[go: up one dir, main page]

JP5066468B2 - Biaxially oriented thin film for oxide superconducting wire and method for producing the same - Google Patents

Biaxially oriented thin film for oxide superconducting wire and method for producing the same Download PDF

Info

Publication number
JP5066468B2
JP5066468B2 JP2008069943A JP2008069943A JP5066468B2 JP 5066468 B2 JP5066468 B2 JP 5066468B2 JP 2008069943 A JP2008069943 A JP 2008069943A JP 2008069943 A JP2008069943 A JP 2008069943A JP 5066468 B2 JP5066468 B2 JP 5066468B2
Authority
JP
Japan
Prior art keywords
oxide
thin film
biaxially oriented
intermediate layer
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008069943A
Other languages
Japanese (ja)
Other versions
JP2009221572A (en
Inventor
智則 渡部
直二 鹿島
匡見 森
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2008069943A priority Critical patent/JP5066468B2/en
Publication of JP2009221572A publication Critical patent/JP2009221572A/en
Application granted granted Critical
Publication of JP5066468B2 publication Critical patent/JP5066468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、酸化物超電導線材用の2軸配向薄膜及びその製造方法に関する。   The present invention relates to a biaxially oriented thin film for an oxide superconducting wire and a method for producing the same.

希土類系酸化物超電導体の線材化には、テンプレートになる2軸配向した中間層、すなわち、薄膜が必要である。この理由は以下の通りである。酸化物超電導体は、臨界電流密度が低いことが知られており、これは酸化物超電導体の結晶自体に電気的な異方性が存在することが原因となっている。特に、酸化物超電導体はそのa軸方向とb軸方向に電気を流しやすく、c軸方向には電気を流しにくい。このため、酸化物超電導体を基材上に形成してこれを超電導体として使用するためには、前記基材上に結晶配向性の良好な状態の酸化物超電導体を形成して、且つ、電気を流す方向に酸化物超電導体の結晶のa軸又はb軸を配向させて、その他の方向に酸化物超伝導体のc軸を配向させる必要がある。このため、基材上に結晶配向性の良好な酸化物超導電層を形成することが行われている。   In order to make a rare earth oxide superconductor into a wire, a biaxially oriented intermediate layer, that is, a thin film, which becomes a template is required. The reason is as follows. Oxide superconductors are known to have a low critical current density, which is due to the presence of electrical anisotropy in the oxide superconductor crystals themselves. In particular, an oxide superconductor can easily flow electricity in the a-axis direction and the b-axis direction, and hardly flows in the c-axis direction. For this reason, in order to form an oxide superconductor on a substrate and use it as a superconductor, an oxide superconductor having a good crystal orientation is formed on the substrate, and It is necessary to orient the a-axis or b-axis of the oxide superconductor crystal in the direction in which electricity flows and to orient the c-axis of the oxide superconductor in the other direction. For this reason, forming an oxide superconducting layer with good crystal orientation on a substrate has been performed.

ここで、IBAD法(イオンビームアシスト蒸着法)により形成された蛍石構造酸化物もしくはパイロクロア構造の酸化物中間層(すなわち、薄膜)は高度な2軸配向を示し、その上に形成された希土類系酸化物超電導層は良好な超電導特性を示す。   Here, an oxide intermediate layer (that is, a thin film) having a fluorite structure oxide or a pyrochlore structure formed by an IBAD method (ion beam assisted vapor deposition method) exhibits a high degree of biaxial orientation, and a rare earth formed thereon. The system oxide superconducting layer exhibits good superconducting properties.

ところが、これらの物質の中間層(すなわち、薄膜)は、成膜速度が遅いため、製造時間を要し、製造コストがかかる問題がある。
本発明の目的は、成膜速度が速いため、製造時間が短くなり、製造コストを低減することができる酸化物超電導線材用の2軸配向薄膜を提供することにある。
However, an intermediate layer (that is, a thin film) of these substances has a problem that it takes a manufacturing time and a manufacturing cost because the film forming speed is slow.
An object of the present invention is to provide a biaxially oriented thin film for an oxide superconducting wire capable of shortening the manufacturing time and reducing the manufacturing cost because the film forming speed is high.

又、本発明の他の目的は、成膜速度が速いため、製造時間が短くなり、製造コストを低減することができる酸化物超電導線材用の2軸配向薄膜の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing a biaxially oriented thin film for an oxide superconducting wire that can reduce the production time because the film formation rate is high. .

上記問題点を解決するために、本発明の酸化物超電導線材用の2軸配向薄膜は、基材上に積層されるとともに、希土類酸化物超電導層酸化物の下に配置されて中間層を形成する酸化物超電導線材用の2軸配向薄膜において、前記薄膜が2軸配向性を有するシーライト構造の酸化物からなり、前記シーライト構造の酸化物が、YNbO ,GdNbO の中から少なくとも1つ選ばれたものであることを特徴とする。 In order to solve the above problems, the biaxially oriented thin film for an oxide superconducting wire of the present invention is laminated on a base material and disposed under a rare earth oxide superconducting layer oxide to form an intermediate layer. in biaxially oriented film for the oxide superconducting wire which, Ri Do oxides of celite structure wherein the thin film has a biaxial orientation, oxide of celite structure, at least from the YNbO 4, GdNbO 4 wherein the one selected der Rukoto ones were.

又、前記シーライト構造の酸化物上に、蛍石構造の酸化物層が形成された積層構造を前記中間層として有していてもよい。 The intermediate layer may have a laminated structure in which an oxide layer having a fluorite structure is formed on the oxide having the celite structure.

又、前記シーライト構造の酸化物上に、パイロクロア構造の酸化物層が形成された積層構造を前記中間層として有していてもよい。
又、本発明の酸化物超電導線材用の2軸配向薄膜の製造方法は、基材上に積層されるとともに、希土類酸化物超電導層酸化物の下に配置されて中間層となる、酸化物超電導線材用の2軸配向薄膜の製造方法において、シーライト構造の酸化物をイオンビームアシスト蒸着法により前記基材上に積層して、前記薄膜を形成し、前記シーライト構造の酸化物が、YNbO ,GdNbO の中から少なくとも1つ選ばれたものであることを特徴とする。
The intermediate layer may have a laminated structure in which a pyrochlore oxide layer is formed on the celite oxide.
In addition, the method for producing a biaxially oriented thin film for an oxide superconducting wire according to the present invention includes an oxide superconducting layer that is laminated on a base material and disposed under an oxide of a rare earth oxide superconducting layer. In the method for manufacturing a biaxially oriented thin film for a wire, an oxide having a celite structure is laminated on the substrate by an ion beam assisted deposition method to form the thin film, and the oxide having the celite structure is formed of YNbO. 4 or GdNbO 4 is selected .

又、本発明の酸化物超電導線材用の2軸配向薄膜の製造方法は、前記シーライト構造の酸化物上に、蛍石構造の酸化物層を形成して前記中間層にするようにしてもよい。
又、本発明の酸化物超電導線材用の2軸配向薄膜の製造方法は、前記シーライト構造の酸化物上に、パイロクロア構造の酸化物層を形成して前記中間層にするようにしてもよい。
In the method for producing a biaxially oriented thin film for an oxide superconducting wire according to the present invention, an oxide layer having a fluorite structure may be formed on the oxide having the celite structure to form the intermediate layer. Good.
In the method for producing a biaxially oriented thin film for an oxide superconducting wire according to the present invention, a pyrochlore structure oxide layer may be formed on the celite structure oxide to form the intermediate layer. .

本発明の酸化物超電導線材用の2軸配向薄膜によれば、薄膜の形成時に薄膜の成膜速度が速いため、製造時間が短くなり、製造コストを低減することができる。
本発明の酸化物超電導線材用の2軸配向薄膜の製造方法によれば、薄膜の形成時に薄膜の成膜速度が速いため、製造時間が短くなり、製造コストを低減することができる。
According to the biaxially oriented thin film for an oxide superconducting wire of the present invention, since the deposition rate of the thin film is high when the thin film is formed, the production time is shortened and the production cost can be reduced.
According to the method for producing a biaxially oriented thin film for an oxide superconducting wire of the present invention, since the deposition rate of the thin film is high when the thin film is formed, the production time is shortened and the production cost can be reduced.

以下、本発明を具体化した実施形態を図1、図2を参照して説明する。
酸化物超電導線材の基材10は、その材質としては、ハステロイ(登録商標)、銀、白金、ステンレス鋼等を挙げることができ、形状としては長尺状のテープ、板材等を挙げることができる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As the material of the base material 10 of the oxide superconducting wire, Hastelloy (registered trademark) , silver, platinum, stainless steel and the like can be exemplified, and the shape can be exemplified by a long tape, a plate material and the like. .

前記基材10に積層された中間層20、すなわち、薄膜は、シーライト構造の酸化物が好ましく、なかでも、YNbO,GdNbOの少なくとも1つが選ばれることが好ましい。これらのシーライト構造の酸化物は、蛍石構造に比較して対称性が低く、欠陥を内包しても結晶を維持することが可能であり、かつ、成膜温度をパイロクロア構造や蛍石構造の酸化物の酸化物より高温にすることが可能であるため、膜の成長速度を増大させることが可能である。しかも、シーライト構造の酸化物は、結晶内での陽イオンの配置が蛍石構造やパイロクロア構造の酸化物とほぼ同様であるため、これらのIBAD中間層(すなわち、薄膜)と同様に平坦でクラックを生じにくい利点を損なわず、製造時において製造速度を増大させることが可能となる。 The intermediate layer 20, that is, the thin film laminated on the base material 10 is preferably an oxide having a celite structure, and among them, at least one of YNbO 4 and GdNbO 4 is preferably selected. These oxides of the celite structure are less symmetrical than the fluorite structure, can maintain crystals even if they contain defects, and the film formation temperature can be changed to a pyrochlore structure or a fluorite structure. It is possible to increase the growth rate of the film because the temperature can be higher than that of the oxide. Moreover, the oxide of celite structure is almost the same as the oxide of fluorite structure or pyrochlore structure in the arrangement of cations in the crystal, so that it is as flat as these IBAD intermediate layers (ie, thin films). It is possible to increase the production speed at the time of production without impairing the advantage that cracks are hardly generated.

また、中間層20をシーライト構造の酸化物上に、蛍石構造もしくはパイロクロア構造の酸化物層を形成した積層構造とすると、成膜初期の配向性をシーライト構造酸化物で向上させた後、蛍石構造もしくはパイロクロア構造の酸化物層によって平坦性を向上させることが可能となる。   Further, when the intermediate layer 20 has a laminated structure in which an oxide layer having a fluorite structure or a pyrochlore structure is formed on an oxide having a celite structure, the orientation at the initial stage of film formation is improved with the celite structure oxide. The flatness can be improved by an oxide layer having a fluorite structure or a pyrochlore structure.

イオンビームアシスト蒸着法(IBAD法)は、前記基材10に対して、斜め方向からイオンガンによりイオンを照射しながら、ターゲットもしくは蒸発源から発生した粒子を基材10上に堆積させる方法である。イオンビームアシスト蒸着法は、図2に示すように真空容器40内で行われるものであり、該真空容器40内に前記基材10、ターゲット(蒸発源)50、アシストイオンビーム用イオンガン60が配置される。真空容器40の内部は、真空雰囲気で保持可能になっているとともに、雰囲気ガスが真空容器内を真空などの低圧状態で、かつ、アルゴンガス等の不活性ガス雰囲気又は酸素を含む不活性ガス雰囲気下で、基材ホルダ15に支持された基材10上に中間層、すなわち、IBAD中間層の形成が行われる。   The ion beam assisted vapor deposition method (IBAD method) is a method in which particles generated from a target or an evaporation source are deposited on the base material 10 while irradiating the base material 10 with an ion gun from an oblique direction. The ion beam assisted vapor deposition method is performed in a vacuum container 40 as shown in FIG. 2, and the base material 10, target (evaporation source) 50, and ion gun 60 for assist ion beam are arranged in the vacuum container 40. Is done. The inside of the vacuum vessel 40 can be maintained in a vacuum atmosphere, and the atmosphere gas is in a low-pressure state such as a vacuum inside the vacuum vessel, and an inert gas atmosphere such as argon gas or an inert gas atmosphere containing oxygen Underneath, an intermediate layer, that is, an IBAD intermediate layer is formed on the base material 10 supported by the base material holder 15.

前記ターゲット(蒸発源)50は、目的とする多結晶薄膜を形成するために用意されるものであり、目的の多結晶と同一組成或いは近似組成のものが用いられ、ターゲットホルダ55にて真空容器40内で保持される。本実施形態では、前述したシーライト構造の酸化物がターゲット50として使用される。   The target (evaporation source) 50 is prepared for forming a target polycrystalline thin film, and has the same composition as that of the target polycrystalline or an approximate composition. 40. In the present embodiment, the aforementioned oxide having a celite structure is used as the target 50.

成膜物質粒子の発生には、直流スパッター、RFスパッター、イオンビームスパッターや電子ビームが用いられる。いずれの手法でも、本発明の効果を得ることが可能であるが、本実施形態では、シーライト構造の酸化物粒子の成膜レートを制御しやすいイオンビームスパッターを採用している。スパッター用イオンビーム照射装置70は、図示しない蒸発源を備え、かつ、該蒸発源の近傍に電極を備えて構成されている。前記電極には、スパッター加速電圧が印加される。スパッター用イオンビーム照射装置70は前記蒸発源から発生した原子又は分子の一部をイオン化し、イオン化された粒子を前記電極で発生させた電界で制御することにより、イオンビームとして、ターゲット50に対して照射することにより、ターゲット50から酸化物をたたき出して基材10に蒸着させる。   DC sputtering, RF sputtering, ion beam sputtering, and electron beam are used to generate film forming material particles. Any method can obtain the effects of the present invention, but in this embodiment, ion beam sputtering is used in which the film formation rate of oxide particles having a celite structure is easily controlled. The ion beam irradiation device 70 for a sputter includes an evaporation source (not shown), and includes an electrode in the vicinity of the evaporation source. A sputtering acceleration voltage is applied to the electrode. The ion beam irradiation device for sputtering 70 ionizes a part of atoms or molecules generated from the evaporation source, and controls the ionized particles with an electric field generated by the electrodes, thereby forming an ion beam on the target 50. By irradiating, the oxide is knocked out from the target 50 and deposited on the base material 10.

なお、基材ホルダ15には、基材10を加熱する図示しないヒータが設けられている。
アシストイオンビーム用イオンガン60は、前記スパッター用イオンビーム照射装置70と同様の構成を備えており、前記基材10に対する入射角度θ(すなわち、基材10に酸化物が蒸着する面に対する垂線Lとイオンガン60の中心線Oとのなす角度)が45〜60度の範囲となるように傾けて配置される。イオンガン60によって照射するイオンビームは、ヘリウム、ネオン、アルゴン、キセノン、クリプトンなどの希ガスのイオンビーム、又はそれらと酸素イオンの混合ビーム等であればよい。イオンガン60が備える電極にはアシストビーム加速電圧が印加されることにより、前記イオンビームが制御される。
The base material holder 15 is provided with a heater (not shown) for heating the base material 10.
The ion gun 60 for assist ion beam has the same configuration as the ion beam irradiation apparatus 70 for sputtering, and an incident angle θ with respect to the base material 10 (that is, a perpendicular line L with respect to the surface on which the oxide is deposited on the base material 10) The angle formed with the center line O of the ion gun 60 is tilted so as to be in the range of 45 to 60 degrees. The ion beam irradiated by the ion gun 60 may be an ion beam of a rare gas such as helium, neon, argon, xenon, or krypton, or a mixed beam of these and oxygen ions. The ion beam is controlled by applying an assist beam acceleration voltage to the electrode of the ion gun 60.

基材10上に中間層20(すなわち、薄膜)が形成された後は、図1に示すように常法により、希土類系酸化物超電導層30を堆積して形成する。
希土類系酸化物超電導層30は、例えば、YBaCu、GdBaCu、SmBaCu等を挙げることができる。希土類系酸化物超電導層30の詳細説明は、本発明の要部ではないため、説明を省略する。
After the intermediate layer 20 (that is, a thin film) is formed on the substrate 10, a rare earth oxide superconducting layer 30 is deposited and formed by a conventional method as shown in FIG.
Rare earth-based oxide superconducting layer 30, for example, can be cited YBa 2 Cu 3 O x, GdBa 2 Cu 3 O x, the SmBa 2 Cu 3 O x or the like. Since the detailed description of the rare earth oxide superconducting layer 30 is not the main part of the present invention, the description is omitted.

以下に、実施例1〜4、及び比較例1〜4を説明する。実施例1,2、及び比較例1〜4は、ともに前記イオンビームアシスト蒸着法で、基材上にIBAD中間層(すなわち、薄膜)を形成し、そのIBAD中間層の成膜時間、及びX線回折装置により成膜されたX線半幅値φを計測した。   Below, Examples 1-4 and Comparative Examples 1-4 are demonstrated. In each of Examples 1 and 2 and Comparative Examples 1 to 4, an IBAD intermediate layer (that is, a thin film) was formed on a substrate by the ion beam assisted deposition method, and the film formation time of the IBAD intermediate layer and X The X-ray half width value φ formed by the line diffractometer was measured.

図3、図4は、実施例と比較例の中間層(IBAD中間層)の成膜時間と、品質(X線半幅値φ)wとの関係を示している。図3中、縦軸は成膜されたIBAD中間層のX線半幅値φ、横軸はIBAD中間層の成膜時間である。   3 and 4 show the relationship between the film formation time of the intermediate layer (IBAD intermediate layer) of the example and the comparative example and the quality (X-ray half width value φ) w. In FIG. 3, the vertical axis represents the X-ray half width value φ of the IBAD intermediate layer formed, and the horizontal axis represents the film formation time of the IBAD intermediate layer.

なお、図3中、実施例1及び実施例2の場合は、成膜中において、60分、90分、120分でX線半幅値を計測した。又、実施例2では、成膜中において、60分、90分、120分、150分でX線半幅値を計測した。比較例3,4では、成膜中において、60分、120分、150分でX線半幅値を計測した。   In FIG. 3, in the case of Example 1 and Example 2, X-ray half-width values were measured at 60 minutes, 90 minutes, and 120 minutes during film formation. In Example 2, the X-ray half-width value was measured at 60 minutes, 90 minutes, 120 minutes, and 150 minutes during film formation. In Comparative Examples 3 and 4, X-ray half-width values were measured at 60 minutes, 120 minutes, and 150 minutes during film formation.

又、図4中、縦軸はX線幅値Δφ、横軸はIBAD中間層の成膜時間である。なお、実施例3及び実施例4の場合は、IBAD中間層の成膜時間には、第1段階と第2段階の成膜時間の合計を含む。図4中、実施例3では、第2段階での成膜中において、60分、150分、180分でX線半幅値を計測した。又、実施例4では、第2段階での成膜中において、60分、120分、180分、220分でX線半幅値を計測した。 Further, in FIG. 4, the vertical axis represents the X-ray half width value [Delta] [phi, the horizontal axis is the film formation time of the IBAD intermediate layer. In the case of Example 3 and Example 4, the film formation time of the IBAD intermediate layer includes the total of the film formation time of the first stage and the second stage. In FIG. 4, in Example 3, X-ray half-width values were measured at 60 minutes, 150 minutes, and 180 minutes during the film formation in the second stage. In Example 4, the X-ray half-width value was measured at 60 minutes, 120 minutes, 180 minutes, and 220 minutes during the film formation in the second stage.

実施例1〜4、及び比較例1〜4の、試験条件は下記の通りである。
(実施例1)
ターゲット及び中間層の材質:YNbO
アシストビーム加速電圧 :400V
スパッター加速電圧 :1100V
加熱温度 :290℃
(実施例2)
ターゲット及び中間層の材質:GdNbO
アシストビーム加速電圧 :400V
スパッター加速電圧 :1100V
加熱温度 :290℃
(実施例3)
実施例3は、実施例1と同様に2軸配向薄膜を形成し、その上にさらに蛍石構造の酸化物層を形成して積層構造とするものである。
Test conditions of Examples 1 to 4 and Comparative Examples 1 to 4 are as follows.
Example 1
Target and intermediate layer material: YNbO 4
Assist beam acceleration voltage: 400V
Sputtering acceleration voltage: 1100V
Heating temperature: 290 ° C
(Example 2)
Target and intermediate layer material: GdNbO 4
Assist beam acceleration voltage: 400V
Sputtering acceleration voltage: 1100V
Heating temperature: 290 ° C
(Example 3)
In Example 3, a biaxially oriented thin film is formed in the same manner as in Example 1, and an oxide layer having a fluorite structure is further formed thereon to form a laminated structure.

第1段階として、実施例1と同様にYNbOを形成する。第1段階の条件は実施例1と同様である。
ターゲット及び中間層の材質:YNbO
アシストビーム加速電圧 :400V
スパッター加速電圧 :1100V
加熱温度 :290℃
第2段階としては、前記第1段階での成膜時間(30分間)の後、以下の成膜条件で成膜した。
As a first step, YNbO 4 is formed as in the first embodiment. The conditions for the first stage are the same as in Example 1.
Target and intermediate layer material: YNbO 4
Assist beam acceleration voltage: 400V
Sputtering acceleration voltage: 1100V
Heating temperature: 290 ° C
In the second stage, after the film formation time (30 minutes) in the first stage, the film was formed under the following film formation conditions.

ターゲット及び中間層の材質:YSZ(イットリウム安定化ジルコニア)
アシストビーム加速電圧 :200V
スパッター加速電圧 :1000V
加熱温度 :180℃
(実施例4)
実施例4は、実施例2と同様に2軸配向薄膜を形成し、その上にさらにパイロクロア構造の酸化物層を形成して積層構造とするものである。
Target and intermediate layer material: YSZ (yttrium stabilized zirconia)
Assist beam acceleration voltage: 200V
Sputtering acceleration voltage: 1000V
Heating temperature: 180 ° C
Example 4
In Example 4, a biaxially oriented thin film is formed in the same manner as in Example 2, and an oxide layer having a pyrochlore structure is further formed thereon to form a laminated structure.

第1段階として、実施例2と同様にGdNbOを形成する。第1段階の条件は実施例2と同様である。
ターゲット及び中間層の材質:GdNbO
アシストビーム加速電圧 :400V
スパッター加速電圧 :1100V
加熱温度 :290℃
第2段階としては、前記第1段階での成膜時間(30分間)の後、以下の成膜条件で成膜した。
As a first stage, GdNbO 4 is formed in the same manner as in Example 2. The conditions for the first stage are the same as in Example 2.
Target and intermediate layer material: GdNbO 4
Assist beam acceleration voltage: 400V
Sputtering acceleration voltage: 1100V
Heating temperature: 290 ° C
In the second stage, after the film formation time (30 minutes) in the first stage, the film was formed under the following film formation conditions.

ターゲット及び中間層の材質:GZO(GdZr
アシストビーム加速電圧 :200V
スパッター加速電圧 :1100V
加熱温度 :180℃
(比較例1)
ターゲット及び中間層の材質:YSZ(イットリウム安定化ジルコニア)
アシストビーム加速電圧 :200V
スパッター加速電圧 :1000V
加熱温度 :180℃
(比較例2)
ターゲット及び中間層の材質:HoNbO
アシストビーム加速電圧 :450V
スパッター加速電圧 :1000V
加熱温度 :280℃
(比較例3)
ターゲット及び中間層の材質:YbNbO
アシストビーム加速電圧 :450V
スパッター加速電圧 :1000V
加熱温度 :280℃
(比較例4)
ターゲット及び中間層の材質:SrWO
アシストビーム加速電圧 :400V
スパッター加速電圧 :1100V
加熱温度 :290℃
実施例1、2では、2軸配向中間層が得られた。そして、図3に示すように、実施例1では、X線半幅値Δφが15°程度になるまでの成膜時間は、120分程度、実施例2では、150分程度となる。なお、X線半幅値Δφが15°程度以下が、所定の品質を得るための目安となっている。
Target and intermediate layer material: GZO (Gd 2 Zr 2 O 7 )
Assist beam acceleration voltage: 200V
Sputtering acceleration voltage: 1100V
Heating temperature: 180 ° C
(Comparative Example 1)
Target and intermediate layer material: YSZ (yttrium stabilized zirconia)
Assist beam acceleration voltage: 200V
Sputtering acceleration voltage: 1000V
Heating temperature: 180 ° C
(Comparative Example 2)
Target and intermediate layer material: HoNbO 4
Assist beam acceleration voltage: 450V
Sputtering acceleration voltage: 1000V
Heating temperature: 280 ° C
(Comparative Example 3)
Target and intermediate layer material: YbNbO 4
Assist beam acceleration voltage: 450V
Sputtering acceleration voltage: 1000V
Heating temperature: 280 ° C
(Comparative Example 4)
Target and intermediate layer material: SrWO 4
Assist beam acceleration voltage: 400V
Sputtering acceleration voltage: 1100V
Heating temperature: 290 ° C
In Examples 1 and 2, biaxially oriented intermediate layers were obtained. As shown in FIG. 3, in Example 1, the film formation time until the X-ray half width value Δφ reaches about 15 ° is about 120 minutes, and in Example 2, it is about 150 minutes. Note that the X-ray half width value Δφ of about 15 ° or less is a standard for obtaining a predetermined quality.

それに対して、比較例1〜3では、2軸配向中間層が得られたが、比較例4では2軸配向中間層は得られなかった。このため、図3には、比較例4については記載していない。
比較例1では、X線半幅値Δφが15°程度になる時間は、約300分と極めて長い時間を要する。
In contrast, in Comparative Examples 1 to 3, a biaxially oriented intermediate layer was obtained, but in Comparative Example 4, a biaxially oriented intermediate layer was not obtained. For this reason, FIG. 3 does not describe Comparative Example 4.
In Comparative Example 1, the time required for the X-ray half-width value Δφ to be about 15 ° takes an extremely long time of about 300 minutes.

比較例2,3は、前述の比較例1よりも時間が掛かることが、図3に示すように予測できたため、150分経過したところで、成膜の形成を中止した。
上記の結果から、実施例1、実施例2では、比較例よりも所定の品質を指し示すX線半幅値Δφ(=15°)に中間層が成膜するための時間が比較例よりも十分に短い時間で良いことが分かる。
Since Comparative Examples 2 and 3 could be expected to take longer than Comparative Example 1 as shown in FIG. 3, the formation of the film was stopped after 150 minutes.
From the above results, in Example 1 and Example 2, the time required for forming the intermediate layer to have an X-ray half-width value Δφ (= 15 °) indicating a predetermined quality as compared with the comparative example is sufficiently longer than in the comparative example. It turns out that a short time is good.

実施例1のYNbOは、Δφ=15°程度を達成するには、90分程度の成膜時間で0.6μm程度の膜厚が得られたことが確認できた。
実施例3では、Δφ=15°程度を達成するには、成膜時間が180分程度でよくなり、実施例4では、120分程度でよく、いずれも、比較例1に比較すると、極めて短い時間で成膜できた。
It was confirmed that the film thickness of about 0.6 μm was obtained in the film formation time of about 90 minutes for YNbO 4 of Example 1 to achieve Δφ = 15 °.
In Example 3, in order to achieve about Δφ = 15 °, the film forming time may be about 180 minutes, and in Example 4, it may be about 120 minutes, both of which are extremely short compared to Comparative Example 1. The film could be formed in time.

酸化物超電導線材の概略断面図。The schematic sectional drawing of an oxide superconducting wire. IBAD法を行うための装置の概略図。Schematic of an apparatus for performing the IBAD method. 実施例1,2と比較例1〜4の中間層の成膜時間と、品質(X線半幅値φ)との関係を示すグラフ。The graph which shows the relationship between the film-forming time of the intermediate | middle layer of Examples 1, 2 and Comparative Examples 1-4, and quality (X-ray half-width value (phi)). 実施例3,4と比較例1,2の中間層の成膜時間と、品質(X線半幅値φ)との関係を示すグラフ。The graph which shows the relationship between the film-forming time of the intermediate | middle layer of Example 3, 4 and Comparative Example 1, 2, and quality (X-ray half-width value (phi)).

符号の説明Explanation of symbols

10…基材、20…中間層(薄膜)、30…希土類系酸化物超電導層。   10 ... substrate, 20 ... intermediate layer (thin film), 30 ... rare earth oxide superconducting layer.

Claims (6)

基材上に積層されるとともに、希土類酸化物超電導層の下に配置されて中間層を形成する超電導線材用の2軸配向薄膜において、前記薄膜が2軸配向性を有するシーライト構造の酸化物からなり、前記シーライト構造の酸化物が、YNbO,GdNbOの中から少なくとも1つ選ばれたものであることを特徴とする酸化物超電導線材用の2軸配向薄膜。 While being stacked on the substrate, the biaxially oriented film of superconducting wire disposed below the rare earth oxide superconducting layer to form an intermediate layer, oxidation of celite structure wherein the thin film has a biaxial orientation A biaxially oriented thin film for an oxide superconducting wire, characterized in that the oxide having a celite structure is selected from at least one of YNbO 4 and GdNbO 4 . 前記シーライト構造の酸化物上に、蛍石構造の酸化物層が形成された積層構造を前記中間層として有することを特徴とする請求項1に記載の酸化物超電導線材の2軸配向薄膜。 2. The biaxially oriented thin film for an oxide superconducting wire according to claim 1, wherein the intermediate layer has a laminated structure in which an oxide layer having a fluorite structure is formed on the oxide having the celite structure. . 前記シーライト構造の酸化物上に、パイロクロア構造の酸化物層が形成された積層構造を前記中間層として有することを特徴とする請求項に記載の酸化物超電導線材用の2軸配向薄膜。 2. The biaxially oriented thin film for an oxide superconducting wire according to claim 1 , wherein the intermediate layer has a laminated structure in which an oxide layer having a pyrochlore structure is formed on the oxide having a celite structure. 基材上に積層されるとともに、希土類酸化物超電導層の下に配置されて中間層となる、酸化物超電導線材用の2軸配向薄膜の製造方法において、
シーライト構造の酸化物をイオンビームアシスト蒸着法により前記基材上に積層して、前記薄膜を形成し、
前記シーライト構造の酸化物が、YNbO,GdNbOの中から少なくとも1つ選ばれたものであることを特徴とする酸化物超電導線材用の2軸配向薄膜の製造方法。
While being laminated on a substrate, an intermediate layer disposed beneath the rare earth oxide superconducting layer, in the manufacturing method of the biaxially oriented film for the oxide superconducting wire,
An oxide having a celite structure is laminated on the substrate by an ion beam assisted deposition method to form the thin film,
A method for producing a biaxially oriented thin film for an oxide superconducting wire, wherein the oxide having a celite structure is at least one selected from YNbO 4 and GdNbO 4 .
前記シーライト構造の酸化物上に、蛍石構造の酸化物層を形成して前記中間層にすることを特徴とする請求項4に記載の酸化物超電導線材用の2軸配向薄膜の製造方法。  The method for producing a biaxially oriented thin film for an oxide superconducting wire according to claim 4, wherein an oxide layer having a fluorite structure is formed on the oxide having the celite structure to form the intermediate layer. . 前記シーライト構造の酸化物上に、パイロクロア構造の酸化物層を形成して前記中間層にすることを特徴とする請求項4に記載の酸化物超電導線材用の2軸配向薄膜の製造方法。  The method for producing a biaxially oriented thin film for an oxide superconducting wire according to claim 4, wherein an oxide layer having a pyrochlore structure is formed on the oxide having a celite structure to form the intermediate layer.
JP2008069943A 2008-03-18 2008-03-18 Biaxially oriented thin film for oxide superconducting wire and method for producing the same Expired - Fee Related JP5066468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069943A JP5066468B2 (en) 2008-03-18 2008-03-18 Biaxially oriented thin film for oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069943A JP5066468B2 (en) 2008-03-18 2008-03-18 Biaxially oriented thin film for oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009221572A JP2009221572A (en) 2009-10-01
JP5066468B2 true JP5066468B2 (en) 2012-11-07

Family

ID=41238644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069943A Expired - Fee Related JP5066468B2 (en) 2008-03-18 2008-03-18 Biaxially oriented thin film for oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5066468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344485B2 (en) * 2010-02-02 2013-11-20 株式会社ノリタケカンパニーリミテド Ion conductive membrane material and method for producing the same
CN107868941B (en) * 2016-09-27 2018-11-09 韩山师范学院 The manufacturing method of down-conversion luminescent material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270991A (en) * 1991-03-19 1993-10-19 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor thin film
JP3073142B2 (en) * 1994-02-18 2000-08-07 キヤノン株式会社 Stacked Josephson device
ATE261772T1 (en) * 1997-08-04 2004-04-15 Teijin Ltd METHOD FOR PRODUCING AROMATIC CARBONATES
JP2003132750A (en) * 2001-10-26 2003-05-09 Hitachi Cable Ltd Oxide superconducting multi-core wire with barrier and method of manufacturing the same
JP2005276465A (en) * 2004-03-23 2005-10-06 Sumitomo Electric Ind Ltd Superconducting wire
JP4800740B2 (en) * 2005-10-21 2011-10-26 財団法人国際超電導産業技術研究センター Rare earth tape-shaped oxide superconductor and method for producing the same

Also Published As

Publication number Publication date
JP2009221572A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
CN101652505B (en) Polycrystalline thin film and method for producing the same and oxide superconductor
US6632539B1 (en) Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
KR100545547B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JP5227722B2 (en) Polycrystalline thin film, method for producing the same, and oxide superconducting conductor
JP5715958B2 (en) Ion beam assisted sputtering apparatus, oxide superconducting conductor manufacturing apparatus, ion beam assisted sputtering method, and oxide superconducting conductor manufacturing method
JP5066468B2 (en) Biaxially oriented thin film for oxide superconducting wire and method for producing the same
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JP2721595B2 (en) Manufacturing method of polycrystalline thin film
JP4033945B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPH06271393A (en) Thin-film laminate and oxide superconducting conductor and their production
JP2670391B2 (en) Polycrystalline thin film manufacturing equipment
JP5145109B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3856878B2 (en) Method for producing polycrystalline thin film
JPH09120719A (en) Oxide type superconductor
EP0591588B1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP2614948B2 (en) Polycrystalline thin film
JPH06231940A (en) Abacuo superconducting coil and its manufacture
Sriubas et al. Investigation of microstructure and electrical properties of Sm doped ceria thin films
JPH1149599A (en) Polycrystal thin film, its production, oxide superconducting conductor and manufacture of the same conductor
JP5481135B2 (en) Base material for oxide superconductor and oxide superconductor
US20090036313A1 (en) Coated superconducting materials
JP2003096563A (en) Method for forming polycrystalline thin film and oxide superconducting conductor
JP3732780B2 (en) Polycrystalline thin film and method for producing the same, and oxide superconducting conductor and method for producing the same
JPH0337104A (en) Production of oxide superconducting thin film and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees