[go: up one dir, main page]

JP5063902B2 - Oriented electrical steel sheet and method for treating insulating film - Google Patents

Oriented electrical steel sheet and method for treating insulating film Download PDF

Info

Publication number
JP5063902B2
JP5063902B2 JP2006040666A JP2006040666A JP5063902B2 JP 5063902 B2 JP5063902 B2 JP 5063902B2 JP 2006040666 A JP2006040666 A JP 2006040666A JP 2006040666 A JP2006040666 A JP 2006040666A JP 5063902 B2 JP5063902 B2 JP 5063902B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
electrical steel
oriented electrical
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006040666A
Other languages
Japanese (ja)
Other versions
JP2007217758A (en
Inventor
和年 竹田
史明 高橋
修一 山崎
浩康 藤井
文和 安藤
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006040666A priority Critical patent/JP5063902B2/en
Publication of JP2007217758A publication Critical patent/JP2007217758A/en
Application granted granted Critical
Publication of JP5063902B2 publication Critical patent/JP5063902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、クロム酸塩を含有しない高張力絶縁被膜を有する方向性電磁鋼板、及び、その絶縁被膜処理方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet having a high-strength insulating coating that does not contain chromate, and a method for treating the insulating coating.

通常、方向性電磁鋼板の表面被膜は、高温仕上げ焼鈍中に形成される1次被膜と称されるフォルステライト層と、りん酸塩などを主成分とする処理液を塗布し鋼板のヒートフラットニング時に焼き付け形成されるりん酸塩被膜層の2層から形成されている。りん酸塩被膜は、方向性電磁鋼板に電気絶縁性を付与し、渦電流損を低減して鉄損を改善するために必要とされるが、絶縁性以外にも、耐蝕性、耐熱性、すべり性、密着性といった種々の被膜特性が要求されている。   Usually, the surface coating of grain-oriented electrical steel sheets is applied to a forsterite layer called a primary coating formed during high-temperature finish annealing and a treatment liquid mainly composed of phosphate to heat flatten the steel sheet. It is formed from two layers of a phosphate coating layer that is sometimes baked. Phosphate coating is necessary for imparting electrical insulation to grain-oriented electrical steel sheets, reducing eddy current loss and improving iron loss. In addition to insulation, corrosion resistance, heat resistance, Various film properties such as slipperiness and adhesion are required.

すなわち、方向性電磁鋼板を加工してトランスなどの鉄芯とするには、各種の製造工程を経るものであるが、この鉄芯製造の際に、耐熱性、すべり性、密着性が劣っていると、歪み取り焼鈍時に被膜が剥離したりして、本来の性能が発揮できなかったり、スムーズに鋼板を積層できず作業性が悪化したりする。   That is, in order to process a grain-oriented electrical steel sheet into an iron core such as a transformer, it goes through various manufacturing processes. However, when this iron core is manufactured, heat resistance, slipping property, and adhesion are inferior. If it is, the film peels off during strain relief annealing, and the original performance cannot be exhibited, or the steel sheets cannot be laminated smoothly and workability is deteriorated.

さらに、方向性電磁鋼板の絶縁被膜の重要な特性のひとつは、鋼板に張力を付与し方向性電磁鋼板の磁気特性を向上させる効果を奏することである。これは、方向性電磁鋼板に張力を付与することにより磁壁移動を容易にして、方向性電磁鋼板の鉄損を改善するもので、方向性電磁鋼板を鉄芯に用いて製造されたトランスの騒音の主原因のひとつである磁気ひずみの低減にも効果があることが知られている。   Furthermore, one of the important characteristics of the insulating coating of the grain-oriented electrical steel sheet is that it exerts the effect of imparting tension to the steel sheet and improving the magnetic properties of the grain-oriented electrical steel sheet. This is to improve the iron loss of the grain-oriented electrical steel sheet by imparting tension to the grain-oriented electrical steel sheet, thereby facilitating the domain wall movement. The noise of the transformer manufactured using the grain-oriented electrical steel sheet as the iron core. It is known that it is also effective in reducing magnetostriction, which is one of the main causes.

特許文献1には、仕上げ焼鈍後に鋼板表面に形成されたフォルステライト被膜の上に、特定組成のりん酸塩、クロム酸塩、コロイド状シリカを主成分とする絶縁被膜処理液を塗布し、焼き付けることにより、高い張力を有する絶縁被膜を鋼板表面に形成し、方向性電磁鋼板の鉄損と磁気ひずみを低減する方法が開示されている。   In Patent Document 1, an insulating film treatment liquid mainly composed of phosphate, chromate, and colloidal silica having a specific composition is applied onto a forsterite film formed on the surface of a steel sheet after finish annealing, and baked. Thus, a method has been disclosed in which an insulating coating having high tension is formed on the surface of a steel sheet to reduce iron loss and magnetostriction of the grain-oriented electrical steel sheet.

また、特許文献2には、粒径が8μm以下の超微粒子コロイド状シリカと第一りん酸塩、クロム酸塩を特定割合で含有する処理液を塗布し、焼き付けることにより、絶縁被膜の高張力を保持し、さらに、被膜の潤滑性を向上する方法が開示されている。   Patent Document 2 discloses that a high tension of an insulating coating is obtained by applying and baking a treatment liquid containing ultrafine colloidal silica having a particle size of 8 μm or less, a primary phosphate, and a chromate in a specific ratio. And a method for improving the lubricity of the coating is disclosed.

さらに、特許文献3には、りん酸塩とクロム酸塩とガラス転移点が950〜1200℃のコロイド状シリカを主成分とする絶縁被膜を特定付着量とする高張力絶縁被膜を有する方向性電磁鋼板に関する技術が開示されている。   Further, Patent Document 3 discloses a directional electromagnetic wave having a high-strength insulating coating having a specific amount of an insulating coating composed mainly of colloidal silica having a phosphate, chromate and glass transition point of 950 to 1200 ° C. Techniques relating to steel sheets are disclosed.

上記特許文献に開示された技術により、各種被膜特性が格段に優れ、被膜張力も従来より向上したものの、いずれも、クロム化合物であるクロム酸塩が配合されているところ、近年では、環境問題がクローズアップされており、鉛、クロム、カドミウムといった化合物の使用を禁止・制限することが求められている。   Although various film properties are remarkably excellent and the film tension is improved as compared with the prior art by the techniques disclosed in the above-mentioned patent documents, both have been mixed with a chromate which is a chromium compound. Close-up and there is a need to prohibit and limit the use of compounds such as lead, chromium and cadmium.

クロム化合物を含有しない技術として、特許文献4に、コロイド状シリカをSiO2で20重量部、りん酸アルミを10〜120重量部、ほう酸2〜10重量部とMg、Al、Fe、Co、Ni、Znのそれぞれの硫酸塩の内から選ばれる1種又は2種の合計を4〜40重量部とを含有する処理液を300℃以上で焼付処理する絶縁被膜処理方法が開示されている。 As a technique not containing a chromium compound, Patent Document 4 discloses that colloidal silica is 20 parts by weight of SiO 2 , aluminum phosphate is 10 to 120 parts by weight, boric acid is 2 to 10 parts by weight, and Mg, Al, Fe, Co, Ni. An insulating film treatment method is disclosed in which a treatment liquid containing 4 to 40 parts by weight of one or two kinds selected from the respective sulfates of Zn is baked at 300 ° C. or higher.

また、特許文献5には、ホウ酸、アルミナゾルの混合物と水と相溶性を持つ有機溶媒を含む方向性電磁鋼板被膜形成用塗布剤に関する技術が開示されている。   Patent Document 5 discloses a technique related to a coating material for forming a grain-oriented electrical steel sheet coating, which contains a mixture of boric acid and alumina sol and an organic solvent compatible with water.

さらに、特許文献6には、Ca、Mn、Fe、Zn、Co、Ni、Cu、B及びAlから選ばれる有機酸塩として、蟻酸塩、酢酸塩、蓚酸塩、酒石酸塩、乳酸塩、クエン酸塩、コハク酸塩及びサリチル酸塩から選ばれる有機酸塩の1種又は2種以上を添加することを特徴とする方向性電磁鋼板用表面処理剤に関する技術が開示されている。   Furthermore, in Patent Document 6, as an organic acid salt selected from Ca, Mn, Fe, Zn, Co, Ni, Cu, B and Al, formate, acetate, oxalate, tartrate, lactate, citric acid A technique related to a surface treatment agent for grain-oriented electrical steel sheets, characterized by adding one or more organic acid salts selected from salts, succinates and salicylates, is disclosed.

しかしながら、特許文献4に開示の技術には、硫酸塩中の硫酸イオンによる耐蝕性低下の問題があり、特許文献5に開示の技術には、耐蝕性や焼付温度が高すぎるため鋼板に疵が付き易い問題があり、また、特許文献6に開示の技術には、有機酸塩中の有機酸による変色及び液安定性に問題が有り、いずれにしても、更なる改善が必要であった。   However, the technique disclosed in Patent Document 4 has a problem of a decrease in corrosion resistance due to sulfate ions in the sulfate, and the technique disclosed in Patent Document 5 has a corrosion resistance and a baking temperature that are too high. There is a problem that it is easy to attach, and the technique disclosed in Patent Document 6 has a problem in discoloration and liquid stability due to an organic acid in an organic acid salt, and in any case, further improvement is necessary.

特許文献7には、「PH2O/PH2が10-2未満の雰囲気で焼付けた場合、被膜の一部が結晶化し微小なクラックが入る。」との開示がある。しかし、特許文献7に開示の技術においては、結晶化を制御する意図は無く、クラックの発生を防止するためだけに結晶化しない乾燥雰囲気を規定するもので、結晶化は不十分であった。 Patent Document 7 discloses that “when baking is performed in an atmosphere where P H2O / P H2 is less than 10 −2 , a part of the coating crystallizes and minute cracks are generated”. However, in the technique disclosed in Patent Document 7, there is no intention to control crystallization, and a dry atmosphere that does not crystallize is defined only to prevent the occurrence of cracks, and crystallization is insufficient.

特公昭53−28375号公報Japanese Patent Publication No.53-28375 特開昭61−41778号公報Japanese Patent Laid-Open No. 61-41778 特開平11−071683号公報Japanese Patent Laid-Open No. 11-071683 特公昭57−9631号公報Japanese Patent Publication No.57-9631 特開平7−278828号公報JP-A-7-278828 特開2000−178760号公報JP 2000-178760 A 特開平9−78253号公報Japanese Patent Laid-Open No. 9-78253

本発明は、方向性電磁鋼板製造の最終工程で鋼板に塗布し焼き付けることにより表面に形成する絶縁被膜の性状を改善し、密着性などの各種被膜特性が良好で、かつ、従来よりも格段に優れた“クロム化合物を含有しない高張力被膜”を有する方向性電磁鋼板を得ることを目的とする。   The present invention improves the properties of the insulating film formed on the surface by applying and baking to the steel sheet in the final process of producing the grain-oriented electrical steel sheet, has various film properties such as adhesion, and is much more than before. An object is to obtain a grain-oriented electrical steel sheet having an excellent “high-strength coating film containing no chromium compound”.

本発明の要旨は、以下のとうりである。   The gist of the present invention is as follows.

(1)表面に、りん酸金属塩とコロイド状シリカを主成分とし、該りん酸金属塩の結晶化度が2〜40%のクロムを含有しない高張力絶縁被膜を有することを特徴とする方向性電磁鋼板。
(1) A direction characterized by having a high-strength insulating coating containing, as a main component, a metal phosphate and colloidal silica and containing no chromium and having a crystallinity of 2 to 40%. Electrical steel sheet.

(2)前記りん酸金属塩が、Ni、Co、Mn、Zn、Fe、Al、Mg、Baの中から選ばれる1種又は2種以上であることを特徴とする(1)記載の方向性電磁鋼板。   (2) The directionality according to (1), wherein the metal phosphate is one or more selected from Ni, Co, Mn, Zn, Fe, Al, Mg, and Ba. Electrical steel sheet.

(3)前記コロイド状シリカの平均粒径が5〜35nmであることを特徴とする(1)又は(2)記載の方向性電磁鋼板。   (3) The grain-oriented electrical steel sheet according to (1) or (2), wherein the colloidal silica has an average particle size of 5 to 35 nm.

(4)前記方向性電磁鋼板が、Cを0.005%以下、Siを2.5〜7.0%含有し、平均結晶粒径が1〜10mmであり、結晶方位が、(110)[001]の理想方位に対し、平均値で圧延方向に8°以下の方位のズレを有することを特徴とする(1)〜(3)のいずれかに記載の方向性電磁鋼板。   (4) The grain-oriented electrical steel sheet contains 0.005% or less of C, 2.5 to 7.0% of Si, an average crystal grain size of 1 to 10 mm, and a crystal orientation of (110) [ The grain-oriented electrical steel sheet according to any one of (1) to (3), which has a deviation of an orientation of 8 ° or less in the rolling direction as an average value with respect to the ideal orientation of 001].

(5)方向性電磁鋼板の表面に、りん酸金属塩とコロイド状シリカを主成分とする処理液を塗布し高張力被膜を形成する際に、絶縁被膜処理剤として、平均粒径が5〜35nmのコロイド状シリカを固形分換算で100重量部、及び、該100重量部に対し、Ni、Co、Mn、Zn、Fe、Al、Mg、Baのりん酸塩の1種又は2種以上を固形分で155〜250重量部含有する処理液を塗布し、以下の(1)〜(6)の条件式を満たす昇温速度V(℃/秒)、焼付均熱温度C(℃)、均熱保持時間S(秒)で、該りん酸金属塩の結晶化度が2〜40%のクロムを含有しない高張力絶縁被膜を形成することを特徴とする方向性電磁鋼板の絶縁被膜処理方法。
30≦V ・・・(1)
10≦S ・・・(2)
800≦C≦1000 ・・・(3)
S≦2V−40 ・・・(4)
C≦5/3V+900 ・・・(5)
S≦−4/5C+820 ・・・(6)
(5) When forming a high-tensile film by applying a treatment liquid mainly composed of a metal phosphate and colloidal silica to the surface of a grain-oriented electrical steel sheet, an average particle size of 5 to 5 is used as an insulating film treatment agent. 100 parts by weight of 35 nm colloidal silica in terms of solid content, and one or more of Ni, Co, Mn, Zn, Fe, Al, Mg, Ba phosphates with respect to 100 parts by weight. A treatment liquid containing 155 to 250 parts by weight of a solid content was applied, and a heating rate V (° C./second), a baking soaking temperature C (° C.), a soaking rate satisfying the following conditional expressions (1) to (6): An insulating coating treatment method for grain- oriented electrical steel sheets, characterized in that a high-strength insulating coating not containing chromium having a heat retention time S (seconds) and a crystallinity of the metal phosphate of 2 to 40% is formed.
30 ≦ V (1)
10 ≦ S (2)
800 ≦ C ≦ 1000 (3)
S ≦ 2V-40 (4)
C ≦ 5 / 3V + 900 (5)
S ≦ −4 / 5C + 820 (6)

(6)前記方向性電磁鋼板が、Cを0.005%以下、Siを2.5〜7.0%含有し、平均結晶粒径が1〜10mmであり、結晶方位が(110)[001]の理想方位に対して、平均値で圧延方向に8°以下の方位のズレを有することを特徴とする(5)に記載の方向性電磁鋼板の絶縁被膜処理方法。   (6) The grain-oriented electrical steel sheet contains 0.005% or less of C, 2.5 to 7.0% of Si, an average crystal grain size of 1 to 10 mm, and a crystal orientation of (110) [001 ] In the method for insulating film treatment of grain-oriented electrical steel sheet according to (5), the average orientation has a deviation of an orientation of 8 ° or less in the rolling direction.

本発明によれば、鋼板の表面に付与される被膜張力が大きく、トランス製造における鉄芯材料の密着性が良好で、磁気特性も良好な方向性電磁鋼板を得ることができる。   According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having a high coating tension applied to the surface of the steel sheet, good adhesion of the iron core material in transformer production, and good magnetic properties.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、方向性電磁鋼板の絶縁被膜が鋼板に対して張力を付与するためには、鋼板と絶縁被膜の熱膨張率に差があることが必要である。絶縁被膜の熱膨張係数が鋼板よりも小さい場合、絶縁被膜が焼き付けられる際に、鋼板の収縮が絶縁被膜より大きいことから、鋼板は引張応力を受け、被膜には圧縮応力が付与されることになる。従って、絶縁被膜の熱膨張率を小さくすることにより、鋼板に付与される引張応力は、さらに大きくすることが可能である。   First, in order for the insulating coating of the grain-oriented electrical steel sheet to apply tension to the steel plate, it is necessary that there is a difference in the thermal expansion coefficient between the steel plate and the insulating coating. When the thermal expansion coefficient of the insulating coating is smaller than that of the steel plate, the shrinkage of the steel plate is larger than that of the insulating coating when the insulating coating is baked, so that the steel plate is subjected to tensile stress and compressive stress is applied to the coating. Become. Therefore, the tensile stress applied to the steel sheet can be further increased by reducing the thermal expansion coefficient of the insulating coating.

また、方向性電磁鋼板の絶縁被膜には、このような鋼板に張力を付与しても剥離したりしないために、優れた密着性が必要である。このような絶縁被膜を形成するものとして、りん酸塩とコロイド状シリカ、及び、クロム酸塩の混合物が一般に使用されている。   In addition, the insulating coating of the grain-oriented electrical steel sheet needs to have excellent adhesion because it does not peel even when tension is applied to such a steel sheet. A mixture of phosphate, colloidal silica, and chromate is generally used to form such an insulating coating.

本発明者等は、クロム酸を含有しない、いわゆる環境問題に対応し、さらに、方向性電磁鋼板に必要な高張力を保持する絶縁被膜を得るべく鋭意研究した。その結果、りん酸塩、コロイド状シリカを主成分とする絶縁被膜において、りん酸塩の結晶化度が絶縁被膜の熱膨張係数に大きく関与しており、りん酸塩の結晶化度を60%以下に制御することにより、被膜張力を格段に大きくすることが可能であることを見出した。   The present inventors have intensively studied to obtain an insulating coating that does not contain chromic acid, that is, a so-called environmental problem, and that retains the high tension required for the grain-oriented electrical steel sheet. As a result, in the insulating coating mainly composed of phosphate and colloidal silica, the crystallinity of the phosphate is greatly related to the thermal expansion coefficient of the insulating coating, and the crystallinity of the phosphate is 60%. It has been found that the film tension can be remarkably increased by controlling the following.

通常、りん酸塩とコロイド状シリカを主成分とする組成でクロム酸塩を除去した場合には、絶縁被膜がポーラスな構造となり、被膜張力が低く、さらには密着性、耐蝕性、吸湿性も劣位で、そのままの状態では使用できない。このようなポーラス構造となるのは、りん酸塩の結晶と結晶の間に隙間が多く発生するからであり、それ故、結晶化を制御することで、ポーラス化を防止し、緻密な被膜を形成する。   Normally, when chromate is removed with a composition mainly composed of phosphate and colloidal silica, the insulating film has a porous structure, the film tension is low, and adhesion, corrosion resistance, and hygroscopicity are also achieved. It is inferior and cannot be used as it is. The reason why such a porous structure is formed is that there are many gaps between the crystals of phosphate. Therefore, by controlling the crystallization, the formation of a porous film can be prevented. Form.

絶縁被膜が結晶構造を有することは、絶縁被膜を持つ方向性電磁鋼板をX線構造解析装置にて分析することにより簡便に知ることが可能である。X線回折法による結晶化度の算出には、プロファイルフィッティング手法や定量分析手法などが知られている。特に限定するものではないが、ピーク分離によるプロファイルフィッティングが簡便である。   It can be easily known that the insulating coating has a crystal structure by analyzing the grain-oriented electrical steel sheet having the insulating coating with an X-ray structure analyzer. For the calculation of crystallinity by X-ray diffraction, a profile fitting method, a quantitative analysis method, and the like are known. Although not particularly limited, profile fitting by peak separation is simple.

しかし、プロファイルフィッティングの場合には、本発明のような絶縁被膜においては、コロイダルシリカとりん酸金属塩の混合状態となっているから、結晶化度の算出においては、あらかじめコロイダルシリカなどを単独で加熱処理を行い、その回折パターンを測定して除外するという注意が必要である。   However, in the case of profile fitting, since the insulating coating as in the present invention is in a mixed state of colloidal silica and metal phosphate, in the calculation of crystallinity, colloidal silica or the like alone is previously used. Care must be taken that heat treatment is performed and the diffraction pattern is measured and excluded.

図1に、代表的なX線回折の測定チャートを例示する(Cu線源を使用)。図1の場合、りん酸Niを225重量部と粒径12nmのコロイダルシリカを100重量部配合した処理液を60℃/秒の昇温速度で900℃まで昇温し、25秒間900℃で保持したサンプルを用いてX線回折チャートを測定した。非晶質成分は、2θ=20°付近に、非晶質ハローとして現れており、りん酸Niは、30°付近に、メインピークとして現れている。   FIG. 1 illustrates a typical X-ray diffraction measurement chart (using a Cu radiation source). In the case of FIG. 1, a treatment liquid containing 225 parts by weight of Ni phosphate and 100 parts by weight of colloidal silica having a particle size of 12 nm is heated to 900 ° C. at a temperature increase rate of 60 ° C./second and held at 900 ° C. for 25 seconds. An X-ray diffraction chart was measured using the prepared samples. The amorphous component appears as an amorphous halo around 2θ = 20 °, and Ni phosphate appears as a main peak around 30 °.

これらのピークから、バックグランドを分離して散乱強度を求め、次式により結晶化度Xを算出する。
X=C/(C+A)×100
ここで、C:結晶性散乱強度、A:非晶質散乱強度
From these peaks, the background is separated to determine the scattering intensity, and the crystallinity X is calculated by the following equation.
X = C / (C + A) × 100
Here, C: crystalline scattering intensity, A: amorphous scattering intensity

なお、コロイダルシリカも非晶質成分を含むため、りん酸塩の結晶化度を算出する際には、予めコロイダルシリカを同一条件で加熱処理し、非晶質ハローの除去を行った。   In addition, since colloidal silica also contains an amorphous component, when calculating the crystallinity of the phosphate, the colloidal silica was previously heat-treated under the same conditions to remove the amorphous halo.

また、コロイダルシリカの含有量から非晶質ハローの寄与分を算出し、りん酸金属塩の非晶質成分を計算する方法によっても、簡便で迅速に、結晶化度を求めることが可能である。   It is also possible to calculate the degree of crystallinity simply and quickly by calculating the contribution of amorphous halo from the colloidal silica content and calculating the amorphous component of the metal phosphate. .

さらに、精度は劣るものの、絶縁被膜の付着量やりん酸金属塩の含有量及び金属の種類が特定できれば、方向性電磁鋼板の表面に形成されているフォルステライト被膜のピークと比較して、りん酸金属塩のピークが十分小さければ、りん酸金属塩の非晶質成分を含有すると推定することが可能である。   Furthermore, although the accuracy is inferior, if the amount of insulating coating deposited, the content of metal phosphate and the type of metal can be specified, the peak of the forsterite coating formed on the surface of the grain-oriented electrical steel sheet can be compared. If the peak of the acid metal salt is sufficiently small, it can be estimated that it contains an amorphous component of the metal phosphate.

次に、本発明の限定理由について述べる。まず、本発明の特徴は、りん酸金属塩とコロイド状シリカによって絶縁被膜が形成され、りん酸金属塩の結晶化度が60%以下であることである。結晶化度が60%超の場合には、緻密な被膜を形成することができず、被膜張力が低下したり、耐蝕性が劣化する。好ましくは2〜40%の範囲で、さらに好ましくは5〜20%の範囲である。   Next, the reason for limitation of the present invention will be described. First, a feature of the present invention is that an insulating film is formed of a metal phosphate and colloidal silica, and the crystallinity of the metal phosphate is 60% or less. When the degree of crystallinity exceeds 60%, a dense film cannot be formed, and the film tension decreases or the corrosion resistance deteriorates. Preferably it is 2 to 40% of range, More preferably, it is 5 to 20% of range.

結晶化度が低い場合には、表面が平滑で被膜張力が高く、耐食性に優れた被膜が得られるが、結晶化度が2%未満の場合、りん酸金属塩の種類によっては、絶縁被膜形成後にも縮重合反応が進行し、その結果、余剰のりん酸が生成することにより吸湿したり、耐食性が劣化する場合がある。   When the degree of crystallinity is low, a film having a smooth surface, high film tension, and excellent corrosion resistance can be obtained. When the degree of crystallinity is less than 2%, an insulating film is formed depending on the type of metal phosphate. The polycondensation reaction proceeds later, and as a result, excessive phosphoric acid may be generated to absorb moisture or deteriorate the corrosion resistance.

また、本発明者等が検討した結果、りん酸金属塩の種類によって晶系は様々であるが、高温で加熱した場合、りん酸Alでは主に六方晶や正方晶、単斜晶系になり易く、りん酸Niでは単斜晶、斜方晶になり易い。りん酸Co、りん酸Mnも単斜晶系、斜方晶系になり易く、特に限定するものではないが、りん酸金属塩の結晶系としては、単斜晶系や斜方晶系といった対称性の低い晶系の方が好ましい。   As a result of investigations by the present inventors, the crystal system varies depending on the type of metal phosphate, but when heated at a high temperature, Al phosphate is mainly hexagonal, tetragonal or monoclinic. It tends to be monoclinic and orthorhombic with Ni phosphate. Co phosphate and Mn phosphate are likely to be monoclinic or orthorhombic, and are not particularly limited, but the crystal system of the metal phosphate is symmetric such as monoclinic or orthorhombic. A crystal system having low properties is preferred.

好ましい理由としては、晶系の対称性が低い場合、非晶質状態との連続性が良好で凹凸が形成され難く、滑らかな表面状態が得られやすいと推定され、りん酸Niやりん酸Mgでは、良好な表面外観が得られるためである。   It is presumed that when the symmetry of the crystal system is low, it is presumed that the continuity with the amorphous state is good and unevenness is not easily formed, and a smooth surface state is easily obtained. Ni phosphate or Mg phosphate This is because a good surface appearance can be obtained.

また、本発明で、例えば、りん酸Caが使用できない理由の詳細は明らかではないが、本発明者等が検討したところでは、りん酸Caは球晶を生じ易く、昇温するにしたがって体積が大きく変化し、ひび割れなどの被膜欠陥が発生するためである。このような物性を有するりん酸金属塩は、使用することができない。   Further, in the present invention, for example, the details of the reason why Ca phosphate cannot be used are not clear. However, as the present inventors have studied, Ca phosphate tends to form spherulites, and the volume increases as the temperature rises. This is because the film changes greatly, and film defects such as cracks occur. A metal phosphate having such physical properties cannot be used.

次に、りん酸金属塩の種類については、Ni、Co、Mn、Zn、Fe、Al、Mg、Baのりん酸塩の1種又は2種以上の混合物に限定される。さらに好ましくはNi、Zn、Al、Mgの1種又は2種以上の混合物で、これらのりん酸金属塩を用いたときに、本発明で開示するメカニズムが発現する。なお、りん酸Ba、Ni、Co等のりん酸塩の溶解度が低い金属塩の場合には、酸性溶液とするか、あるいはコロイド状溶液、もしくは分散液としてもよい。   Next, the type of metal phosphate is limited to one or a mixture of two or more phosphates of Ni, Co, Mn, Zn, Fe, Al, Mg, and Ba. More preferably, when one or a mixture of two or more of Ni, Zn, Al, and Mg is used and these metal phosphate salts are used, the mechanism disclosed in the present invention appears. In the case of a metal salt having low solubility of phosphate such as phosphoric acid Ba, Ni, Co, etc., it may be an acidic solution, a colloidal solution, or a dispersion.

なお、上記以外のりん酸金属塩、例えば、Ca塩は、アパタイト系の含水鉱物を生成しやすく、Na塩、K塩等のアルカリ金属塩と同様に被膜の耐蝕性が劣り、Sr塩、Ba塩等は、溶解度が非常に低く、また、コロイド液の安定性も悪いため、均一な被膜を形成できない。   In addition, phosphoric acid metal salts other than the above, such as Ca salt, are likely to produce apatite-based hydrous minerals, and have poor corrosion resistance of the coating, similar to alkali metal salts such as Na salt and K salt, Sr salt, Ba A salt or the like has a very low solubility, and the stability of the colloidal solution is poor, so that a uniform film cannot be formed.

さらに、処理液には、ホウ酸、ホウ化ナトリウム、及び、酸化チタン、酸化モリブテン等の各種酸化物、顔料、チタン酸バリウム等の無機化合物を添加してもよい。特に、顔料等の無機化合物は、着色だけでなく被膜硬度を高め、絶縁被膜に疵が付きにくくする効果を奏する。   Further, boric acid, sodium boride, various oxides such as titanium oxide and molybdenum oxide, pigments, and inorganic compounds such as barium titanate may be added to the treatment liquid. In particular, inorganic compounds such as pigments are effective not only for coloring but also for increasing the film hardness and making the insulating film less susceptible to wrinkles.

次に、製品の絶縁被膜量は2〜7g/m2が適当である。絶縁被膜量が2g/m2未満では、高張力を得るのが困難であり、また、絶縁性、耐蝕性等も低下し、一方、7g/m2を超えると、占積率が低下してトランス特性が劣化する。 Next, 2-7 g / m < 2 > is suitable for the amount of insulation coating of the product. If the amount of the insulating coating is less than 2 g / m 2, it is difficult to obtain a high tension, and the insulation and corrosion resistance also decrease. On the other hand, if the amount exceeds 7 g / m 2 , the space factor decreases. Transformer characteristics deteriorate.

次に、本発明の製造方法に係る限定理由について述べる。まず、本発明で用いるコロイド状シリカとりん酸塩との配合は、固形分換算で、コロイド状シリカ100重量部に対し、Ni、Co、Mn、Zn、Fe、Al、Mg、Baのりん酸塩155〜250重量部を配合する。りん酸塩が155重量部未満では、コロイダルシリカによる発粉を生じるため、下限は155重量部に制限される。一方、250重量部超では、コロイド状シリカによる張力効果が十分に発揮できない。好ましくは175〜235重量部であり、この範囲で、表面外観の美麗な絶縁被膜が得られる。   Next, the reason for limitation according to the manufacturing method of the present invention will be described. First, the blend of colloidal silica and phosphate used in the present invention is phosphoric acid of Ni, Co, Mn, Zn, Fe, Al, Mg, Ba with respect to 100 parts by weight of colloidal silica in terms of solid content. 155 to 250 parts by weight of salt is blended. If the phosphate is less than 155 parts by weight, powdering by colloidal silica occurs, so the lower limit is limited to 155 parts by weight. On the other hand, if it exceeds 250 parts by weight, the tension effect by colloidal silica cannot be sufficiently exhibited. The amount is preferably 175 to 235 parts by weight, and in this range, an insulating coating having a beautiful surface appearance can be obtained.

本発明で使用するコロイド状シリカは、平均粒径が5〜35nmのものが好ましい。平均粒径が5nm未満では液の安定性が悪く、一方、35nm超では反応性に乏しく、りん酸塩の固定能力が十分ではないため吸湿性が劣る。   The colloidal silica used in the present invention preferably has an average particle size of 5 to 35 nm. If the average particle size is less than 5 nm, the stability of the liquid is poor, whereas if it exceeds 35 nm, the reactivity is poor, and the ability to fix phosphate is not sufficient, so the hygroscopicity is poor.

さらに、好ましくは12〜25nmのコロイド状シリカで、かつ、表面に、アルミニウムで化学的処理を施したものがよい。また、造膜性の観点から、真球状のものではなく、不定形もしくはビーズ状にシリカが連なったものが好ましい。   Further, a colloidal silica of 12 to 25 nm is preferable, and the surface is subjected to chemical treatment with aluminum. In addition, from the viewpoint of film-forming properties, it is preferable that the silica is continuous in an indefinite shape or a bead shape, not a spherical shape.

次に、本発明における絶縁被膜形成方法について述べる。本発明を適用するに際しては、仕上げ焼鈍後の方向性電磁鋼板として、通常のフォルステライト被膜を有する鋼板、又は、フォルステライト被膜を有しない鋼板のどちらでもよい。いずれの鋼板を用いる場合でも、余剰の焼鈍分離剤を水洗除去した後、硫酸浴などによる酸洗処理、水洗処理を行い、表面洗浄と表面の活性化を行った後、絶縁被膜組成液を塗布する。   Next, the insulating film forming method in the present invention will be described. In applying the present invention, the grain-oriented electrical steel sheet after finish annealing may be either a steel sheet having a normal forsterite film or a steel sheet not having a forsterite film. Regardless of which steel plate is used, after removing the excess annealing separator with water, it is subjected to pickling treatment with a sulfuric acid bath, water washing treatment, surface cleaning and surface activation, and then an insulating coating composition liquid is applied. To do.

本発明では、非晶質構造と結晶質構造の混合状態とするため、昇温速度V(℃/秒)、焼付均熱温度C(℃)、均熱保持時間S(秒)、及び、これらの関係が非常に重要である。本発明者等が鋭意検討した結果、以下の条件式(1)〜(6)をすべて満たす場合にのみ、上記りん酸金属塩の結晶化度を達成できることが判明した。   In the present invention, in order to obtain a mixed state of an amorphous structure and a crystalline structure, a heating rate V (° C./second), a soaking temperature C (° C.), a soaking time S (second), and these The relationship is very important. As a result of intensive studies by the present inventors, it has been found that the crystallinity of the metal phosphate can be achieved only when all of the following conditional expressions (1) to (6) are satisfied.

30≦V …(1)
10≦S …(2)
800≦C≦1000 …(3)
S≦2V−40 …(4)
C≦5/3V+900 …(5)
S≦−4/5C+820 …(6)
30 ≦ V (1)
10 ≦ S (2)
800 ≦ C ≦ 1000 (3)
S ≦ 2V-40 (4)
C ≦ 5 / 3V + 900 (5)
S ≦ −4 / 5C + 820 (6)

まず、昇温速度V(℃/秒)は30℃/秒以上、好ましくは50℃/秒以上、さらに好ましくは70℃/秒以上で、50℃/秒以上であれば、容易に結晶化度を制御することが可能であり、70℃/秒では非常に美麗な外観が得られ、30℃/秒未満では結晶化の進行が進み、十分な非晶質構造が得られない。   First, if the temperature rising rate V (° C./second) is 30 ° C./second or more, preferably 50 ° C./second or more, more preferably 70 ° C./second or more, and 50 ° C./second or more, the crystallinity is easily obtained. When the temperature is 70 ° C./second, a very beautiful appearance can be obtained. When the temperature is less than 30 ° C./second, crystallization proceeds and a sufficient amorphous structure cannot be obtained.

次に、焼付均熱温度C(℃)とは到達板温のことで、800℃以上1000℃以下の範囲が必要であり、800℃未満では十分な張力が発揮されず、また、1000℃を超えると被膜に亀裂が生じ、被膜張力が低下したり絶縁性などが低下する。   Next, the soaking soaking temperature C (° C.) is the ultimate plate temperature, and a range of 800 ° C. or higher and 1000 ° C. or lower is necessary. If the temperature is lower than 800 ° C., sufficient tension is not exhibited. When it exceeds, a crack will arise in a film and film tension will fall or insulation will fall.

また、均熱保持時間S(秒)は10秒以上が必要で、10秒未満では焼き付きが不足して吸湿性が劣化しがちであり、望ましくは20秒以上である。   Further, the soaking time S (second) is required to be 10 seconds or more, and if it is less than 10 seconds, seizure is insufficient and the hygroscopicity tends to deteriorate, preferably 20 seconds or more.

さらに、本発明では、結晶化度を制御するために、昇温速度、均熱温度、及び、均熱時間は、
S≦2V−40、C≦5/3V+900、S≦−4/5C+820
の各条件式を満たす必要がある。
Furthermore, in the present invention, in order to control the crystallinity, the rate of temperature rise, the soaking temperature, and the soaking time are:
S ≦ 2V−40, C ≦ 5 / 3V + 900, S ≦ −4 / 5C + 820
It is necessary to satisfy each conditional expression.

これは、昇温速度が大きいと非晶質化しやすく、均熱温度は高いほど、均熱時間は長いほど結晶化しやすくなるため、それぞれが関連しているためであり、上記関係式を満たさない場合、結晶化が進行し、結晶化度が大きくなり過ぎる。   This is because when the heating rate is high, the material is likely to be amorphous, and the higher the soaking temperature, the easier it is to crystallize as the soaking time is longer. In this case, crystallization proceeds and the crystallinity becomes too large.

なお、上記絶縁被膜処理を、特開平7−268567号公報に開示されている技術を用いて製造した方向性電磁鋼板、即ち、Cを0.005%以下、Siを2.5〜7.0%含有し、平均結晶粒径が1〜10mmであり、結晶方位が(110)[001]の理想方位に対して、平均値で圧延方向に8°以下の方位のズレを有する方向性電磁鋼板に施すことにより、さらに鉄損を低減する効果が得られた。   Incidentally, the grain-oriented electrical steel sheet produced by using the technique disclosed in Japanese Patent Application Laid-Open No. 7-268567 as the insulating film treatment, that is, C is 0.005% or less, and Si is 2.5 to 7.0. A grain-oriented electrical steel sheet having an average crystal grain size of 1 to 10 mm and a deviation of an orientation of 8 ° or less in the rolling direction as an average value with respect to the ideal orientation of (110) [001]. The effect of further reducing the iron loss was obtained by applying to.

次に、実施例について述べる。   Next, examples will be described.

(実施例1)厚さ0.23mmの方向性電磁鋼板の最終仕上げ焼鈍後の同一コイルから幅7cm×長さ30cmの試料を切り出し、表面に残存している焼鈍分離剤を水洗と軽酸洗で除去し、グラス被膜を残した後、歪取り焼鈍を行った。次に、表1に示す配合割合で絶縁被膜処理液を調製した後、塗布量が4.5g/m2になるよう、表2の条件で鋼板に塗布し焼き付けし、その後、被膜特性と磁気特性を評価した。結果を表3に示す。 (Example 1) A sample having a width of 7 cm and a length of 30 cm was cut out from the same coil after final finishing annealing of a 0.23 mm-thick directional electrical steel sheet, and the annealing separator remaining on the surface was washed with water and lightly pickled. And removing the glass film to leave a glass coating, followed by strain relief annealing. Next, after preparing the insulating film treatment liquid at the blending ratio shown in Table 1, it was applied to the steel sheet and baked under the conditions shown in Table 2 so that the coating amount was 4.5 g / m 2. Characteristics were evaluated. The results are shown in Table 3.

比較例1では、結晶化度が大きく、りん酸塩にCa塩を用いたため、被膜にワレが発生して密着性が劣化し、比較例2では、結晶化度が大きく、コロイダルシリカの粒径が小さ過ぎたため隙間の大きなポーラスな被膜となってやはり密着性が低下した。比較例3では、結晶化度が大きく、粒径の大きすぎるコロイダルシリカを用いたため、やはり被膜に亀裂が発生して密着性が低下した。比較例4では、りん酸配合割合が低すぎたため結晶化が進み密着性が低下した。   In Comparative Example 1, since the crystallinity is large and Ca salt is used as the phosphate, cracking occurs in the coating and the adhesiveness deteriorates. In Comparative Example 2, the crystallinity is large and the particle size of the colloidal silica is large. Was too small to form a porous film with a large gap, and the adhesion was also lowered. In Comparative Example 3, since colloidal silica having a large crystallinity and a particle size that was too large was used, cracks were also generated in the coating, resulting in a decrease in adhesion. In Comparative Example 4, since the proportion of phosphoric acid was too low, crystallization progressed and adhesion decreased.

比較例5では、結晶化度が大きく、昇温速度が低過ぎたため被膜に膨れが発生し、比較例6では、均熱温度が低過ぎたため膨れが発生して被膜張力が劣化した。比較例7では、結晶化度が大きく、均熱温度が高すぎたため隙間の多いポーラスな被膜となって密着性が劣化した。比較例8は、均熱保持時間と昇温速度、比較例9は昇温速度と均熱保持温度の関係が合致しないため結晶化が進み、ポーラスな被膜となって密着性が劣化した。   In Comparative Example 5, the degree of crystallinity was large and the rate of temperature increase was too low to cause swelling of the film. In Comparative Example 6, the soaking temperature was too low to cause swelling and the film tension was deteriorated. In Comparative Example 7, the degree of crystallinity was large and the soaking temperature was too high, resulting in a porous film with many gaps, and the adhesion deteriorated. In Comparative Example 8, the relationship between the soaking time and the temperature raising rate was compared, and in Comparative Example 9, the relationship between the temperature raising rate and the soaking temperature did not match, so that crystallization progressed and a porous film was formed, and the adhesion deteriorated.

Figure 0005063902
Figure 0005063902

Figure 0005063902
Figure 0005063902

Figure 0005063902
Figure 0005063902

(実施例2)特開平7−268567号公報に開示されている技術を用いて、Siを3.25%含有する溶鋼を鋳造し、スラブ加熱後、熱間圧延を行い、1100℃で5分間熱延板を焼鈍し、その後、冷間圧延により0.22mm厚にした。この鋼板を加熱速度を400℃/秒で850℃まで昇温した後、脱炭焼鈍し、焼鈍分離剤を塗布し、1200℃×20時間の仕上げ焼鈍を行った。   (Example 2) Using the technique disclosed in Japanese Patent Application Laid-Open No. 7-268567, a molten steel containing 3.25% of Si is cast, and after slab heating, hot rolling is performed at 1100 ° C for 5 minutes. The hot-rolled sheet was annealed and then made 0.22 mm thick by cold rolling. The steel sheet was heated to 850 ° C. at a heating rate of 400 ° C./second, then decarburized and annealed, applied with an annealing separator, and subjected to finish annealing at 1200 ° C. for 20 hours.

このようにして得られた、平均粒径が9.5mmで、結晶方位が(110)[001]の理想方位より平均で4.4°の方位のズレを有する同一コイルから実施例1と同様の操作を行い、表4に示す溶液を用いて、表5に示す条件で、塗布量4.5g/m2になるよう鋼板に塗布し焼き付けし、その後、被膜特性と磁気特性を評価した。結果を表6に示す。 Similar to Example 1 from the same coil having an average grain size of 9.5 mm and a crystal orientation of 4.4 ° on average from the ideal orientation of (110) [001]. Then, using the solution shown in Table 4, the coating was applied to the steel sheet and baked under the conditions shown in Table 5 so that the coating amount was 4.5 g / m 2 , and then the coating properties and magnetic properties were evaluated. The results are shown in Table 6.

比較例10では、結晶化度が大きく、りん酸塩にCa塩を配合したため、被膜にワレが発生して密着性が劣化し、比較例11では、結晶化度が大きく、コロイダルシリカの粒径が小さ過ぎたため隙間の大きなポーラスな被膜となってやはり密着性が低下した。比較例12では、結晶化度が大きく、粒径の大きすぎるコロイダルシリカを用いたため、やはり被膜に亀裂が発生して密着性が低下した。   In Comparative Example 10, since the crystallinity is large and Ca salt is added to the phosphate, cracking occurs in the coating and adhesion deteriorates. In Comparative Example 11, the crystallinity is large and the particle size of colloidal silica is large. Was too small to form a porous film with a large gap, and the adhesion was also lowered. In Comparative Example 12, since colloidal silica having a large crystallinity and a particle size that was too large was used, cracks were also generated in the coating, resulting in a decrease in adhesion.

比較例13では、均熱温度が高すぎたため結晶化が進み密着性が低下した。比較例14、15では、昇温速度、均熱保持温度、均熱保持時間の関係が悪く、結晶化が進み密着性が劣化した。   In Comparative Example 13, since the soaking temperature was too high, crystallization progressed and adhesion decreased. In Comparative Examples 14 and 15, the relationship between the rate of temperature rise, the soaking temperature, and the soaking time was poor, and crystallization progressed and the adhesion deteriorated.

Figure 0005063902
Figure 0005063902

Figure 0005063902
Figure 0005063902

Figure 0005063902
Figure 0005063902

この試験の結果、特定りん酸金属塩を用い、結晶化度を60%以下に制御した絶縁被膜は、比較例と比較して高張力で密着性に優れ、磁気特性の改善効果が良好であった。   As a result of this test, an insulating coating using a specific metal phosphate and controlled to have a crystallinity of 60% or less has higher tension and superior adhesion than the comparative example, and has a good effect of improving magnetic properties. It was.

本発明によれば、鋼板の表面に付与される被膜張力が大きく、トランス製造における鉄芯材料の密着性が良好で、磁気特性も良好な方向性電磁鋼板を得ることができる。よって、本発明は、電磁鋼板を利用する産業において、利用可能性の高いものである。   According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having a high coating tension applied to the surface of the steel sheet, good adhesion of the iron core material in transformer production, and good magnetic properties. Therefore, the present invention has high applicability in industries that use electromagnetic steel sheets.

代表的なX線回折チャート(Cu線源を使用)を示す図である。It is a figure which shows a typical X-ray-diffraction chart (using Cu source).

Claims (6)

表面にりん酸金属塩とコロイド状シリカを主成分とし、該りん酸金属塩の結晶化度が2〜40%のクロムを含有しない高張力絶縁被膜を有することを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet comprising a high-strength insulating coating containing, as a main component, a metal phosphate and colloidal silica on the surface, and containing no chromium and having a crystallinity of 2 to 40% .
前記りん酸金属塩が、Ni、Co、Mn、Zn、Fe、Al、Mg、Baの中から選ばれる1種又は2種以上であることを特徴とする請求項1記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1, wherein the metal phosphate is at least one selected from Ni, Co, Mn, Zn, Fe, Al, Mg, and Ba. 前記コロイド状シリカの平均粒径が5〜35nmであることを特徴とする請求項1又は2記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the colloidal silica has an average particle diameter of 5 to 35 nm. 前記方向性電磁鋼板が、Cを0.005%以下、Siを2.5〜7.0%含有し、平均結晶粒径が1〜10mmであり、結晶方位が、(110)[001]の理想方位に対し、平均値で圧延方向に8°以下の方位のズレを有することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet contains 0.005% or less of C and 2.5 to 7.0% of Si, an average crystal grain size of 1 to 10 mm, and a crystal orientation of (110) [001]. The grain oriented electrical steel sheet according to any one of claims 1 to 3, which has a deviation of an orientation of 8 ° or less in the rolling direction as an average value with respect to the ideal orientation. 方向性電磁鋼板の表面に、りん酸金属塩とコロイド状シリカを主成分とする処理液を塗布し高張力被膜を形成する際に、絶縁被膜処理剤として、平均粒径が5〜35nmのコロイド状シリカを固形分換算で100重量部、及び、該100重量部に対し、Ni、Co、Mn、Zn、Fe、Al、Mg、Baのりん酸塩の1種又は2種以上を固形分で155〜250重量部含有する処理液を塗布し、以下の(1)〜(6)の条件式を満たす昇温速度V(℃/秒)、焼付均熱温度C(℃)、均熱保持時間S(秒)で、該りん酸金属塩の結晶化度が2〜40%のクロムを含有しない高張力絶縁被膜を形成することを特徴とする方向性電磁鋼板の絶縁被膜処理方法。
30≦V ・・・(1)
10≦S ・・・(2)
800≦C≦1000 ・・・(3)
S≦2V−40 ・・・(4)
C≦5/3V+900 ・・・(5)
S≦−4/5C+820 ・・・(6)
A colloid having an average particle size of 5 to 35 nm as an insulating coating treatment agent when a high-tensile coating film is formed on a surface of a grain-oriented electrical steel sheet by applying a treatment liquid mainly composed of metal phosphate and colloidal silica. 100 parts by weight of solid silica in terms of solid content, and one or more of Ni, Co, Mn, Zn, Fe, Al, Mg, Ba phosphates in solid content with respect to 100 parts by weight A treatment liquid containing 155 to 250 parts by weight is applied, and a temperature rising rate V (° C./second), a baking soaking temperature C (° C.), and a soaking hold time satisfying the following conditional expressions (1) to (6) An insulating coating treatment method for grain- oriented electrical steel sheets, characterized in that a high-strength insulating coating not containing chromium having a crystallinity of 2 to 40% is formed in S (seconds).
30 ≦ V (1)
10 ≦ S (2)
800 ≦ C ≦ 1000 (3)
S ≦ 2V-40 (4)
C ≦ 5 / 3V + 900 (5)
S ≦ −4 / 5C + 820 (6)
前記方向性電磁鋼板が、Cを0.005%以下、Siを2.5〜7.0%含有し、平均結晶粒径が1〜10mmであり、結晶方位が、(110)[001]の理想方位に対し、平均値で圧延方向に8°以下の方位のズレを有することを特徴とする請求項5に記載の方向性電磁鋼板の絶縁被膜処理方法。   The grain-oriented electrical steel sheet contains 0.005% or less of C and 2.5 to 7.0% of Si, an average crystal grain size of 1 to 10 mm, and a crystal orientation of (110) [001]. 6. The method for treating an insulating film on a grain-oriented electrical steel sheet according to claim 5, wherein an average value has a deviation of an orientation of 8 [deg.] Or less in the rolling direction with respect to the ideal orientation.
JP2006040666A 2006-02-17 2006-02-17 Oriented electrical steel sheet and method for treating insulating film Active JP5063902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040666A JP5063902B2 (en) 2006-02-17 2006-02-17 Oriented electrical steel sheet and method for treating insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040666A JP5063902B2 (en) 2006-02-17 2006-02-17 Oriented electrical steel sheet and method for treating insulating film

Publications (2)

Publication Number Publication Date
JP2007217758A JP2007217758A (en) 2007-08-30
JP5063902B2 true JP5063902B2 (en) 2012-10-31

Family

ID=38495355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040666A Active JP5063902B2 (en) 2006-02-17 2006-02-17 Oriented electrical steel sheet and method for treating insulating film

Country Status (1)

Country Link
JP (1) JP5063902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079845A1 (en) 2016-10-31 2018-05-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309735B2 (en) * 2008-07-03 2013-10-09 新日鐵住金株式会社 Insulating coating treatment agent, grain-oriented electrical steel sheet coated with the coating treatment agent, and insulation coating treatment method thereof
WO2010061722A1 (en) 2008-11-27 2010-06-03 新日本製鐵株式会社 Electromagnetic steel sheet and method for producing same
EP2799594B1 (en) * 2011-12-28 2018-10-31 JFE Steel Corporation Directional electromagnetic steel sheet with coating, and method for producing same
WO2014121853A1 (en) * 2013-02-08 2014-08-14 Thyssenkrupp Electrical Steel Gmbh Solution for forming insulation coating and grain-oriented electrical steel sheet
JP6323423B2 (en) * 2015-09-25 2018-05-16 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
BR112018004771B1 (en) 2015-09-29 2021-12-14 Nippon Steel Corporation ELECTRIC STEEL SHEET WITH ORIENTED GRAIN AND PRODUCTION METHOD OF ELECTRIC STEEL SHEET WITH ORIENTED GRAIN
US10662339B2 (en) 2016-03-03 2020-05-26 Nissan Chemical Industries, Ltd. Silica sol containing phenylphosphonic acid and applications thereof
US11280003B2 (en) 2016-08-30 2022-03-22 Jfe Steel Corporation Coated metal, coating-forming treatment solution, and method for producing coated metal
US11894167B2 (en) * 2016-12-28 2024-02-06 Jfe Steel Corporation Grain-oriented electrical steel sheet, iron core of transformer, transformer, and method for reducing noise of transformer
JP6915689B2 (en) * 2017-07-13 2021-08-04 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
WO2019013353A1 (en) * 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
US11923115B2 (en) 2018-02-06 2024-03-05 Jfe Steel Corporation Insulating coating-attached electrical steel sheet and manufacturing method therefor
CN114423886B (en) * 2019-09-20 2023-09-29 日本制铁株式会社 Non-oriented electromagnetic steel plate
JP7678366B2 (en) * 2021-04-06 2025-05-16 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating coating
WO2024214822A1 (en) * 2023-04-12 2024-10-17 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating coating film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652117B2 (en) * 1973-11-17 1981-12-10
JPS5844744B2 (en) * 1979-11-22 1983-10-05 川崎製鉄株式会社 Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets
JPS5848630A (en) * 1981-09-17 1983-03-22 Nippon Steel Corp Heat treatment of directional electrical steel plate in treatment of insulating coat
JP2664325B2 (en) * 1993-03-31 1997-10-15 新日本製鐵株式会社 Low iron loss grain-oriented electrical steel sheet
JPH07268567A (en) * 1994-03-31 1995-10-17 Nippon Steel Corp Unidirectional electrical steel sheet with extremely low iron loss
JP3272211B2 (en) * 1995-09-13 2002-04-08 新日本製鐵株式会社 Method of forming insulating film on magnetic domain controlled unidirectional silicon steel sheet
JP3379061B2 (en) * 1997-08-28 2003-02-17 新日本製鐵株式会社 Grain-oriented electrical steel sheet having high-tensile insulating coating and its treatment method
JP2000169973A (en) * 1998-12-04 2000-06-20 Nippon Steel Corp Surface treatment agent for grain-oriented electrical steel sheet containing no chromium and method for producing grain-oriented electrical steel sheet using the same
JP2000178760A (en) * 1998-12-08 2000-06-27 Nippon Steel Corp Chromium-free surface treatment agent and method for producing grain-oriented electrical steel sheet using the same
JP3482374B2 (en) * 1999-09-14 2003-12-22 新日本製鐵株式会社 Grain-oriented electrical steel sheet with excellent coating properties and method for producing the same
JP2003193252A (en) * 2001-12-21 2003-07-09 Jfe Steel Kk Method of manufacturing electrical steel sheet with insulating coating excellent in coating appearance
JP4305040B2 (en) * 2003-05-09 2009-07-29 Jfeスチール株式会社 Method for forming chromeless coating for grain-oriented electrical steel sheet
JP4500005B2 (en) * 2003-05-20 2010-07-14 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet having insulating coating with excellent tension imparting characteristics and grain-oriented electrical steel sheet produced by the method
JP4264362B2 (en) * 2004-01-15 2009-05-13 新日本製鐵株式会社 Insulating coating agent for grain-oriented electrical steel sheet not containing chromium and grain-oriented electrical steel sheet having an insulating film not containing chromium
JP4635457B2 (en) * 2004-02-27 2011-02-23 Jfeスチール株式会社 A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079845A1 (en) 2016-10-31 2018-05-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet
US11535943B2 (en) 2016-10-31 2022-12-27 Nippon Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2007217758A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5063902B2 (en) Oriented electrical steel sheet and method for treating insulating film
KR102268306B1 (en) grain-oriented electrical steel sheet
JP6547835B2 (en) Directional electromagnetic steel sheet and method of manufacturing directional electromagnetic steel sheet
JP5026414B2 (en) Grain-oriented electrical steel sheet having high-tensile insulation coating and method for treating the insulation coating
KR100973071B1 (en) A grain-oriented electrical steel sheet having an insulating film containing no chromium and its insulating film
CN108475553B (en) Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
EP3533903B1 (en) Grain-oriented electrical steel sheet, transformer core, transformer, and method for reducing transformer noise
JP5309735B2 (en) Insulating coating treatment agent, grain-oriented electrical steel sheet coated with the coating treatment agent, and insulation coating treatment method thereof
WO2015162837A1 (en) Treatment liquid for forming chromium-free insulating coating film on grain-oriented electromagnetic steel sheet and grain-oriented electromagnetic steel sheet coated with chromium-free insulating film
RU2758423C1 (en) Liquid for obtaining an insulating coating, textured electrical steel sheet with an insulating coating and its production method
JP6682888B2 (en) Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet
JP3379061B2 (en) Grain-oriented electrical steel sheet having high-tensile insulating coating and its treatment method
JP6558325B2 (en) Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer
JP2009235472A (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2020111815A (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
CN114381584A (en) Insulating coating liquid for oriented silicon steel surface, oriented silicon steel plate and manufacturing method thereof
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP4044781B2 (en) Unidirectional silicon steel sheet with excellent tension-providing insulating film adhesion and method for producing the same
JP3276567B2 (en) Insulating coating agent having excellent coating characteristics and method for producing grain-oriented electrical steel sheet using the same
JPWO2020066469A1 (en) Chromium-free insulating film forming treatment agent, grain-oriented electrical steel sheet with insulating film, and its manufacturing method
CN115151681B (en) Grain-oriented electrical steel sheet with insulating film and method for producing same
WO2024210186A1 (en) Insulating film treatment liquid for grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2024210188A1 (en) Insulating coating film treatment liquid for grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2024210189A1 (en) Insulating film processing liquid for grain-oriented electrical steel sheets, method for manufacturing same, and grain-oriented electrical steel sheet manufacturing method
KR20240116512A (en) Coating for oriented silicon steel coating layer, oriented silicon steel plate, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R151 Written notification of patent or utility model registration

Ref document number: 5063902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350