[go: up one dir, main page]

JP5063007B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP5063007B2
JP5063007B2 JP2006028994A JP2006028994A JP5063007B2 JP 5063007 B2 JP5063007 B2 JP 5063007B2 JP 2006028994 A JP2006028994 A JP 2006028994A JP 2006028994 A JP2006028994 A JP 2006028994A JP 5063007 B2 JP5063007 B2 JP 5063007B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
acceptor
organic
hole injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006028994A
Other languages
Japanese (ja)
Other versions
JP2007208217A (en
Inventor
雄一郎 板井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006028994A priority Critical patent/JP5063007B2/en
Priority to US11/702,173 priority patent/US7968904B2/en
Publication of JP2007208217A publication Critical patent/JP2007208217A/en
Application granted granted Critical
Publication of JP5063007B2 publication Critical patent/JP5063007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機電界発光素子(以下、有機EL素子と略記する。)に関する。特に低駆動力で高輝度発光する有機EL素子に関する。   The present invention relates to an organic electroluminescent element (hereinafter abbreviated as an organic EL element). In particular, the present invention relates to an organic EL element that emits light with high luminance with low driving force.

電流を通じることによって励起され発光する薄膜材料を用いた有機電界発光素子が知られている。有機電界発光素子は、低電圧で高輝度の発光が得られるために、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い潜在用途を有し、それらの分野でデバイスの薄型化、軽量化、小型化、および省電力のなどの利点を有する。このため、将来の電子ディスプレイ市場の主役としての期待が大きい。しかしながら、実用的にこれらの分野で従来ディスプレイに代わって用いられるためには、発光輝度と色調、広い使用環境条件下での耐久性、安価で大量の生産性など多くの技術改良が課題となっている。   An organic electroluminescent element using a thin film material that emits light when excited by passing an electric current is known. Since organic electroluminescent devices can emit light with high brightness at low voltage, they are widely used in a wide range of fields including mobile phone displays, personal digital assistants (PDAs), computer displays, automobile information displays, TV monitors, or general lighting. It has potential applications and has advantages such as thinning, lightening, miniaturization, and power saving of devices in these fields. For this reason, the expectation as a leading role of the future electronic display market is great. However, in order to be practically used in these fields in place of conventional displays, many technical improvements such as light emission luminance and color tone, durability under a wide range of usage conditions, low cost and large productivity are problems. ing.

特に課題とされる一つは、輝度と駆動電力の改良である。上記の多くのデバイスは、薄型化、軽量化、小型化に当たって、まず高い輝度を実現することが課題であった。薄型化および軽量化に当たっては、デバイスのみでなく駆動電源のコンパクト化、軽量化も要求される。特に、電力が1次電池あるいは2次電池より供給される場合、省電力は大きな課題であり、低駆動電圧で高輝度を得ることが強く要望されている。従来、高輝度とするためには、高電圧を必要とし、電力消費を早める結果となっていた。また、高輝度および高電圧は、デバイスの耐久性を損なう結果となっていた。   One particular problem is improvement in luminance and driving power. Many of the above-described devices have a problem of achieving high brightness first in reducing the thickness, weight, and size. In reducing the thickness and weight, not only the device but also the drive power source must be made compact and lightweight. In particular, when power is supplied from a primary battery or a secondary battery, power saving is a major issue, and there is a strong demand for high brightness with a low driving voltage. Conventionally, in order to achieve high brightness, a high voltage is required, resulting in faster power consumption. Also, high brightness and high voltage have resulted in a loss of device durability.

正孔輸送層にアクセプタとして金属ドーパントをドーピングした有機化合物層を配する試みが提案されている(例えば、特許文献1、2参照。)。しかしながら、正孔輸送層にアクセプタを導入することは発光効率の点で不利であった。また、正孔輸送層のアクセプタ濃度を発光層に近い部分が高くなるように連続的に変化させることが提案されている(例えば、特許文献3参照。)。しかしながら、この場合はアクセプタの効果が十分発揮されず、発光効率および駆動耐久性にいづれの点に置いても十分な改良効果を得ることはできなかった。
特開平4−297076号公報 特開2000−196140号公報 WO2005−064994A1号公報
Attempts have been made to arrange an organic compound layer doped with a metal dopant as an acceptor in the hole transport layer (see, for example, Patent Documents 1 and 2). However, introducing an acceptor into the hole transport layer is disadvantageous in terms of luminous efficiency. In addition, it has been proposed to continuously change the acceptor concentration of the hole transport layer so that the portion close to the light emitting layer becomes higher (see, for example, Patent Document 3). However, in this case, the effect of the acceptor is not sufficiently exhibited, and a sufficient improvement effect cannot be obtained regardless of the light emission efficiency and the driving durability.
Japanese Patent Laid-Open No. 4-297076 JP 2000-196140 A WO2005-064994A1

本発明の課題は、特に高発光効率で且つ高耐久性である有機EL素子を提供するものである。   An object of the present invention is to provide an organic EL device having particularly high luminous efficiency and high durability.

本発明の上記課題は、下記の手段によって解決された。
<1> 対向する陽極電極と陰極電極との間に少なくとも1層の発光層を有する有機電界発光素子であって、前記発光層と前記陽極電極との間にアクセプタとして金属酸化物と金属を含まない有機化合物とを含有する正孔注入層を有し、前記正孔注入層と前記発光層との間に実質的にアクセプタを含有しない正孔輸送層を有し、前記正孔注入層における前記金属酸化物は前記陽極電極に近い部分より前記発光層に近い部分でより濃度が低く、かつ、前記有機化合物は濃度が均一であるか又は前記陽極電極側の部分と前記発光層側の部分でこれらの間の部分より濃度が低いことを特徴とする有機電界発光素子。
<2> 前記正孔注入層における前記金属酸化物が最も高濃度である領域の濃度(Cmax)と最も低濃度である領域の濃度(Cmin)の比(Cmax/Cmin)が2以上であることを特徴とする<1>に記載の有機電界発光素子。
<3> 前記アクセプタとしての金属酸化物が、電荷移動錯体を形成し得る金属酸化物であることを特徴とする<1>または<2>に記載の有機電界発光素子。
> 前記金属酸化物が、酸化モリブデンまたは酸化バナジウムであることを特徴とする<1>〜<>のいずれか1項に記載の有機電界発光素子。
> 前記有機化合物が、7,7,8,8−テトラフルオロテトラシアノキノジメタンであることを特徴とする<>に記載の有機電界発光素子。
The above-described problems of the present invention have been solved by the following means.
<1> An organic electroluminescent element having at least one light emitting layer between an anode electrode and a cathode electrode facing each other, wherein a metal oxide and a metal are included as an acceptor between the light emitting layer and the anode electrode. A hole injection layer containing no organic compound, and having a hole transport layer substantially not containing an acceptor between the hole injection layer and the light emitting layer, the hole injection layer in the hole injection layer The concentration of the metal oxide is lower in the portion closer to the light emitting layer than the portion close to the anode electrode, and the organic compound has a uniform concentration, or the portion on the anode electrode side and the portion on the light emitting layer side. An organic electroluminescent device characterized in that the concentration is lower than the portion between them.
<2> The ratio (Cmax / Cmin) of the concentration (Cmax) of the region having the highest concentration of the metal oxide to the concentration (Cmin) of the lowest concentration in the hole injection layer is 2 or more. The organic electroluminescent element as described in <1> characterized by these.
<3> The organic electroluminescent element according to <1> or <2>, wherein the metal oxide as the acceptor is a metal oxide capable of forming a charge transfer complex.
< 4 > The organic electroluminescent element according to any one of <1> to < 3 >, wherein the metal oxide is molybdenum oxide or vanadium oxide.
< 5 > The organic electroluminescent element according to < 4 >, wherein the organic compound is 7,7,8,8-tetrafluorotetracyanoquinodimethane.

従来、アクセプタを有する有機層を設けて、正孔の移動度を制御して、駆動耐久性を改良することは知られていたが、発光効率が低下してしまう欠点があって、高い発光効率と高い駆動耐久性とを両立することが困難であった。
本発明者らは、鋭意努力の結果、アクセプタとして金属酸化物を含有する有機層を有し、該有機層における該金属酸化物の濃度が前記陽極電極に近い部分より前記発光層に近い部分でより濃度を低することによって、高い発光効率を維持し高い駆動耐久性を実現することを可能にし、本発明に到達した。さらに好ましくは、アクセプタを含有する層を正孔注入層として該正孔注入層と発光層との間に実質的にアクセプタを含有しない正孔輸送層を配することによって本願の課題を達成した。
Conventionally, it has been known that an organic layer having an acceptor is provided to control the mobility of holes to improve driving durability, but there is a drawback that the luminous efficiency is lowered, and the high luminous efficiency. And high driving durability are difficult to achieve at the same time.
As a result of diligent efforts, the present inventors have an organic layer containing a metal oxide as an acceptor, and the concentration of the metal oxide in the organic layer is closer to the light emitting layer than the portion closer to the anode electrode. By lowering the concentration, it was possible to maintain high luminous efficiency and realize high driving durability, and reached the present invention. More preferably, the object of the present application is achieved by arranging a layer containing an acceptor as a hole injection layer and disposing a hole transport layer substantially not containing an acceptor between the hole injection layer and the light emitting layer.

本発明によれば、低い駆動電圧で高輝度発光が得られる有機EL素子が提供される。さらには、低い駆動電圧で高輝度発光が得られる有機EL素子であって駆動耐久性に優れた有機EL素子が提供される。   According to the present invention, there is provided an organic EL element capable of obtaining high luminance light emission with a low driving voltage. Furthermore, an organic EL element that is capable of obtaining high-luminance light emission at a low driving voltage and has excellent driving durability is provided.

以下、本発明の有機EL素子について詳細に説明する。   Hereinafter, the organic EL device of the present invention will be described in detail.

(構成)
本発明の有機電界発光素子は、一対の電極(陽極と陰極)間に少なくとも発光層を含む有機化合物層を有し、更に、好ましくは、陽極と該発光層との間に正孔輸送層を、また陰極と該発光層との間に電子輸送層を有する。
発光素子の性質上、前記一対の電極のうち少なくとも一方の電極は、透明であることが好ましい。
(Constitution)
The organic electroluminescent element of the present invention has an organic compound layer including at least a light emitting layer between a pair of electrodes (anode and cathode), and more preferably, a hole transport layer is provided between the anode and the light emitting layer. In addition, an electron transport layer is provided between the cathode and the light emitting layer.
From the nature of the light emitting element, it is preferable that at least one of the pair of electrodes is transparent.

本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び/又は発光層と電子輸送層との間に、電子輸送性中間層を有する。また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。   In the present invention, the organic compound layer is preferably laminated in the order of the hole transport layer, the light emitting layer, and the electron transport layer from the anode side. Further, a hole injection layer is provided between the hole transport layer and the anode, and / or an electron transporting intermediate layer is provided between the light emitting layer and the electron transport layer. Further, a hole transporting intermediate layer may be provided between the light emitting layer and the hole transport layer, and similarly, an electron injection layer may be provided between the cathode and the electron transport layer.

本発明の有機電界発光素子における有機化合物層の好適な態様は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(2) 正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(3)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様である。   A preferred embodiment of the organic compound layer in the organic electroluminescence device of the present invention is, in order from the anode side, at least (1) a hole injection layer, a hole transport layer (the hole injection layer and the hole transport layer may serve as both). Good), a hole transporting intermediate layer, a light emitting layer, an electron transport layer, and an electron injection layer (the electron transport layer and the electron injection layer may serve both), (2) hole injection layer, hole Transport layer (hole injection layer and hole transport layer may serve as well), light emitting layer, electron transport intermediate layer, electron transport layer, and electron injection layer (electron transport layer and electron injection layer may serve as well) (3) hole injection layer, hole transport layer (hole injection layer and hole transport layer may be combined), hole transport intermediate layer, light emitting layer, electron transport intermediate layer, This is an embodiment having an electron transport layer and an electron injection layer (the electron transport layer and the electron injection layer may serve as each other).

上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有することが好ましい。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能及び正孔をブロックする機能の少なくとも一方を有することが好ましい。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層の少なくとも一方は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
The hole transporting intermediate layer preferably has at least one of a function of accelerating hole injection into the light emitting layer and a function of blocking electrons.
The electron transporting intermediate layer preferably has at least one of a function of promoting electron injection into the light emitting layer and a function of blocking holes.
Furthermore, it is preferable that at least one of the hole transporting intermediate layer and the electron transporting intermediate layer has a function of blocking excitons generated in the light emitting layer.
In order to effectively express the functions of hole injection promotion, electron injection promotion, hole block, electron block, and exciton block, the hole transporting intermediate layer and the electron transporting intermediate layer are formed of a light emitting layer. It is preferable that it adjoins.
Each layer may be divided into a plurality of secondary layers.

次に、本発明の発光素子を構成する要素について、詳細に説明する。   Next, elements constituting the light emitting device of the present invention will be described in detail.

本発明における有機化合物層について説明する。
本発明の有機電界発光素子は、少なくとも一層の発光層を含む有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔注入層、正孔輸送層、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、電子注入層等の各層が挙げられる。
The organic compound layer in the present invention will be described.
The organic electroluminescent element of the present invention has an organic compound layer including at least one light emitting layer. As the organic compound layer other than the light emitting layer, as described above, a hole injection layer, a hole transport layer, and the like. , Hole transporting intermediate layer, light emitting layer, electron transporting intermediate layer, electron transporting layer, electron injection layer and the like.

有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。   Each layer constituting the organic compound layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, coating methods, ink jet methods, and spray methods.

(アクセプタ)
1)金属酸化物アクセプタ
アクセプタとは電子受容体であり、基材となる有機化合物から電荷をアクセプタに移動させることで、導電性を発現させる。この電荷移動により、アクセプタと基材となる有機化合物は、電荷移動錯体を構成する。
好ましい材料としては、酸化モリブデン、酸化バナジウム、酸化レニウム、およびNiOなどが挙げられる。
より好ましくは、蒸着が容易な酸化モリブデン、酸化バナジウム、および酸化レニウムが挙げられる。特に好ましくは、酸化モリブデンまたは酸化バナジウムである。
本発明における金属酸化物アクセプタは、陽極と発光層との間の有機層に含有される。
金属酸化物アクセプタを含有する層は、正孔注入層が好ましい。これは、正孔注入層の正孔注入材料が元々正孔が入りやすいからである。すなわち、電子が抜けやすい性質があり、この電子をアクセプタが受容し電荷移動錯体を構成することができるためである。正孔注入層と正孔輸送層が存在する場合は、特開2000−196140号に述べられているように、正孔輸送層にはアクセプタを添加しないことが、発光効率を低下させないという点で望ましい。
(Acceptor)
1) Metal Oxide Acceptor An acceptor is an electron acceptor, and develops conductivity by transferring a charge from an organic compound serving as a base material to the acceptor. By this charge transfer, the acceptor and the organic compound serving as the base material constitute a charge transfer complex.
Preferred materials include molybdenum oxide, vanadium oxide, rhenium oxide, and NiO.
More preferably, molybdenum oxide, vanadium oxide, and rhenium oxide that can be easily deposited are included. Particularly preferred is molybdenum oxide or vanadium oxide.
The metal oxide acceptor in the present invention is contained in an organic layer between the anode and the light emitting layer.
The layer containing the metal oxide acceptor is preferably a hole injection layer. This is because the hole injecting material of the hole injecting layer originally tends to enter holes. That is, there is a property that electrons are easily removed, and the acceptor accepts these electrons to form a charge transfer complex. In the case where a hole injection layer and a hole transport layer are present, as described in JP-A-2000-196140, the addition of an acceptor to the hole transport layer does not reduce the light emission efficiency. desirable.

金属酸化物アクセプタを含有する層における金属酸化物アクセプタの膜中濃度は、陽極に面する側よりも発光層に面する側でより低濃度であるべく、層内で勾配を有することを特徴とする。濃度勾配は、階段状に変化しても、連続的に変化しても良い。好ましくは、最も高濃度である領域の濃度(Cmax)が1質量%〜100質量%、より好ましくは5質量%〜50質量%であり、最も低濃度である領域の濃度(Cmin)が好ましくは0.1質量%〜50質量%、より好ましくは1質量%〜10質量%である。CmaxとCminの比(Cmax/Cmin)が好ましくは2以上、より好ましくは5以上である。   The metal oxide acceptor containing layer has a gradient in the layer so that the concentration of the metal oxide acceptor in the film is lower on the side facing the light emitting layer than on the side facing the anode. To do. The concentration gradient may change stepwise or continuously. Preferably, the concentration (Cmax) of the region having the highest concentration is 1% by mass to 100% by mass, more preferably 5% by mass to 50% by mass, and the concentration (Cmin) of the region having the lowest concentration is preferably It is 0.1 mass%-50 mass%, More preferably, it is 1 mass%-10 mass%. The ratio of Cmax to Cmin (Cmax / Cmin) is preferably 2 or more, more preferably 5 or more.

アクセプタの蒸着量は、基材となる正孔注入材料や正孔輸送材料に対する濃度でコントロールする。具体的な方法としては、正孔注入材料や正孔輸送材料を加熱する温度とアクセプタ材料を加熱する温度を変えることで、濃度をコントロールすることが可能である。
濃度を上げる場合は、アクセプタ材料を加熱する温度を上げ、正孔注入材料や正孔輸送材料を加熱する温度を下げることができる。また、濃度を下げる場合は、アクセプタ材料を加熱する温度を下げ、正孔注入材料や正孔輸送材料を加熱する温度を上げることができる。
また、WO2005−064994A1号公報に示されているように、蒸着する基板と正孔注入材料や正孔輸送材料の距離、蒸着する基板とアクセプタ材料の距離をそれぞれ変えることでコントロールすることも可能である。濃度を上げる場合は、蒸着する基板と正孔注入材料やアクセプタ材料の距離を長くし、蒸着する基板とアクセプタ材料の距離を短くする。
濃度を変化させるパターンとしては、階段的に変化させる場合や、連続的に変化させる場合がある。階段的に変化させる場合は、基材となる正孔注入材料や正孔輸送材料とアクセプタ材料の共蒸着を一定の濃度で行った後、別の濃度で、再び正孔注入材料や正孔輸送材料とアクセプタ材料の共蒸着を行えば良い。連続的に変化させる場合には、正孔注入材料や正孔輸送材料を加熱する温度とアクセプタ材料を加熱する温度を連続的に変える、あるいは、蒸着する基板と正孔注入材料や正孔輸送材料の距離、蒸着する基板とアクセプタ材料の距離をそれぞれ変えることで可能となる。
The deposition amount of the acceptor is controlled by the concentration with respect to the hole injecting material or hole transporting material that becomes the base material. As a specific method, the concentration can be controlled by changing the temperature at which the hole injection material or hole transport material is heated and the temperature at which the acceptor material is heated.
When increasing the concentration, the temperature at which the acceptor material is heated can be increased, and the temperature at which the hole injection material or hole transport material is heated can be decreased. When the concentration is lowered, the temperature at which the acceptor material is heated can be lowered, and the temperature at which the hole injection material or the hole transport material is heated can be raised.
Moreover, as shown in WO2005-064994A1, it is also possible to control by changing the distance between the substrate to be deposited and the hole injection material or hole transport material, and the distance between the substrate to be deposited and the acceptor material. is there. In increasing the concentration, the distance between the substrate to be deposited and the hole injection material or the acceptor material is increased, and the distance between the substrate to be deposited and the acceptor material is decreased.
The pattern for changing the density may be changed stepwise or continuously. In the case of stepwise change, after co-depositing the hole injection material or hole transport material and the acceptor material as the base material at a certain concentration, the hole injection material or hole transport is again performed at another concentration. The material and the acceptor material may be co-evaporated. When changing continuously, the temperature at which the hole injection material or hole transport material is heated and the temperature at which the acceptor material is heated are continuously changed, or the substrate to be deposited and the hole injection material or hole transport material are changed. This is possible by changing the distance between the substrate and the acceptor material to be deposited.

2)第二のアクセプタ
本発明における第二のアクセプタは、金属を含まない有機化合物より選ばれる。このような、金属を含まないアクセプタは、基材となる有機化合物に対して電子受容体となり導電性が生じさせることが可能である。
好ましい素材としては、シアノ基を含むF4−TCNQ(7,7,8,8−テトラフルオロテトラシアノキノジメタン)、TCNQ(テトラシアノエチレン)、およびTCNE(テトラシアノエチレン)などが挙げられる。
金属化合物アクセプタと同様、正孔注入層や正孔輸送層にアクセプタが用いられる。正孔注入層と正孔輸送層が存在する場合は、特開2000−196140号に述べられているように、正孔輸送層にアクセプタを添加しないことが、発光効率を低下させないという点で望ましい。第二のアクセプタの濃度パターンは、第一の濃度パターンに対して、均一でも変化があっても基本的には構わないが、WO2005−064994A1号公報に述べられているように、F4−TCNQなので、リークを防ぐために電極側の濃度は他の部分に比べて小さく、電子が発光に寄与しない(電子の素抜け)による効率低下を防ぐために、正孔輸送層との界面側も濃度を他の部分に比べて小さくするとより良い。濃度を変化させるパターンとしては、第一のアクセプタと同様である。
2) Second acceptor The second acceptor in the present invention is selected from organic compounds containing no metal. Such an acceptor which does not contain a metal becomes an electron acceptor for an organic compound serving as a base material, and can generate conductivity.
Preferable materials include F4-TCNQ (7,7,8,8-tetrafluorotetracyanoquinodimethane), TCNQ (tetracyanoethylene), TCNE (tetracyanoethylene) and the like containing a cyano group.
Similar to the metal compound acceptor, acceptors are used for the hole injection layer and the hole transport layer. When a hole injection layer and a hole transport layer are present, as described in JP-A No. 2000-196140, it is desirable not to add an acceptor to the hole transport layer in terms of not reducing luminous efficiency. . The density pattern of the second acceptor may be uniform or changed with respect to the first density pattern, but basically it is F4-TCNQ as described in WO2005-064994A1. In order to prevent leakage, the concentration on the electrode side is smaller than the other parts, and in order to prevent the efficiency from being reduced due to the fact that electrons do not contribute to light emission (electron escape), the concentration on the interface side with the hole transport layer is also different from that of other parts. It is better to make it smaller than the part. The pattern for changing the density is the same as that of the first acceptor.

金属を含まない有機化合物を含有する有機層中の金属を含まない有機化合物の膜中濃度は、好ましくは0.01質量%〜10質量%、より好ましくは0.05質量%〜1質量%である。   The concentration of the organic compound containing no metal in the organic layer containing the organic compound containing no metal is preferably 0.01% by mass to 10% by mass, more preferably 0.05% by mass to 1% by mass. is there.

(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
(Hole injection layer, hole transport layer)
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.

正孔注入層は正孔の移動のキャリアとなるドーパントを含有するのが好ましい。正孔注入層に導入するドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用でき、具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、および五塩化アンチモンなどのルイス酸化合物を好適に用いることができる。   The hole injection layer preferably contains a dopant which becomes a carrier for hole movement. As a dopant to be introduced into the hole injection layer, an inorganic compound or an organic compound can be used as long as it has an electron accepting property and oxidizes an organic compound. Specifically, the inorganic compound is ferric chloride or aluminum chloride. Lewis acid compounds such as gallium chloride, indium chloride, and antimony pentachloride can be preferably used.

有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フレーレンなどを好適に用いることができる。
具体的にはヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
In the case of an organic compound, a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group, or the like as a substituent, a quinone compound, an acid anhydride compound, or fullerene can be preferably used.
Specifically, hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene, p-cyanonitrobenzene, m-cyanonitrobenzene, o-cyanonitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1 Nitronaphthalene, 2-nitronaphthalene, 1,3-dinitronaphthalene, 1,5-dinitronaphthalene, 9-cyanoanthracene, 9-nitroanthracene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, Examples include 2,4,7-trinitro-9-fluorenone, 2,3,5,6-tetracyanopyridine, maleic anhydride, phthalic anhydride, C60, and C70.

このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンが特に好ましい。   Among these, hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2 , 5-dichlorobenzoquinone, 1,2,4,5-tetracyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1,3-dinitronaphthalene, 1,5-dinitronaphthalene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, 2,4,7-trinitro-9- Preferred are luolenone, 2,3,5,6-tetracyanopyridine, or C60, hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p-chloranil. P-bromanyl, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, 2,3-dichloronaphthoquinone, 1,2,4,5-tetracyanobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone Or 2,3,5,6-tetracyanopyridine is particularly preferred.

これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔注入層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。該使用量が、正孔注入材料に対して0.01質量%未満のときには、本発明の効果が不十分であるため好ましくなく、50質量%を超えると正孔注入能力が損なわれるため好ましくない。
These electron-accepting dopants may be used alone or in combination of two or more.
Although the usage-amount of an electron-accepting dopant changes with kinds of material, it is preferable that it is 0.01 mass%-50 mass% with respect to hole injection layer material, and it is 0.05 mass%-20 mass%. It is further more preferable and it is especially preferable that it is 0.1 mass%-10 mass%. When the amount used is less than 0.01% by mass relative to the hole injecting material, the effect of the present invention is insufficient because it is insufficient, and when it exceeds 50% by mass, the hole injecting ability is impaired. .

正孔注入層がアクセプタを含有する場合、正孔輸送層は、実質敵にアクセプタを含有しないことが好ましい。   When the hole injection layer contains an acceptor, the hole transport layer preferably contains substantially no acceptor.

正孔注入層、正孔輸送層の材料としては、具体的には、ピロール誘導体、カルバゾール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、またはカーボン等を含有する層であることが好ましい。   Specific examples of materials for the hole injection layer and the hole transport layer include pyrrole derivatives, carbazole derivatives, pyrazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, A layer containing a porphyrin compound, an organic silane derivative, carbon, or the like is preferable.

正孔注入層、正孔輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the hole injection layer and the hole transport layer are not particularly limited, but the thickness is preferably 1 nm to 5 μm from the viewpoint of driving voltage reduction, light emission efficiency improvement, durability improvement, The thickness is further preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm.
The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .

前記発光層に隣接したキャリア輸送層が正孔輸送層であるとき、該正孔輸送層のIp(HTL)は前記発光層中に含有されるドーパントのIp(D)より小さいことが駆動耐久性の点で好ましい。
正孔輸送層におけるIp(HTL)は、後述するIpの測定方法により測定することができる。
When the carrier transport layer adjacent to the light emitting layer is a hole transport layer, the driving durability is such that the Ip (HTL) of the hole transport layer is smaller than the Ip (D) of the dopant contained in the light emitting layer. This is preferable.
Ip (HTL) in the hole transport layer can be measured by a method of measuring Ip described later.

また、正孔輸送層におけるキャリア移動度は、一般的に、10-7cm2・V-1・s-1以上10-1cm2・V-1・s-1以下であり、中でも、発光効率の点から10-5cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が好ましく、10-4cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が更に好ましく、10-3cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が特に好ましい。
該キャリア移動度は、前記発光層のキャリア移動度の測定方法と同様の方法により測定した値を採用する。
また、該正孔輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性、発光効率の観点から好ましい。
In addition, the carrier mobility in the hole transport layer is generally 10 −7 cm 2 · V −1 · s −1 or more and 10 −1 cm 2 · V −1 · s −1 or less. From the viewpoint of efficiency, it is preferably 10 −5 cm 2 · V −1 · s −1 or more and 10 −1 cm 2 · V −1 · s −1 or less, preferably 10 −4 cm 2 · V −1 · s −1 or more. -1 cm 2 · V -1 · s -1 or less is more preferable, and 10 -3 cm 2 · V -1 · s -1 or more and 10 -1 cm 2 · V -1 · s -1 or less is particularly preferable.
As the carrier mobility, a value measured by a method similar to the method for measuring the carrier mobility of the light emitting layer is adopted.
The carrier mobility of the hole transport layer is preferably larger than the carrier mobility of the light emitting layer from the viewpoint of driving durability and light emission efficiency.

(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入され得た正孔を障壁する機能のいずれかを有している層である。
(Electron injection layer, electron transport layer)
The electron injection layer and the electron transport layer are layers having any one of a function of injecting electrons from the cathode, a function of transporting electrons, and a function of blocking holes that can be injected from the anode.

電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属などが好適に用いられる。
特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。
The electron donating dopant introduced into the electron injecting layer or the electron transporting layer only needs to have an electron donating property and a property of reducing an organic compound, such as an alkali metal such as Li or an alkaline earth metal such as Mg. Transition metals including rare earth metals are preferably used.
In particular, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd, Yb, and the like Is mentioned.

これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。該使用量が、電子輸送層材料に対して0.1質量%未満のときには、本発明の効果が不十分であるため好ましくなく、99質量%を超えると電子輸送能力が損なわれるため好ましくない。
These electron donating dopants may be used alone or in combination of two or more.
The amount of the electron donating dopant varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, and 1.0% by mass to 80% by mass with respect to the electron transport layer material. Is more preferable, and 2.0 mass% to 70 mass% is particularly preferable. When the amount used is less than 0.1% by mass with respect to the electron transport layer material, the effect of the present invention is insufficient because it is insufficient, and when it exceeds 99% by mass, the electron transport ability is impaired.

電子注入層、電子輸送層の材料としては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。   Specific examples of the material for the electron injection layer and the electron transport layer include pyridine, pyrimidine, triazine, imidazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiol. Heterocyclic tetracarboxylic anhydrides such as pyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, naphthaleneperylene, phthalocyanines, and their derivatives (form condensed rings with other rings) Or metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes having benzoxazole or benzothiazol as ligands, and the like.

電子注入層、電子輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が電子輸送層であるとき、該電子輸送層のEa(ETL)は前記発光層中に含有されるドーパントのEa(D)より大きいことが駆動耐久性の点で好ましい。
The thicknesses of the electron injecting layer and the electron transporting layer are not particularly limited, but the thickness is preferably 1 nm to 5 μm from the viewpoint of lowering driving voltage, improving luminous efficiency, and improving durability. It is more preferably 1 μm, and particularly preferably 10 nm to 500 nm.
The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
When the carrier transport layer adjacent to the light emitting layer is an electron transport layer, the Ea (ETL) of the electron transport layer is greater than the dopant Ea (D) contained in the light emitting layer. Is preferable.

該Ea(ETL)は、後述するEaの測定方法と同様の方法により測定した値を用いる。
また、電子輸送層におけるキャリア移動度は、一般的に、10-7cm2・V-1・s-1以上10-1cm2・V-1・s-1以下であり、中でも、発光効率の点から10-5cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が好ましく、10-4cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が更に好ましく、10-3cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が特に好ましい。
また、該電子輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性の観点から好ましい。該キャリア移動度は、前記正孔輸送層の測定方法と同様に行った。
本発明における発光素子のキャリア移動度において、正孔輸送層、電子輸送層、及び発光層におけるキャリア移動度としては、(電子輸送層≧正孔輸送層)>発光層であることが、駆動耐久性の点で好ましい。
バッファー層に含有されるホスト材料としては、後述する正孔輸送性ホストまたは電子輸送性ホストを好適に用いることができる。
As the Ea (ETL), a value measured by the same method as the Ea measuring method described later is used.
The carrier mobility in the electron transport layer is generally 10 −7 cm 2 · V −1 · s −1 or more and 10 −1 cm 2 · V −1 · s −1 or less. From the point of 10 −5 cm 2 · V −1 · s −1 to 10 −1 cm 2 · V −1 · s −1 and preferably 10 −4 cm 2 · V −1 · s −1 to 10 1 cm 2 · V -1 · s -1 more preferably less, particularly preferably 10 -3 cm 2 · V -1 · s -1 or 10 -1 cm 2 · V -1 · s -1 or less.
The carrier mobility of the electron transport layer is preferably larger than the carrier mobility of the light emitting layer from the viewpoint of driving durability. The carrier mobility was measured in the same manner as the hole transport layer measurement method.
In the carrier mobility of the light-emitting element in the present invention, the carrier mobility in the hole transport layer, electron transport layer, and light-emitting layer is (electron transport layer ≧ hole transport layer)> light-emitting layer. From the viewpoint of sex.
As a host material contained in the buffer layer, a hole transporting host or an electron transporting host described later can be suitably used.

(発光層)
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性バッファー層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性バッファー層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含む。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。発光層が複数の場合であっても、発光層の各層に、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含有することが好ましい。
(Light emitting layer)
The light emitting layer receives holes from the anode, hole injection layer, hole transport layer or hole transport buffer layer when an electric field is applied, and receives electrons from the cathode, electron injection layer, electron transport layer or electron transport buffer layer. It is a layer having a function of receiving and providing a field for recombination of holes and electrons to emit light.
The light emitting layer in the present invention contains at least one light emitting dopant and a plurality of host compounds.
Further, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors. Even when there are a plurality of light-emitting layers, it is preferable that each layer of the light-emitting layer contains at least one light-emitting dopant and a plurality of host compounds.

本発明における発光層に含有する発光性ドーパントと複数のホスト化合物としては、一重項励起子からの発光(蛍光)が得られる蛍光発光性ドーパントと複数のホスト化合物との組み合せでも、三重項励起子からの発光(燐光)が得られる燐光発光性ドーパントと複数のホスト化合物との組み合せでもよい。
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。
As the luminescent dopant and the plurality of host compounds contained in the light emitting layer in the present invention, triplet excitons can be obtained by combining a fluorescent luminescent dopant capable of emitting light (fluorescence) from singlet excitons and a plurality of host compounds. A combination of a phosphorescent dopant capable of obtaining light emission (phosphorescence) from a plurality of host compounds may be used.
The light emitting layer in the present invention can contain two or more kinds of light emitting dopants in order to improve color purity and to broaden the light emission wavelength region.

《発光性ドーパント》
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
本発明における発光性ドーパントは、更に前記ホスト化合物との間で、1.2eV>△Ip>0.2eV、及び1.2eV>△Ea>0.2eVの少なくとも一方の関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
《Luminescent dopant》
As the luminescent dopant in the present invention, any of phosphorescent luminescent materials and fluorescent luminescent materials can be used as the dopant.
The luminescent dopant in the present invention is a dopant satisfying at least one of the relations of 1.2 eV>ΔIp> 0.2 eV and 1.2 eV>ΔEa> 0.2 eV with the host compound. Is preferable from the viewpoint of driving durability.

《燐光発光性ドーパント》
前記燐光性の発光性ドーパントとしては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
《Phosphorescent dopant》
In general, examples of the phosphorescent light-emitting dopant include complexes containing a transition metal atom or a lanthanoid atom.
For example, the transition metal atom is not particularly limited, but preferably includes ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum, more preferably rhenium, iridium, and platinum. More preferred are iridium and platinum.
Examples of lanthanoid atoms include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.

錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Examples include ligands described in Yersin's "Photochemistry and Photophysics of Coordination Compounds" published by Springer-Verlag 1987, Akio Yamamoto "Organic Metal Chemistry-Fundamentals and Applications-" .
Specific ligands are preferably halogen ligands (preferably chlorine ligands), aromatic carbocyclic ligands (eg, cyclopentadienyl anion, benzene anion, or naphthyl anion), Nitrogen-containing heterocyclic ligand (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligand (eg, acetylacetone), carboxylic acid ligand (eg, acetic acid ligand) , Alcoholate ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, and cyano ligands, more preferably nitrogen-containing heterocyclic ligands.
The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

これらの中でも、発光性ドーパントの具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、特開2001−247859、特願2000−33561、特開2002−117978、特開2002−225352、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特願2005−75340、特願2005−75341等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい(2)の関係を満たす発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、およびCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、またはRe錯体であり、中でも金属−炭素結合、金属−窒素結合、金属−酸素結合、または金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、またはRe錯体が好ましい。   Among these, specific examples of the luminescent dopant include, for example, US6303238B1, US6097147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234A2, WO01 / 41512A1, WO02 / 02714A2, WO02 / 15645A1, WO02 / 44189A1. JP-A No. 2001-247859, Japanese Patent Application No. 2000-33561, JP-A No. 2002-117978, JP-A No. 2002-225352, JP-A No. 2002-235076, JP-A No. 2001-239281, JP-A No. 2002-170684, EP No. 12111257, 226495, JP2002-234894, JP2001247478, JP2001298470, JP2002-173684, JP2002 Examples include phosphorescent compounds described in patent documents such as No. 203678, JP-A No. 2002-203679, JP-A No. 2004-357991, Japanese Patent Application No. 2005-75340, and Japanese Patent Application No. 2005-75341. Examples of the luminescent dopant to be satisfied include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd complex, Dy complex, and Ce complex. Can be mentioned. Particularly preferred are Ir complexes, Pt complexes, or Re complexes, among which Ir complexes containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, or metal-sulfur bond, Pt Complexes or Re complexes are preferred.

《蛍光発光性ドーパント》
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、またはペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
《Fluorescent luminescent dopant》
As the fluorescent light-emitting dopant, generally, benzoxazole, benzimidazole, benzothiazole, styrylbenzene, polyphenyl, diphenylbutadiene, tetraphenylbutadiene, naphthalimide, coumarin, pyran, perinone, oxadiazole, aldazine, Pyraridin, cyclopentadiene, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, aromatic dimethylidin compounds, condensed polycyclic aromatic compounds (anthracene, phenanthroline, pyrene, perylene, rubrene, or pentacene, etc. ), 8-quinolinol metal complexes, various metal complexes represented by pyromethene complexes and rare earth complexes, polythiophene, polyphenylene, polyphenylene Polymeric compounds such as vinylene, organic silane, and the like, and their derivatives.

これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。   Among these, specific examples of the luminescent dopant include the following, but are not limited thereto.

上記の中でも、本発明で用いる発光性ドーパントとしては、発光効率、耐久性の観点からD−2、D−3、D−4、D−5、D−6、D−7、D−8、D−9、D−10、D−11、D−12、D−13、D−14、D−15、D−16、D−21、D−22、D−23、D−24、またはD−25〜D−28が好ましく、D−2、D−3、D−4、D−5、D−6、D−7、D−8、D−12、D−14、D−15、D−16、D−21、D−22、D−23、D−24、またはD−25〜D−28がより好ましく、D−21、D−22、D−23、D−24、またはD−25〜D−28が更に好ましい。   Among the above, the luminescent dopant used in the present invention is D-2, D-3, D-4, D-5, D-6, D-7, D-8, from the viewpoint of luminous efficiency and durability. D-9, D-10, D-11, D-12, D-13, D-14, D-15, D-16, D-21, D-22, D-23, D-24, or D -25 to D-28 are preferred, D-2, D-3, D-4, D-5, D-6, D-7, D-8, D-12, D-14, D-15, D -16, D-21, D-22, D-23, D-24, or D-25 to D-28 are more preferred, and D-21, D-22, D-23, D-24, or D- More preferred is 25 to D-28.

発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜30質量%含有されるが、耐久性、発光効率の観点から1質量%〜15質量%含有されることが好ましく、2質量%〜12質量%含有されることがより好ましい。   The light emitting dopant in the light emitting layer is contained in an amount of 0.1 to 30% by mass with respect to the total mass of the compound generally forming the light emitting layer in the light emitting layer, but from the viewpoint of durability and luminous efficiency. The content is preferably 1% by mass to 15% by mass, and more preferably 2% by mass to 12% by mass.

発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、中でも、発光効率の観点で、5nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。   The thickness of the light emitting layer is not particularly limited, but is usually preferably 1 nm to 500 nm, and more preferably 5 nm to 200 nm from the viewpoint of light emission efficiency. Is more preferable.

(ホスト材料)
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
(Host material)
As the host material used in the present invention, a hole transporting host material excellent in hole transportability (sometimes referred to as a hole transportable host) and an electron transporting host compound excellent in electron transportability (electron transportability) May be described as a host).

《正孔輸送性ホスト》
本発明の有機層に用いられる正孔輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.3eV以下であることが好ましく、5.4eV以上6.1eV以下であることがより好ましく、5.6eV以上5.8eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
《Hole-transporting host》
The hole transporting host used in the organic layer of the present invention preferably has an ionization potential Ip of 5.1 eV or more and 6.3 eV or less from the viewpoint of improving durability and lowering driving voltage. It is more preferably 0.1 eV or less, and further preferably 5.6 eV or more and 5.8 eV or less. Further, from the viewpoint of improving durability and lowering driving voltage, the electron affinity Ea is preferably 1.2 eV or more and 3.1 eV or less, more preferably 1.4 eV or more and 3.0 eV or less, and 1.8 eV or more. More preferably, it is 2.8 eV or less.

このような正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、カルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
中でも、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にカルバゾール骨格および芳香族第三級アミン骨格の少なくとも一方を複数個有するものが好ましい。
このような正孔輸送性ホストとしての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Specific examples of such a hole transporting host include the following materials.
Pyrrole, carbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary Amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole), aniline copolymers, thiophene oligomer thiophene oligomers, conductive polymer oligomers such as polythiophene, organic Examples thereof include silane, carbon film, and derivatives thereof.
Of these, carbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable, and those having at least one of a carbazole skeleton and an aromatic tertiary amine skeleton in the molecule are particularly preferable.
Specific examples of such a hole transporting host include, but are not limited to, the following compounds.

《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.2eV以下であることがより好ましく、2.8eV以上3.1eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
《Electron transporting host》
The electron transporting host in the light emitting layer used in the present invention preferably has an electron affinity Ea of 2.5 eV or more and 3.5 eV or less from the viewpoint of improving durability and lowering driving voltage. More preferably, it is 0.2 eV or less, and it is still more preferable that it is 2.8 eV or more and 3.1 eV or less. Further, from the viewpoint of improving durability and reducing driving voltage, the ionization potential Ip is preferably 5.7 eV or more and 7.5 eV or less, more preferably 5.8 eV or more and 7.0 eV or less, and 5.9 eV or more. More preferably, it is 6.5 eV or less.

このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
Specific examples of such an electron transporting host include the following materials.
Pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, Fluorine-substituted aromatic compounds, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanines, and derivatives thereof (may form condensed rings with other rings), metal complexes and metals of 8-quinolinol derivatives Examples thereof include various metal complexes represented by metal complexes having phthalocyanine, benzoxazole or benzothiazol as a ligand.

電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
Preferred examples of the electron transporting host include metal complexes, azole derivatives (benzimidazole derivatives, imidazopyridine derivatives, etc.), and azine derivatives (pyridine derivatives, pyrimidine derivatives, triazine derivatives, etc.). To metal complex compounds are preferred. The metal complex compound (A) is more preferably a metal complex having a ligand having at least one nitrogen atom, oxygen atom or sulfur atom coordinated to the metal.
The metal ion in the metal complex is not particularly limited, but is preferably beryllium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion, or palladium ion, more preferably beryllium ion, Aluminum ion, gallium ion, zinc ion, platinum ion, or palladium ion, and more preferably aluminum ion, zinc ion, or palladium ion.

前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。   There are various known ligands contained in the metal complex. For example, “Photochemistry and Photophysics of Coordination Compounds”, Springer-Verlag, H.C. Examples include the ligands described in Yersin, published in 1987, “Organometallic Chemistry: Fundamentals and Applications”, Sakai Hanafusa, Yamamoto Akio, published in 1982, and the like.

前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる。)、
The ligand is preferably a nitrogen-containing heterocyclic ligand (preferably having 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 3 to 15 carbon atoms, and a monodentate ligand. Alternatively, it may be a bidentate or higher ligand, preferably a bidentate or higher and a hexadentate or lower ligand, or a bidentate or higher and lower 6 or lower ligand and a monodentate mixed ligand. preferable.
Examples of the ligand include an azine ligand (for example, pyridine ligand, bipyridyl ligand, terpyridine ligand, etc.), a hydroxyphenylazole ligand (for example, hydroxyphenylbenzimidazole coordination). And a hydroxyphenyl benzoxazole ligand, a hydroxyphenyl imidazole ligand, a hydroxyphenylimidazopyridine ligand, etc.), an alkoxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 carbon atom). To 20, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy), aryloxy ligands (preferably 6 to 30 carbon atoms, more preferably 6-20 carbon atoms, particularly preferably 6-12 carbon atoms, for example phenyl Carboxymethyl, 1-naphthyloxy, 2-naphthyloxy, 2,4,6-trimethylphenyl oxy, and 4-biphenyloxy and the like.),

ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。 Heteroaryloxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, and quinolyloxy. ), An alkylthio ligand (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), arylthio ligands (Preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio), heteroarylthio ligand (preferably 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio , 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio, etc.), a siloxy ligand (preferably having 1 to 30 carbon atoms, more preferably 3 to 25 carbon atoms). Particularly preferably, it has 6 to 20 carbon atoms, and examples thereof include a triphenylsiloxy group, a triethoxysiloxy group, and a triisopropylsiloxy group.), An aromatic hydrocarbon anion ligand (preferably having 6 carbon atoms) To 30, more preferably 6 to 25 carbon atoms, particularly preferably 6 to 20 carbon atoms, such as a phenyl anion, a naphthyl anion, an anthranyl anion, etc.), an aromatic heterocyclic anion ligand (preferably Has 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, and particularly preferably 2 to 20 carbon atoms. Pyrrole anion, pyrazole anion, pyrazole anion, triazole anion, oxazole anion, benzoxazole anion, thiazole anion, benzothiazole anion, thiophene anion, benzothiophene anion, etc.), indolenine anion ligand, etc. , Preferably a nitrogen-containing heterocyclic ligand, aryloxy ligand, heteroaryloxy group, or siloxy ligand, more preferably a nitrogen-containing heterocyclic ligand, aryloxy ligand, siloxy coordination Or an aromatic hydrocarbon anion ligand or an aromatic heterocyclic anion ligand.

金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。   Examples of the metal complex electron transporting host are described in, for example, JP-A No. 2002-235076, JP-A No. 2004-214179, JP-A No. 2004-221106, JP-A No. 2004-221665, JP-A No. 2004-221068, JP-A No. 2004-327313, etc. The compound of this is mentioned.

このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。   Specific examples of such an electron transporting host include, but are not limited to, the following materials.

電子輸送層ホストとしては、E−1〜E−6、E−8、E−9、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−21、またはE−22が更に好ましい。   As the electron transport layer host, E-1 to E-6, E-8, E-9, E-21, or E-22 are preferable, and E-3, E-4, E-6, E-8, E-9, E-10, E-21, or E-22 is more preferable, and E-3, E-4, E-21, or E-22 is still more preferable.

本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト化合物の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、発光効率、駆動耐久性の点で好ましい。   In the light-emitting layer of the present invention, when a phosphorescent dopant is used as the luminescent dopant, the lowest triplet excitation energy T1 (D) of the phosphorescent dopant and the lowest excited triplet energy of the plurality of host compounds It is preferable in terms of color purity, light emission efficiency, and driving durability that the above T1 (H) min satisfies the relationship of T1 (H) min> T1 (D).

また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上85質量%以下であることが好ましい。   Further, the content of the host compound in the present invention is not particularly limited, but from the viewpoint of luminous efficiency and driving voltage, it is 15% by mass to 85% by mass with respect to the total compound mass forming the light emitting layer. Preferably there is.

また、発光層におけるキャリア移動度は、一般的に、10-7cm2・V-1・s-1以上10-1cm2・V-1・s-1以下であり、中でも、発光効率の点から10-6cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が好ましく、10-5cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が更に好ましく、10-4cm2・V-1・s-1以上10-1cm2・V-1・s-1以下が特に好ましい。 The carrier mobility in the light emitting layer is generally 10 −7 cm 2 · V −1 · s −1 or more and 10 −1 cm 2 · V −1 · s −1 or less. From the point, it is preferably 10 −6 cm 2 · V −1 · s −1 or more and 10 −1 cm 2 · V −1 · s −1 or less, preferably 10 −5 cm 2 · V −1 · s −1 or more and 10 −1. cm 2 · V -1 · s -1 more preferably less, particularly preferably 10 -4 cm 2 · V -1 · s -1 or 10 -1 cm 2 · V -1 · s -1 or less.

該発光層のキャリア移動度は、後述の前記キャリア輸送層のキャリア移動度より小さいことが発光効率、駆動耐久性の観点から好ましい。
該キャリア移動度は、Time of Flight法により測定し、得られた値をキャリア移動度とした。
The carrier mobility of the light emitting layer is preferably smaller than the carrier mobility of the carrier transport layer described later, from the viewpoints of light emission efficiency and driving durability.
The carrier mobility was measured by the Time of Flight method, and the obtained value was defined as the carrier mobility.

(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明においては、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層は、特に限定されるものではないが、具体的には、BAlq等のアルミニウム錯体、トリアゾール誘導体、ピラザボール誘導体等を含有することができる。
また、正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に50nm以下であることが好ましく、1nm〜50nmであることが好ましく、5nm〜40nmであることが更に好ましい。
(Hole blocking layer)
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
Although a hole block layer is not specifically limited, Specifically, aluminum complexes, such as BAlq, a triazole derivative, a pyraza ball derivative, etc. can be contained.
In addition, the thickness of the hole blocking layer is generally preferably 50 nm or less, preferably 1 nm to 50 nm, and more preferably 5 nm to 40 nm in order to lower the driving voltage.

(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
(anode)
The anode usually has a function as an electrode for supplying holes to the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element. , Can be appropriately selected from known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   As a material of the anode, for example, a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof can be suitably cited, and a material having a work function of 4.0 eV or more is preferable. Specific examples of the anode material include conductive metals such as tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element. The anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、103Ω/□以下が好ましく、102Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is described in detail in the book “New Development of Transparent Electrode Films” published by CMC (1999), supervised by Yutaka Sawada, and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
(cathode)
The cathode usually has a function as an electrode for injecting electrons into the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、またはCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof, and those having a work function of 4.5 eV or less are preferable. Specific examples include alkali metals (for example, Li, Na, K, or Cs), alkaline earth metals (for example, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, And a rare earth metal such as magnesium-silver alloy, indium, and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy). Etc.).

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。   The materials for the cathode are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these public relations can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out.
For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、およびイオンプレーティング法等により形成することができる。
In the present invention, the cathode formation position is not particularly limited, and may be formed on the entire organic compound layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic compound layer with a thickness of 0.1 nm to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 nm to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

(基板)
本発明においては基板を用いることができる。用いられる基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
(substrate)
In the present invention, a substrate can be used. The substrate used is preferably a substrate that does not scatter or attenuate light emitted from the organic compound layer. Specific examples include zirconia-stabilized yttrium (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Norbornene resins, and organic materials such as poly (chlorotrifluoroethylene).
For example, when glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、またはNi等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、またはTiO2等の金属酸化物、SiNx、SiNxy等の金属窒化物、MgF2、LiF、AlF3、またはCaF2等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
(Protective layer)
In the present invention, the entire organic EL element may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2. Metal oxides such as O 3 , Y 2 O 3 , or TiO 2 , metal nitrides such as SiN x , SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 , or CaF 2 , polyethylene, polypropylene Polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, a copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer. Copolymer obtained by copolymerizing the monomer mixture containing, cyclic in the copolymer main chain Fluorine-containing copolymer having a structure; 1% by weight of the water absorbing water absorption material, water absorption of 0.1% or less of moisture-proof material, and the like.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、または転写法を適用できる。   The method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, or transfer method can be applied.

(封止)
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
(Sealing)
Furthermore, the organic electroluminescent element of this invention may seal the whole element using a sealing container.
Further, a moisture absorbent or an inert liquid may be sealed in a space between the sealing container and the light emitting element. Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide, and the like. The inert liquid is not particularly limited, and examples thereof include fluorinated solvents such as paraffins, liquid paraffins, perfluoroalkanes, perfluoroamines, perfluoroethers, chlorinated solvents, and silicone oils. It is done.

本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機電界発光素子の駆動耐久性は、特定の輝度における、ある輝度まで減少する時間により測定することができる。例えば、KEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させ、初期輝度500cd/m2の条件で連続駆動試験をおこない、輝度が200cd/m2になった時間を輝度減少時間として、該輝度減少時間を従来発光素子と比較することにより求めることができる。本発明においてはこの数値を用いた。
この有機電界発光素子の重要な特性値として、外部量子効率がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
The driving durability of the organic electroluminescent element in the present invention can be measured by the time required to decrease to a certain luminance at a specific luminance. For example, using a source measure unit 2400 made by KEITHLEY, a direct voltage is applied to the organic EL element to emit light, and a continuous driving test is performed under the condition of an initial luminance of 500 cd / m 2 , and the luminance becomes 200 cd / m 2 The brightness reduction time can be obtained by comparing the brightness reduction time with a conventional light emitting element. This numerical value was used in the present invention.
An important characteristic value of this organic electroluminescence device is external quantum efficiency. The external quantum efficiency is calculated by “external quantum efficiency φ = number of photons emitted from the device / number of electrons injected into the device”, and it can be said that the larger this value, the more advantageous the device in terms of power consumption.

また、有機電界発光素子の外部量子効率は、「外部量子効率φ=内部量子効率×光取り出し効率」で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。   The external quantum efficiency of the organic electroluminescent element is determined by “external quantum efficiency φ = internal quantum efficiency × light extraction efficiency”. In an organic EL device using fluorescence emission from an organic compound, the limit value of the internal quantum efficiency is 25%, and the light extraction efficiency is approximately 20%. Therefore, the limit value of the external quantum efficiency is approximately 5%. Has been.

該外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100cd/m2〜300cd/m2付近(好ましくは200cd/m2)での外部量子効率の値を用いることができる。
本発明においては、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定し、200cd/m2における外部量子効率を算出した値を用いる。
It figures external quantum efficiency, the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or around 100cd / m 2 ~300cd / m 2 when the device is driven at 20 ° C. (preferably 200 cd / The value of the external quantum efficiency at m 2 ) can be used.
In the present invention, using a source measure unit type 2400 manufactured by Toyo Technica, a DC constant voltage is applied to the EL element to emit light, and the luminance is measured using a luminance meter BM-8 manufactured by Topcon Corporation, and is 200 cd / m 2. A value obtained by calculating the external quantum efficiency at is used.

また、発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出することができる。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算することができる。これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算することができる。   Further, the external quantum efficiency of the light emitting element can be calculated from the result and the relative luminous efficiency curve obtained by measuring the light emission luminance, the light emission spectrum, and the current density. That is, the number of input electrons can be calculated using the current density value. The emission luminance can be converted into the number of photons emitted by integral calculation using the emission spectrum and the relative visibility curve (spectrum). From these, the external quantum efficiency (%) can be calculated by “(number of emitted photons / number of electrons input to the device) × 100”.

本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。   The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.

(本発明の有機電界発光素子の用途)
本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、または光通信等に好適に利用できる。
(Use of the organic electroluminescence device of the present invention)
The organic electroluminescent element of the present invention can be suitably used for a display element, a display, a backlight, electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.

以下に、本発明の有機電界発光素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。   Examples of the organic electroluminescence device of the present invention will be described below, but the present invention is not limited to these examples.

実施例1
1.有機EL素子の作製
(比較の有機EL素子A1の作製)
0.5mm厚み、2.5cm角のITOガラス基板(ジオマテック(株)製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
Example 1
1. Production of organic EL element (production of comparative organic EL element A1)
A 0.5 mm thick, 2.5 cm square ITO glass substrate (manufactured by Geomat Co., Ltd., surface resistance 10 Ω / □) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. went. The following layers were deposited on this transparent anode by vacuum deposition. The vapor deposition rate in the examples of the present invention is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The film thicknesses described below were also measured using a crystal resonator.

−正孔注入層《アクセプタ無し》−
2−TNATAの蒸着速度を0.5nm/秒で蒸着を行った。膜厚は140nmとした。
−正孔輸送層−
正孔注入層の上に、α−NPDの蒸着速度を0.5nm/秒として蒸着を行った。膜厚は10nmとした。
−発光層−
ホストであるCBPを蒸着速度0.1nm/秒とし、発光性ドーパントtbppyが発光層中の有機材料全体の12質量%となるように共蒸着を行った。発光層の膜厚は30nmとした。
−電子輸送層−
ALQ:膜厚20nm(蒸着速度:0.1nm/秒)
-Hole injection layer (no acceptor)-
Deposition was performed at a deposition rate of 2-TNATA of 0.5 nm / second. The film thickness was 140 nm.
-Hole transport layer-
Vapor deposition was performed on the hole injection layer at a deposition rate of α-NPD of 0.5 nm / second. The film thickness was 10 nm.
-Light emitting layer-
Co-deposition was performed so that CBP as a host was deposited at a deposition rate of 0.1 nm / second and the luminescent dopant tbppy was 12% by mass of the entire organic material in the luminescent layer. The thickness of the light emitting layer was 30 nm.
-Electron transport layer-
ALQ: film thickness 20 nm (deposition rate: 0.1 nm / second)

−電子注入層および陰極−
この上にパタ−ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、フッ化リチウムを0.1nm/秒の蒸着速度にて0.5nm蒸着し電子注入層とした。更に金属アルミニウムを100nm蒸着し陰極とした。
-Electron injection layer and cathode-
A patterned mask (a mask having a light emitting area of 2 mm × 2 mm) was placed thereon, and lithium fluoride was deposited to 0.5 nm at a deposition rate of 0.1 nm / second to form an electron injection layer. Further, metal aluminum was deposited to a thickness of 100 nm to form a cathode.

作製した積層体を、アルゴンガスで置換したグロ−ブボックス内に入れ、ステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
こうして、比較の有機EL素子A1を得た。
The produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
Thus, a comparative organic EL element A1 was obtained.

(比較の有機EL素子A2〜A4の作製)
有機EL素子A1の作製において、正孔注入層に下記のようにアクセプタを加えた比較の有機EL素子A2〜A4を作製した。
・A2:金属酸化物アクセプタを均一濃度分布(10質量%)で含有
正孔注入材料2−TNATA0.09nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/sで共蒸着した。
・A3:金属酸化物アクセプタを均一濃度分布(1質量%)で含有
正孔注入材料2−TNATA0.099nm/sに対して、金属酸化物アクセプタMoO3を0.001nm/sで共蒸着した。
(Production of comparative organic EL elements A2 to A4)
In production of the organic EL element A1, comparative organic EL elements A2 to A4 in which an acceptor was added to the hole injection layer as described below were produced.
A2: Metal oxide acceptor contained in uniform concentration distribution (10% by mass) The metal oxide acceptor MoO 3 was co-deposited at 0.01 nm / s with respect to the hole injection material 2-TNATA 0.09 nm / s.
A3: Metal oxide acceptor contained in uniform concentration distribution (1% by mass) The metal oxide acceptor MoO 3 was co-deposited at 0.001 nm / s with respect to the hole injection material 2-TNATA 0.099 nm / s.

・A4:正孔注入層を2層化して、金属酸化物アクセプタを階段的濃度で含有(WO2005−64994A1の構成)
発光層側の正孔注入層が高濃度で金属酸化物アクセプタを含有する比較試料である。
金属酸化物アクセプタMoO3を用いて、まず、正孔注入材料2−TNATA0.099nm/sに対して、MoO3を0.001nm/sで20nmドープして蒸着を行った。
さらに、正孔注入材料2−TNATA0.099nm/sに対して、MoO3を0.001nm/sで260nmドープして蒸着を行った。
陽極側の正孔注入層のMoO3含有率が1質量%で、発光層側の正孔注入層のMoO3含有率が10質量%である。
A4: The hole injection layer is made into two layers, and the metal oxide acceptor is contained in a stepwise concentration (configuration of WO2005-64994A1)
The hole injection layer on the light emitting layer side is a comparative sample containing a metal oxide acceptor at a high concentration.
First, using a metal oxide acceptor MoO 3 , the hole injection material 2-TNATA was 0.099 nm / s, and MoO 3 was doped by 0.001 nm / s to 20 nm for vapor deposition.
Further, the hole injection material 2-TNATA was 0.099 nm / s, and MoO 3 was doped by 260 nm at 0.001 nm / s for vapor deposition.
The MoO 3 content of the positive hole injection layer on the anode side is 1% by mass, and the MoO 3 content of the positive hole injection layer on the light emitting layer side is 10% by mass.

機EL素子1〜5の作製)
有機EL素子A1の作製において、正孔注入層に表1に記載のようにアクセプタを加えた有機EL素子1〜5を作製した。
・試料1:正孔注入層を2層化して、金属酸化物アクセプタを階段的濃度分布で発光層側に低く含有
正孔注入材料2−TNATA0.09nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/sで20nmドープして蒸着を行った。さらに、正孔注入材料2−TNATA0.099nm/sに対して、金属酸化物アクセプタMoO3を0.001nm/sで260nmドープして蒸着を行った。
陽極側の正孔注入層のMoO3含有率が10質量%で、発光層側の正孔注入層のMoO3含有率が1質量%である。
(Preparation of organic EL elements 1 to 5)
In the preparation of the organic EL elements A1, was produced organic EL device 1-5 plus acceptor as described in Table 1 in the hole injection layer.
Sample 1: The hole injection layer is made into two layers, and the metal oxide acceptor is contained in a stepwise concentration distribution and low on the light emitting layer side. The metal oxide acceptor MoO with respect to the hole injection material 2-TNATA 0.09 nm / s Vapor deposition was performed by doping 3 with 20 nm at 0.01 nm / s. Further, the metal oxide acceptor MoO 3 was doped by 260 nm at 0.001 nm / s with respect to the hole injection material 2-TNATA 0.099 nm / s, and vapor deposition was performed.
The MoO 3 content of the positive hole injection layer on the anode side is 10% by mass, and the MoO 3 content of the positive hole injection layer on the light emitting layer side is 1% by mass.

・試料2:正孔注入層を2層化して、金属酸化物アクセプタを階段的濃度分布で発光層側により低く含有
正孔注入材料2−TNATA0.05nm/sに対して、金属酸化物アクセプタMoO3を0.05nm/sで20nmドープして蒸着を行った。さらに、正孔注入材料2−TNATA0.093nm/sに対して、金属酸化物アクセプタMoO3を0.007nm/sで260nmドープして蒸着を行った。
陽極側の正孔注入層のMoO3含有率が50質量%で、発光層側の正孔注入層のMoO3含有率が7質量%である。
Sample 2: The hole injection layer is made into two layers, and the metal oxide acceptor is contained in a stepwise concentration distribution at a lower level on the light emitting layer side. For the hole injection material 2-TNATA 0.05 nm / s, the metal oxide acceptor MoO Vapor deposition was performed by doping 3 with 20 nm at 0.05 nm / s. Further, the metal oxide acceptor MoO 3 was doped by 260 nm at a rate of 0.007 nm / s with respect to the hole injection material 2-TNATA 0.093 nm / s, and vapor deposition was performed.
The MoO 3 content of the positive hole injection layer on the anode side is 50% by mass, and the MoO 3 content of the positive hole injection layer on the light emitting layer side is 7% by mass.

・試料3:正孔注入層を2層化して、金属酸化物アクセプタと有機アクセプタを階段的濃度分布で発光層側に低く含有
正孔注入材料2−TNATA0.899nm/sに対して、金属酸化物アクセプタMoO3を0.1nm/s、有機アクセプタF4−TCNQ0.001nm/sで20nmドープして3元蒸着を行った。さらに、正孔注入材料2−TNATA0.989nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/s、有機アクセプタF4−TCNQ0.001nm/sで260nmドープして3元蒸着を行った。
陽極側の正孔注入層のMoO3含有率が10質量%で、発光層側の正孔注入層のMoO3含有率が1質量%である。
Sample 3: The hole injection layer is made into two layers, and a metal oxide acceptor and an organic acceptor are contained in a stepwise concentration distribution at a low level on the light-emitting layer side. Metal oxidation with respect to the hole injection material 2-TNATA 0.899 nm / s The material acceptor MoO 3 was doped with 20 nm by 0.1 nm / s and the organic acceptor F4-TCNQ 0.001 nm / s, and ternary vapor deposition was performed. Further, ternary vapor deposition was performed by doping metal oxide acceptor MoO 3 with 0.01 nm / s and organic acceptor F4-TCNQ 0.001 nm / s to 260 nm with respect to hole injection material 2-TNATA 0.989 nm / s. .
The MoO 3 content of the positive hole injection layer on the anode side is 10% by mass, and the MoO 3 content of the positive hole injection layer on the light emitting layer side is 1% by mass.

・試料4:正孔注入層を3層化して、金属酸化物アクセプタと有機アクセプタを階段的濃度分布で発光層側に低く含有
正孔注入材料2−TNATA0.9nm/sに対して、金属酸化物アクセプタMoO3を0.1nm/sで20nmドープして蒸着を行った。さらに、正孔注入材料2−TNATA0.989nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/s、有機アクセプタF4−TCNQ0.001nm/sで130nmドープして3元蒸着を行った。その上に、正孔注入材料2−TNATA0.989nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/sで130nmドープして共蒸着を行った。
陽極側の正孔注入層のMoO3含有率が10質量%で、中間層側の正孔注入層のMoO3含有率が1質量%で、発光層側の正孔注入層のMoO3含有率が1質量%である。
Sample 4: Three hole injection layers are formed, and metal oxide acceptors and organic acceptors are contained in a stepwise concentration distribution at a low level on the light emitting layer side. Metal oxidation with respect to hole injection material 2-TNATA 0.9 nm / s The material acceptor MoO 3 was doped at a rate of 0.1 nm / s for 20 nm for vapor deposition. Further, ternary deposition was performed by doping metal oxide acceptor MoO 3 with 0.01 nm / s and organic acceptor F4-TCNQ 0.001 nm / s to 130 nm with respect to hole injection material 2-TNATA 0.989 nm / s. . On top of that, a metal oxide acceptor MoO 3 was doped at a thickness of 130 nm at 0.01 nm / s to the hole injection material 2-TNATA 0.989 nm / s, and co-evaporation was performed.
MoO 3 content of the anode side of the hole injection layer is 10 mass%, with MoO 3 content of the intermediate layer side of the hole injection layer is 1 mass%, MoO 3 content of the light-emitting layer side of the hole injection layer Is 1% by mass.

・試料5:正孔注入層を3層化して、金属酸化物アクセプタと有機アクセプタを階段的濃度分布で発光層側に低く含有し、有機アクセプタは発光層側に高く含有
正孔注入材料2−TNATA0.9nm/sに対して、金属酸化物アクセプタMoO3を0.1nm/sで20nmドープして共蒸着を行った。さらに、正孔注入材料2−TNATA0.989nm/sに対して、金属酸化物アクセプタMoO3を0.01nm/s、有機アクセプタF4−TCNQ0.001nm/sで130nmドープして3元蒸着を行った。その上に、正孔注入材料2−TNATA0.999nm/sに対して、有機アクセプタF4−TCNQ0.001nm/sで130nmドープして共蒸着を行った。
陽極側の正孔注入層のMoO3含有率が10質量%で、中間層側の正孔注入層のMoO3含有率が1質量%で、発光層側の正孔注入層のMoO3含有率が0質量%である。
Sample 5: The hole injection layer is made into three layers, and a metal oxide acceptor and an organic acceptor are contained in a stepwise concentration distribution at a low level on the light emitting layer side, and an organic acceptor is contained at a high level on the light emitting layer side. Co-deposition was performed by doping metal oxide acceptor MoO 3 at 0.1 nm / s for 20 nm with respect to TNATA 0.9 nm / s. Further, ternary deposition was performed by doping metal oxide acceptor MoO 3 with 0.01 nm / s and organic acceptor F4-TCNQ 0.001 nm / s to 130 nm with respect to hole injection material 2-TNATA 0.989 nm / s. . On top of that, the hole injection material 2-TNATA 0.999 nm / s was doped with 130 nm of organic acceptor F4-TCNQ 0.001 nm / s to perform co-evaporation.
MoO 3 content of the anode side of the hole injection layer is 10 mass%, with MoO 3 content of the intermediate layer side of the hole injection layer is 1 mass%, MoO 3 content of the light-emitting layer side of the hole injection layer Is 0% by mass.

前記の発光素子に用いた化合物の構造を下記に示す。   The structure of the compound used for the light-emitting element is shown below.

3.性能評価
(評価項目)
(1)発光効率
発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出した。外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算を行った。
(2)駆動電圧
駆動電流密度10mA/cm2における駆動電圧を測定した。
(3)駆動耐久性
初期輝度500cd/m2の条件で連続駆動試験をおこない、輝度が200cd/m2になった時間を輝度減少時間として求めた。
3. Performance evaluation (evaluation items)
(1) Luminous efficiency The external quantum efficiency of the light-emitting element was calculated from the results and relative luminous efficiency curve obtained by measuring the light emission luminance, light emission spectrum, and current density. The external quantum efficiency (%) was calculated by “(number of photons emitted / number of electrons input to the device) × 100”.
(2) Driving voltage The driving voltage at a driving current density of 10 mA / cm 2 was measured.
(3) Driving durability A continuous driving test was performed under the condition of initial luminance of 500 cd / m 2 , and the time when the luminance became 200 cd / m 2 was determined as the luminance reduction time.

(評価結果)
得られた結果を表2に示した。
本発明の素子は、比較の素子A1およびA3に比べて、駆動電圧が低く、特に駆動耐久性を長寿命化することができた。また、本発明の素子は、比較の素子A2およびA4に比べて、特に発光効率が向上した。
(Evaluation results)
The obtained results are shown in Table 2.
The device of the present invention had a lower driving voltage than the comparative devices A1 and A3, and in particular, the driving durability could be extended. In addition, the light emitting efficiency of the device of the present invention was particularly improved as compared with the comparative devices A2 and A4.


実施例2
1.試料の作製
実施例1の本発明の素子1に対して、正孔輸送層にアクセプタを添加した以外は有機EL素子2と同様にして本発明の有機EL素子21を作製した。
Example 2
1. Preparation of Sample An organic EL element 21 of the present invention was prepared in the same manner as the organic EL element 2 except that an acceptor was added to the hole transport layer for the element 1 of the present invention of Example 1.

2.性能評価
実施例1と同様に評価した結果を表3に示した。
その結果、アクセプタを正孔輸送層に入れることで効率が低下した。正孔輸送層にはアクセプタを含有しないことが好ましい性能を示した。
2. Performance Evaluation The results evaluated in the same manner as in Example 1 are shown in Table 3.
As a result, the efficiency was reduced by placing the acceptor in the hole transport layer. It was shown that the hole transport layer preferably contained no acceptor.


Claims (5)

対向する陽極電極と陰極電極との間に少なくとも1層の発光層を有する有機電界発光素子であって、前記発光層と前記陽極電極との間にアクセプタとして金属酸化物と金属を含まない有機化合物とを含有する正孔注入層を有し、前記正孔注入層と前記発光層との間に実質的にアクセプタを含有しない正孔輸送層を有し、前記正孔注入層における前記金属酸化物は前記陽極電極に近い部分より前記発光層に近い部分でより濃度が低く、かつ、前記有機化合物は濃度が均一であるか又は前記陽極電極側の部分と前記発光層側の部分でこれらの間の部分より濃度が低いことを特徴とする有機電界発光素子。 An organic electroluminescent element having at least one light emitting layer between an anode and a cathode facing each other, wherein the organic compound does not contain a metal oxide and a metal as an acceptor between the light emitting layer and the anode And a hole transport layer substantially free of an acceptor between the hole injection layer and the light emitting layer, and the metal oxide in the hole injection layer The concentration is lower in the portion closer to the light emitting layer than the portion closer to the anode electrode, and the concentration of the organic compound is uniform or between the portion on the anode electrode side and the portion on the light emitting layer side. An organic electroluminescent element characterized in that the concentration is lower than that of the portion. 前記正孔注入層における前記金属酸化物が最も高濃度である領域の濃度(Cmax)と最も低濃度である領域の濃度(Cmin)の比(Cmax/Cmin)が2以上であることを特徴とする請求項1に記載の有機電界発光素子。   The ratio (Cmax / Cmin) of the concentration (Cmax) of the region having the highest concentration of the metal oxide in the hole injection layer to the concentration (Cmin) of the region having the lowest concentration is 2 or more. The organic electroluminescent element according to claim 1. 前記アクセプタとしての金属酸化物が、電荷移動錯体を形成し得る金属酸化物であることを特徴とする請求項1または請求項2に記載の有機電界発光素子。   The organic electroluminescence device according to claim 1 or 2, wherein the metal oxide as the acceptor is a metal oxide capable of forming a charge transfer complex. 前記金属酸化物が、酸化モリブデンまたは酸化バナジウムであることを特徴とする請求項1〜請求項のいずれか1項に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 3 , wherein the metal oxide is molybdenum oxide or vanadium oxide. 前記有機化合物が、7,7,8,8−テトラフルオロテトラシアノキノジメタンであることを特徴とする請求項に記載の有機電界発光素子。 The organic electroluminescent device according to claim 4 , wherein the organic compound is 7,7,8,8-tetrafluorotetracyanoquinodimethane.
JP2006028994A 2006-02-06 2006-02-06 Organic electroluminescence device Active JP5063007B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006028994A JP5063007B2 (en) 2006-02-06 2006-02-06 Organic electroluminescence device
US11/702,173 US7968904B2 (en) 2006-02-06 2007-02-05 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028994A JP5063007B2 (en) 2006-02-06 2006-02-06 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2007208217A JP2007208217A (en) 2007-08-16
JP5063007B2 true JP5063007B2 (en) 2012-10-31

Family

ID=38487380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028994A Active JP5063007B2 (en) 2006-02-06 2006-02-06 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5063007B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102533B2 (en) * 2007-04-24 2012-12-19 パナソニック株式会社 Organic light emitting device
DE102007058005B4 (en) * 2007-09-25 2018-05-17 Osram Oled Gmbh Radiation-emitting device and method for its production
KR20090050369A (en) 2007-11-15 2009-05-20 삼성모바일디스플레이주식회사 Organic light emitting device
CN116375628A (en) * 2007-12-03 2023-07-04 株式会社半导体能源研究所 Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
KR100918401B1 (en) 2007-12-24 2009-09-24 삼성모바일디스플레이주식회사 Organic light emitting device
KR100894066B1 (en) 2007-12-28 2009-04-24 삼성모바일디스플레이 주식회사 Organic light emitting device
KR100922755B1 (en) * 2007-12-28 2009-10-21 삼성모바일디스플레이주식회사 Organic light emitting device
KR100898075B1 (en) 2008-03-04 2009-05-18 삼성모바일디스플레이주식회사 Organic light emitting device
WO2011024348A1 (en) * 2009-08-24 2011-03-03 シャープ株式会社 Organic electroluminescent element, organic electroluminescent display device, organic electroluminescent illuminating device, and method for manufacturing organic electroluminescent element
JP2011233692A (en) * 2010-04-27 2011-11-17 Idemitsu Kosan Co Ltd Photoelectric converter, organic solar cell and photoelectric conversion apparatus using these
JP5783780B2 (en) * 2010-06-03 2015-09-24 キヤノン株式会社 Display device
EP2595208A1 (en) * 2010-07-13 2013-05-22 Toray Industries, Inc. Light emitting element
WO2012147208A1 (en) * 2011-04-28 2012-11-01 パイオニア株式会社 Metal complex composition for organic electroluminescence element organic
JP5861961B2 (en) * 2012-02-01 2016-02-16 株式会社Joled Organic EL device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139508B2 (en) * 1991-09-10 2001-03-05 東レ株式会社 Record sheet
JP4396163B2 (en) * 2003-07-08 2010-01-13 株式会社デンソー Organic EL device
JP2005251639A (en) * 2004-03-05 2005-09-15 Idemitsu Kosan Co Ltd Organic EL element and organic EL display device
JP2006324537A (en) * 2005-05-20 2006-11-30 Hitachi Displays Ltd Display device
JP5116992B2 (en) * 2005-05-27 2013-01-09 富士フイルム株式会社 Organic EL device

Also Published As

Publication number Publication date
JP2007208217A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5117199B2 (en) Organic electroluminescence device
JP5063007B2 (en) Organic electroluminescence device
JP4896544B2 (en) Organic electroluminescence device
JP4833106B2 (en) Organic light emitting device
US7968904B2 (en) Organic electroluminescence device
US7612500B2 (en) Organic electroluminescence device
JP5441654B2 (en) Organic electroluminescence device
US7763364B2 (en) Organic electroluminescence device
US20070090756A1 (en) Organic electroluminescent element
US20060194076A1 (en) Organic electroluminescent element
WO2010058716A1 (en) Organic electroluminescent element
JP2007134677A (en) Organic electroluminescence element
JP2007110102A (en) Organic electroluminescence element
JP2009016579A (en) Organic electroluminescent element and manufacturing method
JP2009055010A (en) Organic electroluminescent device
JP2007221097A (en) Organic electroluminescence device
JP2007287652A (en) Light emitting element
JP2009032990A (en) Organic electroluminescent element
JP5349921B2 (en) Organic electroluminescence device
JP5256171B2 (en) Organic electroluminescence device
JP4855286B2 (en) Method for manufacturing organic electroluminescent device
JP2009032987A (en) Organic electroluminescent element
JP2008108709A (en) Organic electroluminescent element
JP2011100944A (en) Organic electroluminescent element
JP5300255B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250