lowers the gas temperature, and the introduction of nitrogen gas allows the gas temperature to be controlled.
図3は、N2(窒素ガス)流量(slm)と図1の溶射距離(Spraydistance):Dとを変化させた場合の形成されたTi皮膜の組織断面の写真とともに、細孔径と気孔率との関係を例示した図である。 FIG. 3 shows the pore diameter and the porosity along with a photograph of the cross section of the formed Ti film when the N 2 (nitrogen gas) flow rate (slm) and the spray distance (Spray distance) of FIG. 1 are changed. It is the figure which illustrated the relationship.
窒素ガス流量が500slm未満ではガス温度、酸素濃度ともに高いために、膜中のチタン粒子の境界が酸化によって変色しているのが認められるが、1000slmでは酸化がかなり抑制され、1500、2000ではほとんど認められない。他方、皮膜の緻密度は窒素ガス流量を2000にすると顕著に低下する。従って、窒素流量1000から1500slm近辺で溶射距離を180mm近辺にした場合が酸化も少なく、緻密度の高いチタン皮膜が得られることがわかる。 When the nitrogen gas flow rate is less than 500 slm, both the gas temperature and the oxygen concentration are high. Therefore, it can be seen that the boundaries of the titanium particles in the film are discolored by oxidation, but the oxidation is considerably suppressed at 1000 slm, and almost 1500 and 2000. unacceptable. On the other hand, when the nitrogen gas flow rate is 2000, the denseness of the film is significantly reduced. Therefore, it can be seen that when the spraying distance is about 180 mm in the vicinity of the nitrogen flow rate of 1000 to 1500 slm, there is little oxidation and a highly dense titanium film can be obtained.
たとえば以上のような結果を基礎として、Ti粉末の投入口部でのTi粉末の供給に際してのガス中での酸素ガス濃度、ガス温度(Tg)、そしてTi皮膜中の酸素含有量との関係を検証し、その結果を例示したものが図4である。図5は、基材へのTi粒子の衝突速度とガス温度(Tg)並びに気孔率との関係を例示した図である。なお、Tpは、二色温度計によって測定したTi粒子の表面温度を示している。 For example, based on the above results, the relationship between the oxygen gas concentration in the gas, the gas temperature (Tg), and the oxygen content in the Ti film when supplying the Ti powder at the inlet of the Ti powder is shown. FIG. 4 illustrates the result of verification. FIG. 5 is a diagram illustrating the relationship between the collision speed of Ti particles to the substrate, the gas temperature (Tg), and the porosity. In addition, Tp has shown the surface temperature of Ti particle | grains measured with the two-color thermometer.
たとえば以上の結果から、Tiの酸化を抑えて、緻密なTi皮膜組織を、皮膜中の酸素含有量1mass%以下、気孔率2vol%以下の優れた特性を有するものとして形成するためには、ガス中の酸素濃度5vol%以下、ガス温度1500℃以下、基材への粒子衝突速度500m/s以上の条件とすることが望ましいことが確認された。 For example, from the above results, in order to suppress the oxidation of Ti and form a dense Ti film structure having excellent characteristics with an oxygen content of 1 mass% or less and a porosity of 2 vol% or less in the film, It was confirmed that it is desirable that the oxygen concentration is 5 vol% or less, the gas temperature is 1500 ° C. or less, and the particle collision speed to the substrate is 500 m / s or more.
また、最も緻密となる条件で800ミクロン厚まで溶射し、そのまま人工海水中で浸漬試験したところ、図6に示したように、3日で皮膜表面に基材の鉄から生成した赤錆が点状に現れた。皮膜に貫通気孔が存在するためと考えられる。 In addition, when sprayed to a thickness of 800 microns under the most dense conditions and subjected to an immersion test in artificial sea water as it is, red rust generated from the base iron on the surface of the film in 3 days as shown in FIG. Appeared in. This is thought to be due to the presence of through pores in the film.
そこで、この800ミクロンの皮膜を600ミクロン厚まで研磨して人工海水中で1ケ月浸漬試験した。その結果、図6に示したように、まったく腐食されないことが確認された。交流インピーダンス法によって測定した腐食抵抗値も105Ωcm2以上の値を維持した。 Therefore, this 800-micron film was polished to a thickness of 600 microns and immersed in artificial seawater for one month. As a result, as shown in FIG. 6, it was confirmed that no corrosion occurred. The corrosion resistance value measured by the AC impedance method also maintained a value of 10 5 Ωcm 2 or more.
(1) 燃焼室
(2) 導管
(3) 粒子混合部
(4) ノズル
(5) 不活性ガス混合室
(1) Combustion chamber (2) Conduit (3) Particle mixing section (4) Nozzle (5) Inert gas mixing chamber
Claims (1)
前記燃焼室(1)のノズル(4)側に、冷却用ガスを混合する混合室(5)が設けてあり、
前記混合室(5)に前記冷却用ガスの導入管が接続されており、
前記冷却用ガスの導入管の軸方向が前記導管(2)の軸方向に垂直とされており、
前記燃焼室に前記混合室が直結されており、
前記燃焼室の径に対して前記混合室の径が小さくされていることを特徴とするHVOF溶射装置。
A combustion chamber (1) for combusting fuel gas and injecting a jet flow from the nozzle (4) toward the other end is provided at one end of the conduit (2), and the jet flow in the conduit (2) is used for injection. An HVOF thermal spraying apparatus provided with a particle mixing part (3) for mixing the particles of
A mixing chamber (5) for mixing a cooling gas is provided on the nozzle (4) side of the combustion chamber (1 ) ,
And introducing pipe before Symbol cooling gas is connected before Symbol mixed-chamber (5),
The axial direction of the cooling gas introduction pipe is perpendicular to the axial direction of the conduit (2) ;
The mixing chamber is directly connected to the combustion chamber;
The HVOF thermal spraying apparatus characterized in that the diameter of the mixing chamber is smaller than the diameter of the combustion chamber .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006277286A JP5071706B2 (en) | 2006-10-11 | 2006-10-11 | HVOF spraying equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006277286A JP5071706B2 (en) | 2006-10-11 | 2006-10-11 | HVOF spraying equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005093291A Division JP5098109B2 (en) | 2005-03-28 | 2005-03-28 | Film formation method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007029950A JP2007029950A (en) | 2007-02-08 |
JP2007029950A5 JP2007029950A5 (en) | 2009-11-05 |
JP5071706B2 true JP5071706B2 (en) | 2012-11-14 |
Family
ID=37789842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006277286A Expired - Lifetime JP5071706B2 (en) | 2006-10-11 | 2006-10-11 | HVOF spraying equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5071706B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5098109B2 (en) * | 2005-03-28 | 2012-12-12 | 独立行政法人物質・材料研究機構 | Film formation method |
JPWO2009011342A1 (en) * | 2007-07-13 | 2010-09-24 | 独立行政法人物質・材料研究機構 | Spray gun and its control system |
JP5185641B2 (en) * | 2008-01-30 | 2013-04-17 | 日鉄住金ハード株式会社 | High-speed gas spraying device, plasma spraying device, and injection port member |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330798A (en) * | 1992-12-09 | 1994-07-19 | Browning Thermal Systems, Inc. | Thermal spray method and apparatus for optimizing flame jet temperature |
JP3612568B2 (en) * | 2001-10-09 | 2005-01-19 | 独立行政法人物質・材料研究機構 | Metal film forming method and spraying apparatus by HVOF spray gun |
WO2004045777A1 (en) * | 2002-11-19 | 2004-06-03 | Huehne Erwin Dieter | Low-temperature high-velocity flame spraying system |
JP3978512B2 (en) * | 2003-08-28 | 2007-09-19 | 株式会社フジコー | High speed spraying device with variable spraying temperature |
-
2006
- 2006-10-11 JP JP2006277286A patent/JP5071706B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2007029950A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3044182B2 (en) | Method for producing an oxide dispersed MCrAlY based coating | |
JP3115512B2 (en) | Method for dispersing carbide particles in MCrAlY based coating | |
JP5802435B2 (en) | Combustion cold spray and method thereof | |
Ozgurluk | Investigation of oxidation and hot corrosion behavior of molybdenum coatings produced by high-velocity oxy-fuel coating method | |
WO2004033747A1 (en) | Method of forming metal coating with hvof spray gun and thermal spray apparatus | |
JP3612568B2 (en) | Metal film forming method and spraying apparatus by HVOF spray gun | |
JP2007308737A (en) | Corrosion prevention method for welds | |
JP2007138946A (en) | Method for coating article and its product | |
EP1390549B1 (en) | Metal-zirconia composite coating | |
CN101187000A (en) | A process for spraying bronze on steel surface with oxygen-acetylene subsonic flame | |
JP2002506926A (en) | Formation of sliding bearing lining | |
JP5071706B2 (en) | HVOF spraying equipment | |
JP5098109B2 (en) | Film formation method | |
JP5017675B2 (en) | Film manufacturing method | |
WO2008068942A1 (en) | Method of warm spray coating and particle therefor | |
Karaoglanli | Effects of plastic deformation on isothermal oxidation behavior of CoNiCrAlY coatings | |
Porcayo-Calderon et al. | Corrosion performance of Fe-Al intermetallic coatings in 1.0 M NaOH solution | |
US20110097504A1 (en) | Method for the Anti-Corrosion Processing of a Part by Deposition of a Zirconium and/or Zirconium Alloy Layer | |
JP2008174787A (en) | Thermal spray coating formation method | |
Dewald et al. | Cubic titanium trialuminide thermal spray coatings—a review | |
WO2019065721A1 (en) | Method for producing plated black-heart malleable cast iron member, plated black-heart malleable cast iron member, and pipe fitting | |
JP4863487B2 (en) | Warm spray method | |
Ikeh et al. | Application of Functional Coating in Delaying the Corrosion of Titanium Alloys: A Review | |
JP7375809B2 (en) | Method for manufacturing plated black core malleable cast iron member and plated black core malleable cast iron member | |
Boulos et al. | Combustion Spraying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5071706 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |