JP5062720B2 - Flow detection device - Google Patents
Flow detection device Download PDFInfo
- Publication number
- JP5062720B2 JP5062720B2 JP2006171393A JP2006171393A JP5062720B2 JP 5062720 B2 JP5062720 B2 JP 5062720B2 JP 2006171393 A JP2006171393 A JP 2006171393A JP 2006171393 A JP2006171393 A JP 2006171393A JP 5062720 B2 JP5062720 B2 JP 5062720B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- flow
- unit
- temperature sensing
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 69
- 239000012530 fluid Substances 0.000 claims description 27
- 230000008859 change Effects 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、流体の流れを検出するのに好適な流れ検出装置に関する。 The present invention relates to a flow detection device suitable for detecting a fluid flow.
背景技術を述べる前に、先ず本明細書の表記方法について説明する。ここでは流体の流量と流速とを総称して流れと記す。一般に流量は流路断面積(定数)と流速の積として表されるので、流量と流速は互いに変換可能である。また抵抗素子の名称とその抵抗値とを同一の符号で記す(例えば抵抗素子Ruの抵抗値をRuと記す)。また電位と電圧は区別せず、全て電圧と記す。また何れの図においても、同じ機能を有する構成要素には共通の符号を付す。 Before describing the background art, first, a description method of this specification will be described. Here, the flow rate and the flow velocity of the fluid are collectively referred to as a flow. In general, the flow rate is expressed as the product of the channel cross-sectional area (constant) and the flow velocity, so that the flow rate and the flow velocity can be converted to each other. Further, the name of the resistance element and its resistance value are denoted by the same symbol (for example, the resistance value of the resistance element Ru is denoted as Ru). In addition, the potential and the voltage are not distinguished, and are all described as voltage. Moreover, in any figure, the same code | symbol is attached | subjected to the component which has the same function.
さて流れ検出装置に用いられるフローセンサチップ1は、図7に示すように、半導体プロセス技術を用いてシリコン基台表面に発熱抵抗素子RHと一対の感温抵抗素子Ru,Rdとを測定対象流体(以下、単に流体という)の流れ方向Fに並置して形成したものである。即ち、発熱抵抗素子RHを挟んで上流側に感温抵抗素子Ruを配置し、下流側に感温抵抗素子Rdを配置する。そして発熱抵抗素子RHと感温抵抗素子Ru,Rdとの熱的な結合状態(感温抵抗素子Ru,Rd近傍の温度分布)が流体の流れによって変化することを利用し、これに伴う上記感温抵抗素子Ru,Rdの抵抗値の変化から前記流体の流れを検出する。尚、発熱抵抗素子RHを持たず、感温抵抗素子Ru,Rdを自己発熱させる構成のフローセンサチップ(図示せず)もある。 As shown in FIG. 7, the flow sensor chip 1 used in the flow detection device includes a heating resistor element RH and a pair of temperature sensitive resistance elements Ru and Rd on a silicon base surface using a semiconductor process technology. (Hereinafter, simply referred to as a fluid) in the flow direction F. That is, the temperature sensitive resistance element Ru is arranged on the upstream side with the heating resistance element RH interposed therebetween, and the temperature sensitive resistance element Rd is arranged on the downstream side. Then, utilizing the fact that the thermal coupling state (temperature distribution in the vicinity of the temperature sensitive resistance elements Ru, Rd) between the heat generating resistance element RH and the temperature sensitive resistance elements Ru, Rd changes depending on the flow of the fluid, The flow of the fluid is detected from changes in the resistance values of the temperature resistance elements Ru and Rd. There is also a flow sensor chip (not shown) that does not have the heating resistance element RH and that causes the temperature-sensitive resistance elements Ru and Rd to self-heat.
いずれにせよ、流体の流れが速いほど上流側の感温抵抗素子Ruが冷却され下流側の感温抵抗素子Rdが加熱されて、感温抵抗素子Rd,Ruの対は、流体の流れに応じて互いに逆の相関を呈するように電気抵抗に変化を生じる。例えば温度が高くなるほど電気抵抗が大きくなる金属等の材質で形成された感温抵抗素子の場合、感温抵抗素子Ruの抵抗値が小さくなると共に感温抵抗素子Rdの抵抗値が大きくなる。このような特性を得るために、感温抵抗素子Ru,Rdは特に有意な大きさの、安定した抵抗温度係数(以下、TCRという)を持つ白金、ニクロム、パーマロイ等の材質で形成されており、例えば白金ではTCR=3000[ppm/deg]程度に設定されている。 In any case, the faster the fluid flow, the more the temperature-sensitive resistance element Ru on the upstream side is cooled and the temperature-sensitive resistance element Rd on the downstream side is heated, and the pair of temperature-sensitive resistance elements Rd and Ru depends on the flow of the fluid. As a result, the electrical resistance changes so as to exhibit an inverse correlation with each other. For example, in the case of a temperature-sensitive resistance element formed of a material such as a metal whose electrical resistance increases as the temperature increases, the resistance value of the temperature-sensitive resistance element Ru decreases and the resistance value of the temperature-sensitive resistance element Rd increases. In order to obtain such characteristics, the temperature sensitive resistance elements Ru and Rd are made of a material such as platinum, nichrome, permalloy, etc. having a particularly significant size and a stable resistance temperature coefficient (hereinafter referred to as TCR). For example, in platinum, TCR is set to about 3000 [ppm / deg].
このようなフローセンサチップを用いた流れ検出装置は、例えば図8に示すように2つの感温抵抗素子Ru,Rdを直列接続した感温部2と、2つの基準抵抗素子R1,R2を直列接続した基準電圧部3とを並列接続したブリッジ回路を有する。感温抵抗素子Ru,Rdが流体に接触するように、シリコン基台の表面が流路中に露出して配置される。基準抵抗素子R1,R2は、他の回路部品と共に後述する回路基板8に搭載される。尚、基準抵抗素子R1,R2は、例えば通常の電気回路素子として用いられる抵抗器であり、そのTCRは100[ppm/deg]程度、或いはそれ以下なので、温度による抵抗値の変化を実質的に無視し得る。定電圧供給手段4(電源部)はブリッジ回路の給電端に定電圧Vbを印加する。 For example, as shown in FIG. 8, the flow detection device using such a flow sensor chip has a temperature sensing unit 2 in which two temperature sensing resistance elements Ru and Rd are connected in series and two reference resistance elements R1 and R2 in series. It has a bridge circuit in which the connected reference voltage unit 3 is connected in parallel. The surface of the silicon base is exposed in the flow path so that the temperature sensitive resistance elements Ru and Rd are in contact with the fluid. The reference resistance elements R1 and R2 are mounted on a circuit board 8 to be described later together with other circuit components. The reference resistance elements R1 and R2 are resistors used as, for example, ordinary electric circuit elements, and their TCR is about 100 [ppm / deg] or less. Can be ignored. The constant voltage supply means 4 (power supply unit) applies a constant voltage Vb to the power supply end of the bridge circuit.
このとき、基準抵抗素子R1,R2の抵抗値を実質的に一定とみなせば、基準抵抗素子R1,R2の中点の電圧は常に一定の値Vb・R2/(R1+R2)を示すので、これを基準電圧として用いる。一方、感温抵抗素子Ru,Rdの中点の電圧Vc=Vb・Rd/(Ru+Rd)は、流体の流れに応じた感温抵抗素子Ru,Rdの変化を反映する。電圧Vcおよび基準電圧を入力された差動増幅器5(流れ検出部)は、これらの差に応じた電圧信号(流れ信号)を出力する。 At this time, if the resistance values of the reference resistance elements R1 and R2 are regarded as substantially constant, the voltage at the midpoint of the reference resistance elements R1 and R2 always shows a constant value Vb · R2 / (R1 + R2). Used as a reference voltage. On the other hand, the voltage Vc = Vb · Rd / (Ru + Rd) at the midpoint of the temperature sensitive resistance elements Ru, Rd reflects the change of the temperature sensitive resistance elements Ru, Rd according to the flow of the fluid. The differential amplifier 5 (flow detection unit) to which the voltage Vc and the reference voltage are input outputs a voltage signal (flow signal) corresponding to the difference between them.
ところで感温部2を形成する感温抵抗素子Ru,Rdは、流体の流れに応じて抵抗値変化を呈すると共に、これらが置かれた環境の温度からも影響を受けて抵抗値変化を示す。感温抵抗素子Ru,Rdが近接配置されているので、感温部2全体が同じ環境に置かれているものとみなせば、感温部2の置かれた環境の温度(以下、周囲温度という)が流れの検出に影響を与えると言える。上述の例ではTCRの影響によって、例えば図9に実線で示すように周囲温度が高くなるにつれて感度がやや低下する。この現象は高精度の測定を行うときには誤差の要因となる。 By the way, the temperature-sensitive resistance elements Ru and Rd forming the temperature-sensitive part 2 exhibit a resistance value change according to the flow of the fluid, and also show a resistance value change due to the influence of the temperature of the environment in which they are placed. Since the temperature-sensitive resistance elements Ru and Rd are arranged close to each other, assuming that the entire temperature-sensitive part 2 is placed in the same environment, the temperature of the environment where the temperature-sensitive part 2 is placed (hereinafter referred to as ambient temperature). ) Affects flow detection. In the above example, due to the influence of TCR, for example, as shown by a solid line in FIG. 9, the sensitivity slightly decreases as the ambient temperature increases. This phenomenon becomes an error factor when performing highly accurate measurement.
これに対して発熱抵抗素子RHと基準抵抗素子RRをフローセンサチップ上に設け、これらの各素子RH,RRのそれぞれに直列接続された固定抵抗を用いてブリッジ回路を構成し、このブリッジ回路が平衡化するようにその駆動電圧を制御することで上記発熱抵抗素子RHの発熱量を制御すると共に、該駆動電圧とブリッジ出力電圧とから上記基準抵抗素子RRに加わる周囲温度を算出することが提唱されている(例えば特許文献1を参照)。
ところで従来、感温部2の置かれた環境の温度が流れの検出に影響を与えるという課題を解決するために、フローセンサチップ上に設けられて周囲温度を検出する基準抵抗素子RRおよびその測定手段を用いている。これに対して発明者等は感温部2の感温抵抗素子Ru,Rdの抵抗値が周囲温度によって変化する点に着目し、この抵抗値から周囲温度に関する情報を求めることに思い至った。即ち、電圧保持部13から感温部2へ供給される電流が周囲温度とは逆の相関を示すので、電圧保持部13と感温部2との間に抵抗器を直列に挿入し、この抵抗器の両端電圧からそこに流れる電流を検出することを試みた。しかしながら抵抗器の両端電圧を測定する手段が新たに必要となるので、前述した従来の構成に対して特段の優位性を主張できるものとはいえない。 Conventionally, in order to solve the problem that the temperature of the environment where the temperature sensing unit 2 is placed affects the detection of the flow, the reference resistance element RR provided on the flow sensor chip for detecting the ambient temperature and the measurement thereof. Means. On the other hand, the inventors focused on the fact that the resistance values of the temperature-sensitive resistance elements Ru and Rd of the temperature-sensing unit 2 change depending on the ambient temperature, and have come to think of obtaining information on the ambient temperature from this resistance value. That is, since the current supplied from the voltage holding unit 13 to the temperature sensing unit 2 has an inverse correlation with the ambient temperature, a resistor is inserted in series between the voltage holding unit 13 and the temperature sensing unit 2. An attempt was made to detect the current flowing from the voltage across the resistor. However, since a means for measuring the voltage across the resistor is newly required, it cannot be said that a particular advantage can be claimed over the conventional configuration described above.
本発明はこのような事情を考慮してなされたもので、その目的は、簡素な構成で感温部の周囲温度に関する情報を得られる流れ検出装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a flow detection device capable of obtaining information on the ambient temperature of the temperature sensing unit with a simple configuration.
上述した目的を達成するべく本発明に係る流れ検出装置は、流体の流れに起因する温度分布の変化に応じて電気抵抗の変化を生じる感温部と、この感温部に給電する電源部と、前記流れに応じた流れ信号を出力する流れ検出部とを有し、前記感温部は前記流れに応じて互いに有意な相関係数の差を生じるように電気抵抗が変化する対をなす部分を含むものであり、前記流れ検出部はこの対の電気抵抗の状態から前記流れを検出するものであって、特に前記感温部への給電の状態に基づいて前記感温部の温度に応じた温度信号を出力する温度検出部を有することを特徴としている。 In order to achieve the above-described object, a flow detection device according to the present invention includes a temperature sensing unit that generates a change in electrical resistance in response to a change in temperature distribution caused by a fluid flow, and a power supply unit that supplies power to the temperature sensing unit. A flow detection unit that outputs a flow signal corresponding to the flow, and the temperature sensing unit forms a pair whose electrical resistance changes so as to produce a significant correlation coefficient difference depending on the flow The flow detection unit detects the flow from the state of the electrical resistance of the pair, and particularly according to the temperature of the temperature sensing unit based on the state of power supply to the temperature sensing unit. And a temperature detection unit that outputs a temperature signal.
好ましくは前記温度検出部は、前記感温部への給電状態を一定の電圧に保つように構成される。また或いは前記温度検出部は、(a)電源端子、反転入力端子、非反転入力端子および出力端子を有し、この出力端子から前記温度信号を出力すると共に前記感温部の給電端に給電する差動増幅器と、(b)前記差動増幅器の非反転入力端子に基準電圧を供給する基準電圧供給部と、(c)その一端を前記差動増幅器の出力端子に接続され、他端を前記差動増幅器の反転入力端子および前記感温部の給電端に接続された帰還抵抗器とを備えることを特徴としている。 Preferably, the temperature detection unit is configured to maintain a power supply state to the temperature sensing unit at a constant voltage. Alternatively, the temperature detection unit includes (a) a power supply terminal, an inverting input terminal, a non-inverting input terminal, and an output terminal. The temperature detection unit outputs the temperature signal from the output terminal and supplies power to the power supply end of the temperature sensing unit. A differential amplifier; (b) a reference voltage supply unit for supplying a reference voltage to a non-inverting input terminal of the differential amplifier; and (c) one end of which is connected to the output terminal of the differential amplifier and the other end of the differential amplifier. A feedback resistor connected to an inverting input terminal of the differential amplifier and a power supply end of the temperature sensing unit is provided.
また前記感温部については、前記流体の流れる流路の内壁近傍に配置されて前記流体に接触するように設けることが好ましい。更には上述した構成に加えて前記温度信号を用いて前記流れ信号を補正する補正部を設けることが好ましい。 Moreover, it is preferable that the temperature sensing unit is provided in the vicinity of the inner wall of the flow path through which the fluid flows so as to contact the fluid. Furthermore, it is preferable to provide a correction unit that corrects the flow signal using the temperature signal in addition to the above-described configuration.
上記構成によれば専用の感温抵抗素子を設けることなく感温部の周囲温度に関する情報を得られ、感温部の温度に起因して生じる流れ検出の誤差を補正することが可能な、簡素な構成の流れ検出装置を実現できる。また温度検出部が温度検出機能と電圧保持機能とを兼ね備えるので、装置の構成を単純化を図ることができる。更には単純な構成によって温度検出部が温度検出と電圧保持とを行うので、装置の構成を極めて単純化できる。また感温部を流路内壁近傍に配置したので単純な形状の流路を採用することが可能であり、更に温度検出部の構成も極めて単純であるため流れ検出装置全体の構成を単純化することができる。これによって流れ検出装置を小型化、低廉化することができる。また感温部の温度に起因する流れ検出の誤差を補正した流れ信号を容易に得られる。 According to the above configuration, information relating to the ambient temperature of the temperature sensing part can be obtained without providing a dedicated temperature sensing resistor element, and a flow detection error caused by the temperature of the temperature sensing part can be corrected. A flow detection device having a simple configuration can be realized. Further, since the temperature detection unit has both the temperature detection function and the voltage holding function, the configuration of the apparatus can be simplified. Furthermore, since the temperature detector performs temperature detection and voltage holding with a simple configuration, the configuration of the apparatus can be greatly simplified. In addition, since the temperature sensing part is arranged in the vicinity of the inner wall of the flow path, it is possible to adopt a simple shaped flow path, and the structure of the temperature detection part is also extremely simple, thus simplifying the structure of the entire flow detection device. be able to. As a result, the flow detection device can be reduced in size and cost. Further, a flow signal in which a flow detection error due to the temperature of the temperature sensing unit is corrected can be easily obtained.
要するに本発明によれば簡素な構成で感温部の周囲温度に関する情報を得ることが可能な流れ検出装置が提供でき、更には感温部の温度に起因して生じる流れ検出の誤差を補正することが可能な流れ検出装置を提供できる。 In short, according to the present invention, it is possible to provide a flow detection device capable of obtaining information related to the ambient temperature of the temperature sensing unit with a simple configuration, and further to correct a flow detection error caused by the temperature of the temperature sensing unit. It is possible to provide a flow detection device capable of performing the above.
以下、図面を参照して本発明の実施形態に係る流れ検出装置について説明する。
本発明の流れ検出装置が適用される熱式気体流量計の全体構成を図1に示す。金属製の本体6はその中央を貫通する流路7を有し、この流路7の上流側および下流側には外部の配管がそれぞれ連結されており、配管を流れる流体が流路7を通過する。流路7の内壁面には、図7に示すようなフローセンサチップ1が固定されている。本体6に固定された回路基板8には電気回路が形成されており、次の機能ブロックを構成する。
Hereinafter, a flow detection device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of a thermal gas flow meter to which the flow detection device of the present invention is applied. The metal main body 6 has a flow path 7 penetrating through the center thereof, and external pipes are connected to the upstream side and the downstream side of the flow path 7, respectively, and fluid flowing through the pipe passes through the flow path 7. To do. A flow sensor chip 1 as shown in FIG. 7 is fixed to the inner wall surface of the flow path 7. An electric circuit is formed on the circuit board 8 fixed to the main body 6 and constitutes the next functional block.
即ち、電源部4は、電源端子9、交流直流変換部10、ヒータ駆動部11およびセンサ駆動部12を有する。電源端子9は外部電源からの電力供給線を接続する。交流直流変換部10は外部電源が交流電源の場合に必要とされ、電圧調整用トランス、整流器、平滑化コンデンサ等を用いて交流電力を直流電力に変換し電気回路全体に電力を供給する。この電源部4に直流電力の電圧を一定に保つための定電圧回路が組み込まれることもある。 That is, the power supply unit 4 includes a power supply terminal 9, an AC / DC conversion unit 10, a heater driving unit 11, and a sensor driving unit 12. The power supply terminal 9 connects a power supply line from an external power supply. The AC / DC converter 10 is required when the external power supply is an AC power supply, and converts AC power into DC power using a voltage adjusting transformer, a rectifier, a smoothing capacitor, and the like, and supplies the electric circuit as a whole. A constant voltage circuit for keeping the DC power voltage constant may be incorporated in the power supply unit 4.
ヒータ駆動部11は発熱抵抗素子RHに供給する電力を調節して発熱抵抗素子RHの発熱を制御する。センサ駆動部12は電圧保持部13を有し、感温部2および基準電圧部3に所定の定電圧を供給する。基準電圧部3は前述した基準抵抗R1,R2を有する。処理部14は流れ検出部5、温度検出部15、補正部16を有する。補正部16は流れ検出部5からの流れ信号を、温度検出部15からの温度信号を用いて補正する。インターフェース部17は外部と処理部との情報を仲介するものであり、例えば処理部14に対する同期信号や演算パラメータの設定信号などの外部入力、流量信号や流量表示などの外部出力を司る。 The heater drive unit 11 controls the heat generation of the heating resistor element RH by adjusting the power supplied to the heating resistor element RH. The sensor driving unit 12 has a voltage holding unit 13 and supplies a predetermined constant voltage to the temperature sensing unit 2 and the reference voltage unit 3. The reference voltage unit 3 has the reference resistors R1 and R2 described above. The processing unit 14 includes a flow detection unit 5, a temperature detection unit 15, and a correction unit 16. The correction unit 16 corrects the flow signal from the flow detection unit 5 using the temperature signal from the temperature detection unit 15. The interface unit 17 mediates information between the outside and the processing unit. For example, the interface unit 17 controls external input such as a synchronization signal and calculation parameter setting signal to the processing unit 14 and external output such as a flow rate signal and a flow rate display.
図2を用いて本発明の流れ検出装置の第一の実施形態を説明する。この図2は、流量計の全体構成を示す図1から本発明の流れ検出装置に関する構成要素を抜粋して電気回路図として示したものである。感温部2における感温抵抗素子Ru,Rdの直列接続と基準電圧部3における基準抵抗素子R1,R2の直列接続とは並列接続されてブリッジを構成する。このブリッジは感温抵抗素子Ruと基準抵抗素子R1との接続点を給電端とし、感温抵抗素子Rdと基準抵抗素子R2との接続点を接地端とする。感温抵抗素子Ru,Rdは、互いに同じ材質・形状・電気的特性(抵抗値)を持ち、そのTCRは3000[ppm/deg]程度である。 A first embodiment of the flow detection device of the present invention will be described with reference to FIG. FIG. 2 is an electric circuit diagram of the components relating to the flow detection device of the present invention extracted from FIG. 1 showing the overall configuration of the flowmeter. The series connection of the temperature-sensitive resistance elements Ru and Rd in the temperature-sensitive section 2 and the series connection of the reference resistance elements R1 and R2 in the reference voltage section 3 are connected in parallel to form a bridge. In this bridge, a connection point between the temperature-sensitive resistance element Ru and the reference resistance element R1 is a feeding end, and a connection point between the temperature-sensitive resistance element Rd and the reference resistance element R2 is a grounding end. The temperature-sensitive resistance elements Ru and Rd have the same material, shape, and electrical characteristics (resistance values), and their TCR is about 3000 [ppm / deg].
計測対象となる流体の流れに応じて上流側の感温抵抗素子Ruの温度がΔT低下し、下流側の感温抵抗素子Rdの温度がΔT上昇する。これに伴い、前者の抵抗値は3000ΔT[ppm]減少し、後者の抵抗値は3000・ΔT[ppm]増加する。即ち、感温抵抗素子Ru,Rdは、流体の流れに応じて互いに逆の相関を呈するように電気抵抗が変化する対をなしている。また基準抵抗素子R1,R2は、互いに同じ材質・形状・電気的特性(抵抗値)を持つものであり、そのTCRはせいぜい100[ppm/deg]程度であるため、基準抵抗素子R1,R2の各抵抗値は温度の影響を受けず実質的に一定とみなし得る。 The temperature of the upstream temperature sensitive resistance element Ru decreases by ΔT and the temperature of the downstream temperature sensitive resistance element Rd increases by ΔT according to the flow of the fluid to be measured. Along with this, the former resistance value decreases by 3000 ΔT [ppm], and the latter resistance value increases by 3000 · ΔT [ppm]. That is, the temperature-sensitive resistance elements Ru and Rd form a pair in which the electrical resistance changes so as to exhibit an inverse correlation with each other according to the flow of the fluid. The reference resistance elements R1 and R2 have the same material, shape, and electrical characteristics (resistance values), and their TCR is about 100 [ppm / deg] at most. Each resistance value is not affected by temperature and can be regarded as substantially constant.
交流直流変換部10からのブリッジの給電端への給電電圧Vbを常に一定に保つ電圧保持部13と、感温部2の周囲温度に応じた温度信号を検出する温度検出部15とは、一つの差動増幅回路(即ち、差動増幅器201、帰還抵抗素子R3、レファレンス電圧供給手段202)によって実現される。差動増幅器201は一般的なオペアンプであり、大きなゲインを持ち、その入力インピーダンスは大きく、出力インピーダンスは小さい。差動増幅器201の電源入力端子には交流直流変換部10から直流電力が供給される。差動増幅器201の出力端子は、帰還抵抗素子R3を介して、差動増幅器201の反転入力端子および前記ブリッジの給電端に接続されている。差動増幅器201の非反転入力端子にはレファレンス電圧供給手段202からの定電圧Vrが入力されている。レファレンス電圧供給手段202は一般的な定電圧回路であり、例えばツェナーダイオードの降伏電圧を利用する回路や3端子レギュレータと称する市販のIC等を用いて実現される。仮に直流交流変換部10の供給電圧が十分に安定した定電圧であれば、その電圧を適宜に抵抗分割してレファレンス電圧供給手段202として用いても良い。 The voltage holding unit 13 that always keeps the power supply voltage Vb from the AC / DC conversion unit 10 to the power supply end of the bridge constant, and the temperature detection unit 15 that detects a temperature signal according to the ambient temperature of the temperature sensing unit 2 are: This is realized by two differential amplifier circuits (that is, a differential amplifier 201, a feedback resistance element R3, and a reference voltage supply means 202). The differential amplifier 201 is a general operational amplifier, has a large gain, has a large input impedance, and a small output impedance. DC power is supplied from the AC / DC converter 10 to the power input terminal of the differential amplifier 201. The output terminal of the differential amplifier 201 is connected to the inverting input terminal of the differential amplifier 201 and the power feeding end of the bridge via a feedback resistor element R3. The constant voltage Vr from the reference voltage supply unit 202 is input to the non-inverting input terminal of the differential amplifier 201. The reference voltage supply means 202 is a general constant voltage circuit, and is realized by using, for example, a circuit using a breakdown voltage of a Zener diode, a commercially available IC called a three-terminal regulator, or the like. If the supply voltage of the DC / AC converter 10 is a sufficiently stable constant voltage, the voltage may be appropriately resistance-divided and used as the reference voltage supply means 202.
このような差動増幅回路は、作動増幅器201の反転入力端子電圧Vbと非反転入力端子電圧Vrとが等しくなるように出力端子電圧Vtを自動調節する帰還作用を持ち、ブリッジへの給電電圧Vbをレファレンス電圧供給手段の定電圧Vrと等しく保つので、電圧保持部13として機能する。また差動増幅器201の反転入力端子および後述の補正部16はいずれも極めて高い入力インピーダンスを持つので、差動増幅器201の出力電流Iは実質的に全て帰還抵抗素子R3を介してブリッジに流れる。 Such a differential amplifier circuit has a feedback action of automatically adjusting the output terminal voltage Vt so that the inverting input terminal voltage Vb and the non-inverting input terminal voltage Vr of the operational amplifier 201 become equal, and the power supply voltage Vb to the bridge is provided. Is kept equal to the constant voltage Vr of the reference voltage supply means, and functions as the voltage holding unit 13. In addition, since both the inverting input terminal of the differential amplifier 201 and the correction unit 16 described later have an extremely high input impedance, substantially all of the output current I of the differential amplifier 201 flows to the bridge via the feedback resistance element R3.
差動増幅器201の出力端子電圧Vtは
Vt=Vr+I・R3
=Vr+[Vr/(Ru+Rd)+Vr/(R1+R2)]・R3
と表される。ここで、Vr,R1.R2,R3はそれぞれ一定であり、感温抵抗素子Ru,Rdの抵抗値は流体の流れおよび感温部2の周囲温度に応じて変化するので、出力端子電圧Vtは流れおよび周囲温度の関数として表すことができる。従って出力端子電圧Vtから流れの影響を除去すれば、出力端子電圧Vtは周囲温度のみを表す温度信号として利用できる。
The output terminal voltage Vt of the differential amplifier 201 is Vt = Vr + I · R3
= Vr + [Vr / (Ru + Rd) + Vr / (R1 + R2)]. R3
It is expressed. Here, Vr, R1, R2, and R3 are constant, and the resistance values of the temperature-sensitive resistance elements Ru and Rd change according to the flow of the fluid and the ambient temperature of the temperature-sensitive part 2, so that the output terminal voltage Vt is It can be expressed as a function of flow and ambient temperature. Therefore, if the influence of the flow is removed from the output terminal voltage Vt, the output terminal voltage Vt can be used as a temperature signal representing only the ambient temperature.
流れの影響を除去する方法として最も容易な方法は、感温抵抗素子Ru,Rdの流れに対するそれぞれの抵抗値変化を逆向きで同じ大きさに設定することである。即ち、流れが生じたとき、感温抵抗素子Ruの抵抗値がΔRf減少すると共に感温抵抗素子Rdの抵抗値がΔRf増加するようにすれば、感温抵抗素子Ru,Rdの直列接続の合成抵抗値は
Ru−ΔRf+Rd+ΔRf=Ru+Rd
となって流れによる抵抗値変化同士が相殺されるので、出力端子電圧Vtは流れの影響を受けない。
The simplest method for removing the influence of the flow is to set the respective resistance value changes with respect to the flow of the temperature-sensitive resistance elements Ru and Rd to the same magnitude in the reverse direction. That is, when a flow occurs, if the resistance value of the temperature-sensitive resistance element Ru decreases by ΔRf and the resistance value of the temperature-sensitive resistance element Rd increases by ΔRf, the series connection of the temperature-sensitive resistance elements Ru and Rd is combined. The resistance value is Ru−ΔRf + Rd + ΔRf = Ru + Rd
Since the resistance value changes due to the flow are canceled out, the output terminal voltage Vt is not affected by the flow.
また感温抵抗素子Ru,Rdの流れによる抵抗値変化どうしが完全には相殺しない場合には、感温抵抗素子Ru,Rdの抵抗値は流体の流れの影響と感温部2の周囲温度の影響を両方とも受ける。しかし予め流れと周囲温度とを様々に変化させながら出力端子電圧Vtを測定し、これらの関係について、例えば図10に示すような補正用のデータを作成しておけば、後述の補正部16において実際の計測時の出力端子電圧Vtから流れの影響を除去することが可能である。このようにして差動増幅回路は前述の電圧保持部13としての機能と共に温度検出部15としても機能する。言い換えれば温度検出部15は、温度検出機能と共に電圧保持機能を有している。 When the resistance value changes due to the flow of the temperature sensitive resistance elements Ru and Rd do not completely cancel each other, the resistance values of the temperature sensitive resistance elements Ru and Rd are determined by the influence of the fluid flow and the ambient temperature of the temperature sensitive portion 2. Both are affected. However, if the output terminal voltage Vt is measured in advance while changing the flow and the ambient temperature in various ways and correction data as shown in FIG. It is possible to remove the influence of the flow from the output terminal voltage Vt during actual measurement. In this way, the differential amplifier circuit functions as the temperature detecting unit 15 as well as the function of the voltage holding unit 13 described above. In other words, the temperature detection unit 15 has a voltage holding function as well as a temperature detection function.
流れ検出部5は計装アンプからなる差動増幅器であり、ブリッジの基準抵抗素子R1,R2の中点電圧と感温抵抗素子Ru,Rdの中点電圧とが入力されて、両者の差を流れ信号Vsとして出力する。即ち、基準抵抗素子R1,R2の中点電圧は定電圧Vbを[R1:R2]に抵抗分割した電圧であり、一般的にはVb/2である(R1=R2の場合)。また感温抵抗素子Ru,Rdの中点電圧は定電圧Vbを[Ru:Rd]に抵抗分割した電圧であり、流体の流れが無いときには一般的にはVb/2である(Ru=Rdの場合)。 The flow detection unit 5 is a differential amplifier composed of an instrumentation amplifier. The midpoint voltage of the reference resistance elements R1 and R2 of the bridge and the midpoint voltage of the temperature sensitive resistance elements Ru and Rd are inputted, and the difference between the two is calculated. Output as a flow signal Vs. That is, the midpoint voltage of the reference resistance elements R1 and R2 is a voltage obtained by resistively dividing the constant voltage Vb into [R1: R2], and is generally Vb / 2 (when R1 = R2). The midpoint voltage of the temperature sensitive resistance elements Ru, Rd is a voltage obtained by resistance-dividing the constant voltage Vb into [Ru: Rd], and is generally Vb / 2 when there is no fluid flow (Ru = Rd). If).
流れによって感温抵抗素子Ru,Rdに抵抗値変化−ΔR,ΔRがそれぞれ発生すると、これらの中点電圧は定電圧Vbを[Ru−ΔR:Rd+ΔR]に抵抗分割した電圧に変化する。ここで感温部2の周囲温度変化により感温抵抗素子Ru,Rdに抵抗値変化ΔRT,ΔRTが発生すると、これらの中点電圧は定電圧Vbを[Ru−ΔR+ΔRT:Rd+ΔR+ΔRT]に抵抗分割した電圧に変化し、周囲温度の変化による誤差を含む。尚、前述した通り、基準抵抗素子R1,R2の各抵抗値は温度の影響を受けず、その中点電圧は変化しない。 When resistance value changes −ΔR and ΔR are generated in the temperature-sensitive resistance elements Ru and Rd by the flow, the midpoint voltage of these changes to a voltage obtained by dividing the constant voltage Vb into [Ru−ΔR: Rd + ΔR]. Here, when resistance value changes ΔRT and ΔRT are generated in the temperature-sensitive resistance elements Ru and Rd due to the ambient temperature change of the temperature-sensing unit 2, the midpoint voltage of these is obtained by dividing the constant voltage Vb into [Ru−ΔR + ΔRT: Rd + ΔR + ΔRT]. It changes to voltage and includes errors due to changes in ambient temperature. As described above, the resistance values of the reference resistance elements R1 and R2 are not affected by temperature, and the midpoint voltage does not change.
補正部16は、コンピュータのプログラムによって実現される。即ち、温度検出部15からの温度信号Vtを用いて、流れ検出部5からの流れ信号Vsを補正して、周囲温度による影響を除去する。補正用のデータは、感温部2の周囲温度および流体の流れを様々に変化させて計測した温度信号Vtおよび流れ信号Vsから作成してメモリに記憶させてある。また前述した温度信号Vtを補正するためのデータ(図10)も同様にメモリに記憶させておくことが望ましい。 The correction unit 16 is realized by a computer program. That is, the flow signal Vs from the flow detection unit 5 is corrected using the temperature signal Vt from the temperature detection unit 15 to remove the influence of the ambient temperature. The correction data is created from the temperature signal Vt and the flow signal Vs measured by variously changing the ambient temperature of the temperature sensing unit 2 and the fluid flow, and is stored in the memory. Similarly, it is desirable to store the data (FIG. 10) for correcting the temperature signal Vt described above in the memory as well.
以上のように本発明の第一の実施形態によれば、感温部への給電の状態から感温部の周囲温度に関する情報を得られる。また温度検出機能と電圧保持機能とを兼ねる構成を採るので、装置の構成を単純化できる。更に感温部を流路内壁近傍に配置した単純な形状の流路に本発明の流れ検出装置を適用すれば、温度検出部の構成も極めて単純であるため、流れ検出装置全体の構成を単純化することができる。これによって流れ検出装置を小型化、低廉化することができる。 As described above, according to the first embodiment of the present invention, information related to the ambient temperature of the temperature sensing unit can be obtained from the state of power feeding to the temperature sensing unit. In addition, since the temperature detection function and the voltage holding function are employed, the configuration of the apparatus can be simplified. Furthermore, if the flow detection device of the present invention is applied to a flow channel with a simple shape in which the temperature sensing unit is arranged near the inner wall of the flow channel, the configuration of the temperature detection unit is very simple, so the configuration of the entire flow detection device is simplified. Can be As a result, the flow detection device can be reduced in size and cost.
次に図3を用いて本発明の第二の実施形態を説明する。この実施形態は前述の第一の実施形態とはブリッジの構成のみが異なり、その余は同じ構成を採る。即ち、基準抵抗素子R1および感温抵抗素子Ruが一方の直列接続をなし、基準抵抗素子R2および感温抵抗素子Rdが他方の直列接続をなし、これらが並列接続されてブリッジを形成する。給電側に配置された基準抵抗素子R1,R2が基準電圧部303をなし、接地側に配置された感温抵抗素子Ru,Rdが感温部302をなす。基準抵抗素子R1,R2が互いに同じ材質・形状・電気的特性(抵抗値)を持ち、感温抵抗素子Ru,Rdが互いに同じ材質・形状・電気的特性(抵抗値)を持つことが望ましい。 Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment differs from the first embodiment described above only in the configuration of the bridge, and the rest adopts the same configuration. That is, the reference resistance element R1 and the temperature-sensitive resistance element Ru form one series connection, the reference resistance element R2 and the temperature-sensitive resistance element Rd form the other series connection, and these are connected in parallel to form a bridge. The reference resistance elements R1 and R2 arranged on the power supply side constitute the reference voltage unit 303, and the temperature sensitive resistance elements Ru and Rd arranged on the ground side constitute the temperature sensing unit 302. It is desirable that the reference resistance elements R1 and R2 have the same material, shape, and electrical characteristics (resistance value), and the temperature-sensitive resistance elements Ru, Rd have the same material, shape, and electrical characteristics (resistance value).
この場合、差動増幅器201の出力端子電圧Vtは
Vt=Vr+I・R3
=Vr+[Vr/(R1+Ru)+Vr/(R2+Rd)]・R3
と表される。感温抵抗素子Ru,Rdの抵抗値は流体の流れの影響と感温部2の周囲温度の影響とを両方とも受ける。しかし予め流れと周囲温度とを様々に変化させながら出力端子電圧Vtを測定し、図10に示すような補正用のデータを作成しておけば、前述した補正部16において実際の計測時の出力端子電圧Vtから流れの影響を除去することが可能である。
In this case, the output terminal voltage Vt of the differential amplifier 201 is Vt = Vr + I · R3
= Vr + [Vr / (R1 + Ru) + Vr / (R2 + Rd)]. R3
It is expressed. The resistance values of the temperature sensitive resistance elements Ru and Rd are both affected by the flow of the fluid and the ambient temperature of the temperature sensitive part 2. However, if the output terminal voltage Vt is measured in advance while varying the flow and the ambient temperature in advance and the correction data as shown in FIG. 10 is created, the correction unit 16 described above outputs the actual measurement. It is possible to remove the influence of the flow from the terminal voltage Vt.
次に図4を用いて本発明の第三の実施形態を説明する。この実施形態は、前述した第一の実施形態とは流れ検出部405の具体的構成および基準電圧部3への給電方法のみが異なり、その余は同じ構成を採る。即ち、流れ検出部405に安価なオペアンプを用い、基準電圧部3への給電をレファレンス電圧供給手段202から行う構成を採る。基準電圧部3への給電をレファレンス電圧供給手段202から行うのは、オペアンプの安定動作を期しての帰還抵抗素子Rfの制約により基準電圧部3の基準抵抗素子R1,R2の抵抗値を比較的小さめに設定する必要があるからである。このとき図2のように基準電圧部3に差動増幅器201の出力端子から帰還抵抗素子R3を介して電流を供給すると、帰還抵抗R3を流れる電流のうち、基準電圧部3に流れる電流が増加し、感温部2に流れる電流の比率が相対的に小さくなって、流れ検出のSN比が悪化してしまう。 Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment described above only in the specific configuration of the flow detection unit 405 and the method of supplying power to the reference voltage unit 3, and the rest adopts the same configuration. That is, an inexpensive operational amplifier is used for the flow detection unit 405, and power is supplied to the reference voltage unit 3 from the reference voltage supply unit 202. The power supply to the reference voltage unit 3 is performed from the reference voltage supply unit 202 because the resistance values of the reference resistance elements R1 and R2 of the reference voltage unit 3 are relatively limited due to the restriction of the feedback resistance element Rf for the stable operation of the operational amplifier. This is because it is necessary to set a smaller value. At this time, when a current is supplied to the reference voltage unit 3 from the output terminal of the differential amplifier 201 via the feedback resistor element R3 as shown in FIG. 2, the current flowing to the reference voltage unit 3 among the currents flowing through the feedback resistor R3 increases. However, the ratio of the current flowing through the temperature sensing unit 2 becomes relatively small, and the SN ratio of the flow detection is deteriorated.
これを防ぐため、図4のように差動増幅器201の出力端子から帰還抵抗R3を介して感温部3のみに電流を供給するようにしている。この場合、差動増幅器201の出力電圧Vtは
Vt=Vr+I・R3
=Vr+Vr/(Ru+Rd)・R3
と表される。
In order to prevent this, current is supplied only from the output terminal of the differential amplifier 201 to the temperature sensing unit 3 via the feedback resistor R3 as shown in FIG. In this case, the output voltage Vt of the differential amplifier 201 is Vt = Vr + I · R3
= Vr + Vr / (Ru + Rd) · R3
It is expressed.
流れの影響を除去する方法として最も容易な方法は、感温抵抗素子Ru,Rdの流れに対する抵抗値変化を逆向きで同じ大きさに設定することである。即ち、流れが生じると感温抵抗素子Ruの抵抗値がΔRf減少すると共に感温抵抗素子Rdの抵抗値がΔRf増加するようにすれば、感温抵抗素子Ru,Rdの直列接続の合成抵抗値は
Ru−ΔRf+Rd+ΔRf=Ru+Rd
となって抵抗値変化同士が相殺するので、出力端子電圧Vtは流れの影響を受けない。
The simplest method for removing the influence of the flow is to set the change in resistance value with respect to the flow of the temperature-sensitive resistance elements Ru and Rd to the same magnitude in the reverse direction. That is, if the resistance value of the temperature sensitive resistance element Ru decreases by ΔRf and the resistance value of the temperature sensitive resistance element Rd increases by ΔRf when a flow occurs, the combined resistance value of the series connection of the temperature sensitive resistance elements Ru and Rd. Is Ru−ΔRf + Rd + ΔRf = Ru + Rd
Since the resistance value changes cancel each other, the output terminal voltage Vt is not affected by the flow.
また感温抵抗素子Ru,Rdの流れに対する抵抗値変化が相殺しないものである場合、感温抵抗素子Ru,Rdの抵抗値は流体の流れの影響と感温部2の周囲温度の影響を両方とも受ける。しかし予め流れと周囲温度とを様々に変化させながら出力端子電圧Vtを測定して図10に示すような補正用のデータを作成しておけば、前述した補正部16において実際の計測時の出力端子電圧Vtから流れの影響を除去することが可能である。 When the resistance value change with respect to the flow of the temperature sensitive resistance elements Ru and Rd does not cancel out, the resistance value of the temperature sensitive resistance elements Ru and Rd has both the influence of the fluid flow and the influence of the ambient temperature of the temperature sensitive portion 2. Also receive. However, if the output terminal voltage Vt is measured in advance while varying the flow and the ambient temperature and the correction data as shown in FIG. 10 is created, the correction unit 16 described above outputs the actual measurement. It is possible to remove the influence of the flow from the terminal voltage Vt.
次に図5を用いて本発明の第四の実施形態を説明する。この実施形態は前述の第三の実施形態とはブリッジの構成のみが異なり、その余は同じ構成を採る。即ち、基準抵抗素子R1および感温抵抗素子Ruが一方の直列接続をなし、基準抵抗素子R2および感温抵抗素子Rdが他方の直列接続をなし、これらが並列接続されてブリッジを形成している。給電側に配置された基準抵抗素子R1,R2が基準電圧部503をなし、接地側に配置された感温抵抗素子Ru,Rdが感温部502をなす。基準抵抗素子R1,R2が互いに同じ材質・形状・電気的特性(抵抗値)を持ち、感温抵抗素子Ru,Rdが互いに同じ材質・形状・電気的特性(抵抗値)を持つことが望ましい。 Next, a fourth embodiment of the present invention will be described with reference to FIG. This embodiment differs from the above-described third embodiment only in the configuration of the bridge, and the rest adopts the same configuration. That is, the reference resistance element R1 and the temperature-sensitive resistance element Ru form one series connection, the reference resistance element R2 and the temperature-sensitive resistance element Rd form the other series connection, and these are connected in parallel to form a bridge. . The reference resistance elements R1 and R2 arranged on the power supply side constitute the reference voltage unit 503, and the temperature sensitive resistance elements Ru and Rd arranged on the ground side constitute the temperature sensing unit 502. It is desirable that the reference resistance elements R1 and R2 have the same material, shape, and electrical characteristics (resistance value), and the temperature-sensitive resistance elements Ru, Rd have the same material, shape, and electrical characteristics (resistance value).
ここで差動増幅器201の出力端子電圧Vtは
Vt=Vr+I・R3
=Vr+Vr/(R1+Ru)・R3
と表される。感温抵抗素子Ruの抵抗値は流体の流れの影響と感温部2の周囲温度の影響を両方とも受けるが、前述したように予め流れと周囲温度とを様々に変化させながら出力端子電圧Vtを測定して図10に示すような補正用のデータを作成しておけば、前じ゜ゅつした補正部16において実際の計測時の出力端子電圧Vtから流れの影響を除去することが可能である。
Here, the output terminal voltage Vt of the differential amplifier 201 is Vt = Vr + I · R3
= Vr + Vr / (R1 + Ru) .R3
It is expressed. The resistance value of the temperature sensitive resistance element Ru is affected both by the influence of the flow of the fluid and the influence of the ambient temperature of the temperature sensing portion 2, but as described above, the output terminal voltage Vt is varied while changing the flow and the ambient temperature in advance. If the correction data as shown in FIG. 10 is created by measuring the above, it is possible to remove the influence of the flow from the output terminal voltage Vt at the time of actual measurement in the correction unit 16 previously prepared. It is.
次に、図6を用いて本発明の第五の実施形態を説明する。この実施形態は前述の第一の実施形態における電圧供給手段202とは別に、電源供給手段601を加えたものであり、その余は同じ構成を採る。即ち、電源部10から差動増幅器201を介してブリッジへ供給すべき電流が不足する場合(例えば、フローセンサチップ上に発熱抵抗素子RHを有せず、感温抵抗素子Ru,Rdの自己発熱を利用する場合)、別の電源供給手段601から電流制限抵抗素子を介してブリッジの給電端へ電流を供給する。尚、流れ検出機能および温度検出機能は第一の実施形態とほぼ同様であるので、詳述を省略する。 Next, a fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, a power supply unit 601 is added in addition to the voltage supply unit 202 in the first embodiment, and the rest of the configuration is the same. That is, when the current to be supplied from the power supply unit 10 to the bridge via the differential amplifier 201 is insufficient (for example, the flow sensor chip does not have the heating resistor element RH and the self-heating of the temperature-sensitive resistor elements Ru and Rd). In this case, a current is supplied from another power supply means 601 to the power supply end of the bridge via the current limiting resistance element. Since the flow detection function and the temperature detection function are substantially the same as those in the first embodiment, detailed description thereof is omitted.
上記においては、感温抵抗素子Ru,Rdの抵抗値が流れに対して逆に変化する(Ruが減少すると共にRdが増加する)ものとして説明したが、これに限定されない。例えば流れに応じて抵抗値Ru,Rdが共に増加するが、Ruの変化が小さく、Rdの変化が大きいものであっても構わない。要するに抵抗値RuとRdとが流れに対して同様に変化するものでなく、且つ両者を比較して検出可能なだけの有意な差異が生じる(即ち、有意な相関係数の差を生じる)ものであれば本発明の技術的範囲に属する。 In the above description, the resistance values of the temperature-sensitive resistance elements Ru and Rd change in reverse with respect to the flow (Ru decreases and Rd increases), but the present invention is not limited to this. For example, the resistance values Ru and Rd both increase according to the flow, but the change in Ru may be small and the change in Rd may be large. In short, the resistance values Ru and Rd do not change in the same way with respect to the flow, and a significant difference that can be detected by comparing the two is produced (that is, a significant correlation coefficient difference is generated). If so, it belongs to the technical scope of the present invention.
尚、上述においては説明を簡単にするために感温部が二つの感温抵抗素子Ru,Rdで構成されているものとしたが、これに限定されるものではない。例えば複数の素子が直列あるいは並列に接続されて一体として感温抵抗素子Ru相当の構成をなし、複数の素子が直列あるいは並列に接続されて一体として感温抵抗素子Rd相当の構成をなすものであっても、これらが電気抵抗変化を呈する対として機能するものであれば本発明の技術的範囲に属する。 In the above description, for the sake of simplicity, it is assumed that the temperature sensing part is composed of two temperature sensing resistance elements Ru and Rd, but the present invention is not limited to this. For example, a plurality of elements are connected in series or in parallel to form a structure equivalent to the temperature-sensitive resistance element Ru, and a plurality of elements are connected in series or in parallel to form a structure equivalent to the temperature-sensitive resistance element Rd. Even if they exist, they function as a pair exhibiting a change in electrical resistance, and belong to the technical scope of the present invention.
また本発明は装置の簡素化を旨とするものであるが、本発明にフローセンサチップ上に設けられる周囲温度検出用の感温抵抗素子(特許文献1の基準抵抗RRに相当するもの)を併用することを否定するものではない。即ち、前述の図7に示すフローセンサチップに本発明を適用すると共に周囲温度検出用の感温抵抗素子を用いれば、感温部の周囲温度の情報を感温抵抗素子Ru,Rdから得ると共に、感温部から離れた位置の周囲温度の情報を周囲温度検出用の感温抵抗素子から得ることができる。これにより更に安定した測定を行うべく、二つの周囲温度の差が最も小さくなるようなフローセンサチップの設置位置を見出したり、より高精度な測定を行うために二つの周囲温度情報を用いて測定値を補正したりすることが可能である。このような実施形態も本発明の技術的範囲に属する。 Further, the present invention is intended to simplify the apparatus, but a temperature-sensitive resistance element for detecting ambient temperature (corresponding to the reference resistance RR of Patent Document 1) provided on the flow sensor chip according to the present invention is provided. It is not a denial to use together. That is, if the present invention is applied to the flow sensor chip shown in FIG. 7 and a temperature-sensitive resistance element for detecting ambient temperature is used, information on the ambient temperature of the temperature-sensing part is obtained from the temperature-sensitive resistance elements Ru and Rd. Information on the ambient temperature at a position away from the temperature sensing unit can be obtained from the temperature sensing resistor element for ambient temperature detection. This makes it possible to find the installation position of the flow sensor chip so that the difference between the two ambient temperatures is the smallest in order to perform more stable measurement, or to measure using the two ambient temperature information for more accurate measurement. It is possible to correct the value. Such an embodiment also belongs to the technical scope of the present invention.
更に前述の実施形態においては図7に示すようなフローセンサチップを例示して説明したが、流体の流れに応じて電気抵抗が変化する対を備えるものであればこれに限らない。例えば流路から分岐させて設けられた細径のバイパス流路にTCRの大きい金属線を巻きつけて感温抵抗素子を形成した構成のもの(いわゆるキャピラリ・チューブ型)であっても本発明の技術的範囲に属する。 Furthermore, in the above-described embodiment, the flow sensor chip as illustrated in FIG. 7 has been described as an example. However, the present invention is not limited to this as long as it includes a pair whose electric resistance changes according to the flow of fluid. For example, even a configuration (so-called capillary tube type) in which a temperature sensitive resistance element is formed by winding a metal wire having a large TCR around a small bypass channel provided by branching from a channel is used. Belongs to the technical scope.
要するに本発明の主旨を損なわずになされた種々の変形は、依然として本発明の技術的範囲に属するものである。 In short, various modifications made without impairing the gist of the present invention still belong to the technical scope of the present invention.
1 フローセンサチップ
2 感温部
3 基準電圧部
4 電源部
5 流れ検出部
6 本体
7 流路
8 回路基板
9 電源端子
10 交流直流変換部
11 ヒータ駆動部
12 センサ駆動部
13 電圧保持部
14 処理部
15 温度検出部
16 補正部
17 インターフェース部
201 差動増幅器
202 レファレンス電圧供給手段
302 感温部
303 基準電圧部
405 流れ検出部
502 感温部
503 基準電圧部
601 電源供給手段
DESCRIPTION OF SYMBOLS 1 Flow sensor chip 2 Temperature sensing part 3 Reference voltage part 4 Power supply part 5 Flow detection part 6 Main body 7 Flow path 8 Circuit board 9 Power supply terminal 10 AC / DC conversion part 11 Heater drive part 12 Sensor drive part 13 Voltage holding part 14 Processing part DESCRIPTION OF SYMBOLS 15 Temperature detection part 16 Correction | amendment part 17 Interface part 201 Differential amplifier 202 Reference voltage supply means 302 Temperature sensing part 303 Reference voltage part 405 Flow detection part 502 Temperature sensing part 503 Reference voltage part 601 Power supply means
Claims (3)
前記感温部への給電の状態に基づいて前記感温部の温度に応じた温度信号を出力する温度検出部を有し、
前記温度検出部は、
電源端子、反転入力端子、非反転入力端子および出力端子を有し、この出力端子から前記温度信号を出力すると共に前記感温部の給電端に給電する差動増幅器と、
前記差動増幅器の非反転入力端子に基準電圧を供給する基準電圧供給部と、
その一端を前記差動増幅器の出力端子に接続され、他端を前記差動増幅器の反転入力端子および前記感温部の給電端に接続された帰還抵抗器とを備えることを特徴とする流れ検出装置。 A temperature sensing unit that causes a change in electrical resistance in response to a change in temperature distribution caused by a fluid flow, a power supply unit that supplies power to the temperature sensing unit, and a flow detection unit that outputs a flow signal corresponding to the flow The temperature sensing part includes a pair of parts whose electrical resistances change so as to produce a significant correlation coefficient difference according to the flow, and the flow detection part comprises the electrical resistance of the pair In the flow detection device that detects the flow from the state of
Have a temperature detecting section for outputting a temperature signal corresponding to the temperature of the temperature sensing unit based on the state of the power supply to the temperature sensing portion,
The temperature detector is
A differential amplifier that has a power supply terminal, an inverting input terminal, a non-inverting input terminal, and an output terminal, and outputs the temperature signal from the output terminal and feeds power to the feeding end of the temperature sensing unit;
A reference voltage supply unit for supplying a reference voltage to a non-inverting input terminal of the differential amplifier;
A flow detection device comprising: a feedback resistor having one end connected to the output terminal of the differential amplifier and the other end connected to an inverting input terminal of the differential amplifier and a power supply end of the temperature sensing unit. apparatus.
更に前記温度信号を用いて前記流れ信号を補正する補正部を有することを特徴とする流れ検出装置。 The flow detection device according to claim 1 or 2 ,
The flow detection apparatus further includes a correction unit that corrects the flow signal using the temperature signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171393A JP5062720B2 (en) | 2006-06-21 | 2006-06-21 | Flow detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171393A JP5062720B2 (en) | 2006-06-21 | 2006-06-21 | Flow detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008002887A JP2008002887A (en) | 2008-01-10 |
JP5062720B2 true JP5062720B2 (en) | 2012-10-31 |
Family
ID=39007405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006171393A Active JP5062720B2 (en) | 2006-06-21 | 2006-06-21 | Flow detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5062720B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884597B (en) * | 2016-09-30 | 2019-11-08 | 比亚迪股份有限公司 | Velocity measuring device, method and vehicle speed measurement system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06117896A (en) * | 1992-10-07 | 1994-04-28 | Hitachi Ltd | Multifunctional air flowmeter |
JPH0835869A (en) * | 1994-07-25 | 1996-02-06 | Hitachi Ltd | Air flowmeter |
JP4258080B2 (en) * | 1999-11-26 | 2009-04-30 | 株式会社デンソー | Flow sensor |
JP4037723B2 (en) * | 2002-09-26 | 2008-01-23 | 株式会社山武 | Thermal flow meter |
-
2006
- 2006-06-21 JP JP2006171393A patent/JP5062720B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008002887A (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080066541A1 (en) | Universal Sensor Controller for a Thermal Anemometer | |
JP2631481B2 (en) | Mass flow meter and its measurement method | |
EP2924405B1 (en) | Intake air temperature sensor and flow measurement device | |
WO2000065315A1 (en) | Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement | |
CN111542760B (en) | System and method for correcting current value of shunt resistor | |
US8874387B2 (en) | Air flow measurement device and air flow correction method | |
JP5450204B2 (en) | Flowmeter | |
CN100472182C (en) | flow measuring device | |
JP3726261B2 (en) | Thermal flow meter | |
JP5062720B2 (en) | Flow detection device | |
JP6460911B2 (en) | Thermal mass flow controller and tilt error improving method thereof | |
JP4037723B2 (en) | Thermal flow meter | |
JP5221182B2 (en) | Thermal flow meter | |
JP2007285849A (en) | Gas concentration detector | |
JP5511120B2 (en) | Gas concentration detector | |
JP2019066253A (en) | Flow rate measuring device | |
JP6200896B2 (en) | Anemometer | |
JP2879256B2 (en) | Thermal flow meter | |
JP3470942B2 (en) | Flow sensor | |
JP3991161B2 (en) | Flow rate sensor | |
KR20020080137A (en) | Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it | |
JP3019009U (en) | Mass flow meter | |
JP4801501B2 (en) | Thermal flow meter | |
JP4089657B2 (en) | Air flow sensor | |
JP4904008B2 (en) | Thermal flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120801 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5062720 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |