[go: up one dir, main page]

JP5055062B2 - Wiring board manufacturing method and wiring board material - Google Patents

Wiring board manufacturing method and wiring board material Download PDF

Info

Publication number
JP5055062B2
JP5055062B2 JP2007208152A JP2007208152A JP5055062B2 JP 5055062 B2 JP5055062 B2 JP 5055062B2 JP 2007208152 A JP2007208152 A JP 2007208152A JP 2007208152 A JP2007208152 A JP 2007208152A JP 5055062 B2 JP5055062 B2 JP 5055062B2
Authority
JP
Japan
Prior art keywords
wiring board
conductive layer
insulating substrate
board material
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007208152A
Other languages
Japanese (ja)
Other versions
JP2009043986A (en
Inventor
浩樹 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007208152A priority Critical patent/JP5055062B2/en
Publication of JP2009043986A publication Critical patent/JP2009043986A/en
Application granted granted Critical
Publication of JP5055062B2 publication Critical patent/JP5055062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、特にフレキシブル配線基板の平坦性を維持して微細化処理を施すのに好適な配線基板の製造方法及び配線基板材に関する。   The present invention relates to a method for manufacturing a wiring board and a wiring board material that are particularly suitable for performing a miniaturization process while maintaining flatness of a flexible wiring board.

近年、携帯電話や各種デジタル電子機器等の小型化及び多機能化の要求が高まるに伴い、この機器に使用される半導体IC素子などの電子部品並びにこのような部品が実装されるプリント配線基板の小型化、多機能化及びパターン化導電層の微細化もまた強く要求されている。   In recent years, as the demand for miniaturization and multi-functionality of mobile phones and various digital electronic devices has increased, electronic components such as semiconductor IC elements used in such devices and printed wiring boards on which such components are mounted There is also a strong demand for miniaturization, multifunctionalization, and miniaturization of patterned conductive layers.

また、配線基板の製造に当たっては、パターン化導電層の微細化に限らず、層間接続のための微細なビアホールや導電ビア形成などに必要な様々な処理技術が採用されている。そして、前記処理技術に関連する従来技術としては例えば特許文献1〜3がある。   In manufacturing the wiring board, not only the patterned conductive layer is miniaturized, but also various processing techniques necessary for forming fine via holes and conductive vias for interlayer connection are employed. And as a prior art relevant to the said processing technique, there exist patent documents 1-3, for example.

特許文献1は、被処理物である基板に設けられたスルーホール或いはビアホールへ絶縁性樹脂或いは導電性樹脂を充填する際に、真空雰囲気中で前記樹脂を孔版印刷することにより、前記樹脂充填の際の空気の巻き込みやホール内への未充填を抑制する技術を提供している。   In Patent Document 1, when filling an insulating resin or a conductive resin into a through hole or a via hole provided on a substrate as an object to be processed, the resin filling is performed by stencil printing the resin in a vacuum atmosphere. Technology is provided to suppress air entrainment and unfilled holes.

そして、特許文献2は、電気部品の外囲器形成のための樹脂封止を行う際に、真空雰囲気中で電気部品の表面に樹脂を孔版印刷することによって、気泡を含まない型くずれのない封止樹脂層を形成する技術を提供している。   Patent Document 2 discloses that when resin sealing for forming an envelope of an electrical component is performed, the resin is stencil-printed on the surface of the electrical component in a vacuum atmosphere, so that there is no loss of mold without bubbles. A technology for forming a stop resin layer is provided.

更に、特許文献3は、片面に配線導電層パターンが形成された絶縁基板の一部に貫通孔(ビアホール)を形成し、絶縁基板の他面から層間接続のための導電性ペーストを印刷して前記貫通孔に充填した配線基板材や配線基板を作製する技術を提供している。   Furthermore, Patent Document 3 forms a through hole (via hole) in a part of an insulating substrate having a wiring conductive layer pattern formed on one side, and prints a conductive paste for interlayer connection from the other side of the insulating substrate. A technique for producing a wiring board material or a wiring board filled in the through hole is provided.

そこで、本発明者は、一例として、特許文献3に示されているような導電性ペーストの印刷による貫通孔への充填処理を、特許文献1、2に示されているような真空雰囲気中で行い、前記導電性ペーストのビアホールへの未充填や気泡混入を防止することを考えた。   Therefore, the present inventor, as an example, performs the filling process to the through holes by printing the conductive paste as shown in Patent Document 3 in a vacuum atmosphere as shown in Patent Documents 1 and 2. It was considered to prevent unfilling of the conductive paste into the via holes and preventing bubbles from being mixed.

次に、本発明者の前述の考えに基づく従来技術の一例について、図4を参照して説明する。図4(a)は配線基板材40を示す概略斜視図である。図4(b)は配線基板材40の製造方法を説明するための概略図であり、その一部が断面で示された側面図である。   Next, an example of the prior art based on the above-mentioned idea of the present inventor will be described with reference to FIG. FIG. 4A is a schematic perspective view showing the wiring board material 40. FIG. 4B is a schematic view for explaining a method of manufacturing the wiring board material 40, and is a side view partially showing a cross section.

即ち、配線基板材40は、例えばポリイミド樹脂フィルムからなるフレキシブルな絶縁基板41及び前記絶縁基板41の一方の面(図4(a)では上面)に形成されたパターン化導電層42を有している。前記パターン化導電層42は、中央部に形成され矩形状に示された第1導電層領域42a、その周囲を離間して取り囲み矩形枠状に示された第2導電層領域42b及びこれら第1、第2導電層領域42a、42b相互間に形成された閉ループ孔(隙間)42cを有する。   That is, the wiring board material 40 includes a flexible insulating substrate 41 made of, for example, a polyimide resin film, and a patterned conductive layer 42 formed on one surface (the upper surface in FIG. 4A) of the insulating substrate 41. Yes. The patterned conductive layer 42 includes a first conductive layer region 42a formed in a central portion and shown in a rectangular shape, a second conductive layer region 42b shown in a rectangular frame shape surrounding the first conductive layer region 42a and the first conductive layer region 42a. And a closed loop hole (gap) 42c formed between the second conductive layer regions 42a and 42b.

前記第1、第2導電層領域42a、42bは単に矩形状に示されているが、実際には回路機能に応じて様々な複雑な形態の配線パターン形状とされている。また、第2導電層領域42bは、ここでは、電気的ノイズ除去用のシールド層や配線基板材の寸法安定化用の剛性体としての機能のために矩形枠状のパターンをもって形成されている。   The first and second conductive layer regions 42a and 42b are simply shown in a rectangular shape, but in actuality, they have various complicated wiring pattern shapes depending on the circuit function. Here, the second conductive layer region 42b is formed with a rectangular frame-like pattern in order to function as a shield layer for removing electrical noise or a rigid body for stabilizing the dimensions of the wiring board material.

そこで、図4(b)に示すように、真空雰囲気を形成するケーシング(図示せず)内に設置された平坦表面を有する処理ステージ43上面に、前記パターン化導電層42が直接重なるようにして、配線基板材40が載置される。このとき、前記絶縁基板41の一対の側面41a、41bは図4(a)、(b)に示した関係の向きとされている。   Therefore, as shown in FIG. 4B, the patterned conductive layer 42 directly overlaps the upper surface of the processing stage 43 having a flat surface installed in a casing (not shown) that forms a vacuum atmosphere. The wiring board material 40 is placed. At this time, the pair of side surfaces 41a and 41b of the insulating substrate 41 are oriented in the relationship shown in FIGS. 4 (a) and 4 (b).

次に、真空雰囲気中において、前記絶縁基板41の上面側で、スキージSにより導電性ペースト材Pをスキージング印刷することによって、前記絶縁基板41の貫通孔VHに前記導電性ペースト材Pを充填し、層間導電ビア44が形成される。   Next, the conductive paste material P is filled in the through holes VH of the insulating substrate 41 by squeezing the conductive paste material P with a squeegee S on the upper surface side of the insulating substrate 41 in a vacuum atmosphere. Then, an interlayer conductive via 44 is formed.

ところが、このような真空雰囲気での印刷処理中に、前記閉ループ孔42cが前記処理ステージ43の平坦面によって塞がれて密閉空間が形成される。そのために、その空間と周囲の真空雰囲気との間に差圧が生じ、空間に残留する密閉空気が膨らんで前記絶縁基板41に部分的な膨出変形、即ち、折れ皺45を生じさせ、絶縁基板41を含む配線基板材40全体の平坦性を阻害するという問題がある。
特許第3260347号登録公報 特公平6―66350号公告公報 特開2003―332747号公開公報
However, during the printing process in such a vacuum atmosphere, the closed loop hole 42c is blocked by the flat surface of the processing stage 43 to form a sealed space. Therefore, a differential pressure is generated between the space and the surrounding vacuum atmosphere, and the sealed air remaining in the space swells to cause a partial bulging deformation in the insulating substrate 41, that is, a fold 45, and insulation. There is a problem that the flatness of the entire wiring board material 40 including the board 41 is hindered.
Patent No. 3260347 registration gazette Japanese Examined Patent Publication No. 6-66350 Japanese Unexamined Patent Publication No. 2003-332747

本発明は、前記従来の問題点を解決するものであり、特にフレキシブル配線基板の平坦性を維持して微細化処理を施すのに好適な配線基板の製造方法及び配線基板材を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and particularly provides a method for manufacturing a wiring board and a wiring board material suitable for performing a miniaturization process while maintaining the flatness of the flexible wiring board. Objective.

請求項1に記載の本発明は、絶縁基板の一方の面に閉ループ孔を有するパターン化導電層が設けられた配線基板材の前記絶縁基板の他方の面側に処理工程を施す配線基板の製造方法であって、(A)前記配線基板材のパターン化導電層に、前記閉ループ孔に連通し前記絶縁基板周縁に通じる溝部を形成する工程と、(B)前記配線基板材を、前記パターン化導電層が平坦表面を有する処理ステージ表面上に接するように配置する工程と、(C)真空雰囲気中において、前記絶縁基板の他方の面側に処理を施す工程とを備えていることを特徴とする。   According to the first aspect of the present invention, there is provided a method of manufacturing a wiring substrate in which a processing step is performed on the other surface side of the insulating substrate of a wiring substrate material provided with a patterned conductive layer having a closed loop hole on one surface of the insulating substrate. (A) forming a groove in the patterned conductive layer of the wiring board material in communication with the closed loop hole and leading to the periphery of the insulating substrate; and (B) patterning the wiring board material. And a step of arranging the conductive layer so as to be in contact with the surface of the processing stage having a flat surface, and (C) a step of performing processing on the other surface side of the insulating substrate in a vacuum atmosphere. To do.

請求項2に記載の本発明は、請求項1に記載の配線基板の製造方法において、前記配線基板材の絶縁基板には、予め前記パターン導電層の一部に達するビアホールが形成され、前記(C)工程における処理工程は、前記絶縁基板の他方の面側に導電性ペースト印刷を施して、前記導電性ペーストを前記ビアホールに充填することによって層間導電ビアを形成する工程であることを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a wiring board according to the first aspect, a via hole reaching a part of the pattern conductive layer is formed in the insulating substrate of the wiring board material in advance. The processing step in step C) is a step of forming an interlayer conductive via by performing conductive paste printing on the other surface side of the insulating substrate and filling the via hole with the conductive paste. To do.

請求項3に記載の本発明は、請求項1または請求項2に記載の配線基板の製造方法において、前記溝部は、前記閉ループ孔に連通する方向に対して垂直な断面積が200μm以上であることを特徴とする。 According to a third aspect of the present invention, in the method for manufacturing a wiring board according to the first or second aspect, the groove portion has a cross-sectional area perpendicular to a direction communicating with the closed loop hole of 200 μm 2 or more. It is characterized by being.

請求項4に記載の本発明の配線基板材は、絶縁基板と、前記絶縁基板の一方の面に形成された閉ループ孔を有するパターン化導電層と、前記パターン化導電層に形成され前記閉ループ孔に連通し前記絶縁基板周縁に通じる溝部と、前記絶縁基板に貫通形成され前記パターン化導電層の一部に達し前記絶縁基板の他方の面側に開口するビアホールとを備え、前記パターン化導電層は、第1導電層領域と、前記第1導電層領域の周囲を離間して囲む第2導電層領域と、第1導電層領域と前記第2導電層領域との間に形成された前記閉ループ孔と、を有し、前記溝部は、前記第2導電層領域に設けられ、前記絶縁基板に接する側に導電層部分を残して形成されていることを特徴とする。 The wiring board material of the present invention according to claim 4 is an insulating substrate, a patterned conductive layer having a closed loop hole formed on one surface of the insulating substrate, and the closed loop hole formed in the patterned conductive layer. It includes a groove communicating with the insulating substrate peripheral communication, and a via hole opening on the other surface of the insulating substrate formed through reaches a portion of the patterned conductive layer on the insulating substrate, the patterned conductive layer The closed loop formed between the first conductive layer region, the second conductive layer region surrounding the first conductive layer region with a space therebetween, and the first conductive layer region and the second conductive layer region. And the groove is provided in the second conductive layer region and is formed leaving a conductive layer portion on a side in contact with the insulating substrate .

請求項5に記載の本発明は、請求項4に記載の配線基板材において、更に、前記ビアホール内に導電性ペーストを充填して形成された層間導電ビアを有することを特徴とする。   The invention according to claim 5 is the wiring board material according to claim 4, further comprising an interlayer conductive via formed by filling the via hole with a conductive paste.

請求項6に記載の本発明は、請求項4または請求項5に記載の配線基板材において、前記溝部は、前記閉ループ孔に連通する方向に対して垂直な断面積が200μm以上であることを特徴とする。 According to a sixth aspect of the present invention, in the wiring board material according to the fourth or fifth aspect, the groove portion has a cross-sectional area perpendicular to a direction communicating with the closed loop hole of 200 μm 2 or more. It is characterized by.

本発明の配線基板の製造方法によれば、配線基板材の閉ループ孔を有するパターン化導電層に、前記閉ループ孔に連通し前記絶縁基板の周縁に通じる溝部が形成されているために、真空雰囲気での処理工程中に、前記閉ループ孔における空間(隙間)が、これに連通する溝部の存在によって、配線基板材の周囲との関係において差圧が抑制される。その結果、前記絶縁基板を含む配線基板材が折れ皺のない平坦性を維持して微細化処理を遂行できるという効果を奏することができる。   According to the method of manufacturing a wiring board of the present invention, the patterned conductive layer having the closed loop hole of the wiring board material is formed with the groove portion that communicates with the closed loop hole and communicates with the peripheral edge of the insulating substrate. During the processing step, the differential pressure is suppressed in relation to the periphery of the wiring board material due to the presence of the groove portion communicating with the space (gap) in the closed loop hole. As a result, it is possible to achieve an effect that the wiring substrate material including the insulating substrate can perform a miniaturization process while maintaining flatness without creases.

以下、本発明の配線基板の製造方法及び配線基板材の実施形態を説明するために、図1及び図2にそれぞれ示された実施例1及び実施例2について順次説明する。   Hereinafter, Example 1 and Example 2 shown in FIG. 1 and FIG. 2 will be sequentially described in order to describe an embodiment of a method of manufacturing a wiring board and a wiring board material according to the present invention.

(実施例1):
図1(a)に示すように、配線基板材1は、例えばポリイミド樹脂或いは液晶ポリマーなどからなるフレキシブルフィルム製の絶縁基板2及び前記絶縁基板2の一方の面(図1(a)では上面)に形成された例えば銅箔製のパターン化導電層3を有している。前記パターン化導電層3は、中央部に形成され矩形状に示された第1導電層領域3a、その周囲を離間して取り囲み矩形枠状に示された第2導電層領域3b、これら第1、第2導電層領域3a、3b相互間に形成された閉ループ孔(隙間)3c、前記第2導電層領域3bの矩形枠の一部に形成された溝部3d、及び前記絶縁基板2の一部を貫通するビアホールVH(図1(b)参照)を有する。
(Example 1):
As shown in FIG. 1A, a wiring board material 1 includes a flexible film insulating substrate 2 made of, for example, polyimide resin or liquid crystal polymer, and one surface of the insulating substrate 2 (upper surface in FIG. 1A). The patterned conductive layer 3 made of, for example, copper foil is formed. The patterned conductive layer 3 includes a first conductive layer region 3a formed in a central portion and shown in a rectangular shape, a second conductive layer region 3b shown in a rectangular frame shape surrounding and surrounding the first conductive layer region 3a. , A closed loop hole (gap) 3c formed between the second conductive layer regions 3a and 3b, a groove 3d formed in a part of a rectangular frame of the second conductive layer region 3b, and a part of the insulating substrate 2 Via hole VH (see FIG. 1B).

前記パターン化導電層3は、図1において模式図或いは概略図として示されていて、前記第1導電層領域3aは、単に矩形状に示されているが、実際には回路機能に応じて様々な形態の配線パターン形状を有する回路配線のメインパターン領域を構成していて、多数の回路ブロックに応じた回路面付け数をもってパターンニングされている。また、第2導電層領域3bは、ここでは、電気的ノイズ除去用のシールド層や配線基板材の寸法安定化用の剛性体としての機能を果たす目的のものであり、比較的シンプルなパターン形状とされている。   The patterned conductive layer 3 is shown as a schematic diagram or schematic diagram in FIG. 1, and the first conductive layer region 3a is simply shown in a rectangular shape. The main pattern region of the circuit wiring having a wiring pattern shape of various forms is configured, and is patterned with the number of circuit impositions corresponding to a large number of circuit blocks. In addition, the second conductive layer region 3b is intended here to serve as a shield layer for removing electrical noise and a rigid body for stabilizing the dimensions of the wiring board material, and has a relatively simple pattern shape. It is said that.

前記溝部3dは、前記閉ループ孔3cに連通し前記絶縁基板2の周縁に通じるように設けられており、前記第2導電層領域3bの一部を例えば選択的化学エッチング或いはレーザ加工などにより全層厚分まで除去することによって形成されている。なお、前記溝部3dの形成により、前記閉ループ孔3cは完全な閉ループではなくなるが、大略的な形態をとる閉ループをも含む意味として表現されている。   The groove portion 3d is provided so as to communicate with the closed loop hole 3c and to the peripheral edge of the insulating substrate 2, and a part of the second conductive layer region 3b is formed on the entire layer by, for example, selective chemical etching or laser processing. It is formed by removing to a thickness. In addition, although the said closed loop hole 3c is not a complete closed loop by formation of the said groove part 3d, it is expressed as the meaning also including the closed loop which takes a general form.

前記ビアホールVHは、前記絶縁基板2の一部に、例えばレーザ加工或いはドリル加工などにより貫通形成され、前記絶縁基板2の一方の面において、前記パターン化導電層3の内面に達して塞がれた状態にあり、前記絶縁基板2の他方の面側において、開口する状態とされている(図1(b)参照)。   The via hole VH is formed through a part of the insulating substrate 2 by, for example, laser processing or drilling, and is blocked by reaching one surface of the insulating substrate 2 to the inner surface of the patterned conductive layer 3. In this state, an opening is formed on the other surface side of the insulating substrate 2 (see FIG. 1B).

そこで、図1(b)に示すように、真空雰囲気を形成するケーシング(図示せず)内に設置された平坦表面を有する処理ステージ4上面に、前記パターン化導電層3が直接重なるようにして、配線基板材1が載置される。このとき、図1(b)に示すように、前記絶縁基板2の一対の側面2a、2bが、それぞれ左右に位置するような向きとされている。なお、図1(b)の断面部分は、前記溝部3dの溝きり中心線に沿う方向の断面として示されている。   Therefore, as shown in FIG. 1B, the patterned conductive layer 3 directly overlaps the upper surface of the processing stage 4 having a flat surface installed in a casing (not shown) that forms a vacuum atmosphere. The wiring board material 1 is placed. At this time, as shown in FIG. 1 (b), the pair of side surfaces 2a, 2b of the insulating substrate 2 are oriented so as to be located on the left and right, respectively. In addition, the cross-sectional part of FIG.1 (b) is shown as a cross section of the direction along the grooved centerline of the said groove part 3d.

次に、真空雰囲気中において、前記絶縁基板2の上面側で、スキージSにより導電性ペースト材Pをスキージング印刷処理することによって、前記絶縁基板2のビアホールVHに前記導電性ペースト材Pを充填し、層間導電ビア5が形成される。なお、前記ビアホールVH及び導電ビア5は、図1(b)において各々1個のみが図示されているが、実際には、前記パターン化導電層3との関係において多数存在している。   Next, the conductive paste material P is filled in the via hole VH of the insulating substrate 2 by performing squeegee printing on the conductive paste material P with a squeegee S on the upper surface side of the insulating substrate 2 in a vacuum atmosphere. Then, the interlayer conductive via 5 is formed. Although only one via hole VH and conductive via 5 are shown in FIG. 1B, there are actually many via holes VH and conductive vias 5 in relation to the patterned conductive layer 3.

前記導電性ペースト材Pは、例えば第1の金属成分として、ニッケル、銀及び銅の群から選択された少なくとも1種類の低電気抵抗で良好な導熱性の金属粒子と、第2の金属成分として、錫、ビスマス、インジウム及び鉛の群から選択された少なくとも1種類の低融点金属粒子とを含み、エポキシ樹脂を主成分とするバインダ成分を混合したペーストで構成されている。このような導電性ペーストは、常温で、未硬化或いは半硬化の軟質状態にあり、例えば加熱プレス工程におけるような熱処理により熱硬化すると共に接着機能を果たす導電性材料である。前記処理ステージ4は、処理テーブル或いは処理台と称してもよく、この実施例では印刷ステージと称することもできる。   The conductive paste material P includes, for example, as a first metal component, at least one kind of low electrical resistance and good heat conductive metal particles selected from the group of nickel, silver and copper, and as a second metal component , Tin, bismuth, indium and lead, and at least one kind of low-melting-point metal particles. The paste is composed of a binder component mainly composed of an epoxy resin. Such a conductive paste is in an uncured or semi-cured soft state at room temperature, and is a conductive material that is thermally cured by heat treatment such as in a hot press process and performs an adhesive function. The processing stage 4 may be referred to as a processing table or a processing table, and in this embodiment can also be referred to as a printing stage.

ところで、積層配線基板を作製する場合は、前述のように前記導電ビア5が形成された複数枚の配線基板材1を重ね合わせ、例えば一括して加熱プレスすることによって一体的に積層される。また、2層配線基板を作製する場合には、前記配線基板材1の絶縁基板2の上面にも例えば銅箔製の導電層を張り合わせ、その導電層に所定の配線パターンニングを施せばよい。   By the way, when producing a laminated wiring board, as described above, a plurality of wiring board materials 1 on which the conductive vias 5 are formed are overlapped and integrally laminated by, for example, batch pressing. When a two-layer wiring board is manufactured, a conductive layer made of, for example, copper foil may be bonded to the upper surface of the insulating substrate 2 of the wiring board material 1 and predetermined wiring patterning may be applied to the conductive layer.

実施例1に係る配線基板の製造方法及びこれに用いる配線基板材によれば、真空雰囲気中で前記導電性ペーストのビアホールVHへの充填が行われるために、気泡や未充填の発生が防止された微細な導電ビア5を形成することができる。   According to the method for manufacturing a wiring board and the wiring board material used therefor according to Example 1, since the conductive paste is filled into the via hole VH in a vacuum atmosphere, generation of bubbles and unfilling is prevented. A fine conductive via 5 can be formed.

また、前記配線基板材1の前記パターン化導電層3の表面が処理ステージ4の平坦表面に密着され、前記閉ループ孔3cに対応する空間(隙間)に、当初、存在する空気が前記溝部3dを通じて排気され、配線基板材の周囲との関係において差圧が抑制またはなくなる。その結果、前記絶縁基板を含む配線基板材が折れ皺のない平坦性を維持することができる。従って、前記スキージング印刷操作が円滑に行われ、導電性ペーストがビアホールVHへ確実に充填されて微細化された導電ビア5の形成が得られる。   Further, the surface of the patterned conductive layer 3 of the wiring board material 1 is in close contact with the flat surface of the processing stage 4, and air initially present in the space (gap) corresponding to the closed loop hole 3c passes through the groove 3d. The pressure difference is suppressed or eliminated in relation to the periphery of the wiring board material. As a result, the wiring board material including the insulating substrate can maintain flatness without creases. Therefore, the squeezing printing operation is smoothly performed, and the conductive paste 5 is surely filled into the via hole VH, so that the conductive via 5 can be formed finely.

また、配線基板材1の前記パターン化導電層3上に電子部品を実装する際などの実装リフローの熱処理時に熱応力分布の関係で、矩形枠状の前記第2導電層領域3bの存在により、配線基板材1に反りを生じる虞が考えられるが、前記第2導電層領域3bに形成された溝部3dがその熱応力を吸収して配線基板材の反りを抑制することがある。   In addition, due to the thermal stress distribution during heat treatment for mounting reflow such as when electronic components are mounted on the patterned conductive layer 3 of the wiring board material 1, due to the presence of the second conductive layer region 3b having a rectangular frame shape, Although it is conceivable that the wiring board material 1 may be warped, the groove 3d formed in the second conductive layer region 3b may absorb the thermal stress and suppress the warping of the wiring board material.

(実施例2):
次に、本発明の実施例2に係る配線基板の製造方法及び配線基板材について、図2を参照して説明する。ここで、前記実施例1及び図1に示された部材と同様な部分には同一符号を付して、その詳細な説明を省略する。
(Example 2):
Next, a method for manufacturing a wiring board and a wiring board material according to Embodiment 2 of the present invention will be described with reference to FIG. Here, the same parts as those shown in the first embodiment and FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

即ち、図2(a)に示すように、配線基板材10は、フレキシブルフィルム製の絶縁基板2及びその絶縁基板2上面に形成された銅箔製のパターン化導電層31を有している。前記パターン化導電層31は、中央部に形成され矩形状に示された第1導電層領域3a、その周囲を離間して取り囲み矩形枠状に示された第2導電層領域3b1、これら第1、第2導電層領域3a、3b1相互間に形成された閉ループ孔(隙間)3c、前記第2導電層領域3b1の矩形枠の一部に形成された溝部3d1、及び前記絶縁基板2の一部を貫通するビアホールVH(図2(b)参照)を有する。   That is, as shown in FIG. 2A, the wiring board material 10 includes an insulating substrate 2 made of a flexible film and a patterned conductive layer 31 made of copper foil formed on the upper surface of the insulating substrate 2. The patterned conductive layer 31 includes a first conductive layer region 3a formed in the center and shown in a rectangular shape, a second conductive layer region 3b1 shown in a rectangular frame shape surrounding the first conductive layer region 3a. , A closed loop hole (gap) 3c formed between the second conductive layer regions 3a and 3b1, a groove 3d1 formed in a part of a rectangular frame of the second conductive layer region 3b1, and a part of the insulating substrate 2 Via hole VH (see FIG. 2B).

そして、前記溝部3d1は、前記第2導電層領域3b1の絶縁基板2に接する側に薄い導電層部分3b2を残す深さで形成されている。従って、前記導電層部分3b2の存在により、前記第2導電層領域3b1は、電気的に完全な閉ループによる電気的ノイズ除去のためのシールド機能を果たすことができる。また、前記導電層部分3b2の存在により、配線基板材の寸法安定化が実施例1の場合よりも得やすく、電子部品実装時のリフロー熱処理の際の熱応力歪みを軽減し、配線基板材10の反りを抑えやすいこともある。   The groove 3d1 is formed to a depth that leaves a thin conductive layer portion 3b2 on the side of the second conductive layer region 3b1 in contact with the insulating substrate 2. Therefore, due to the presence of the conductive layer portion 3b2, the second conductive layer region 3b1 can perform a shielding function for removing electrical noise by an electrically complete closed loop. In addition, the presence of the conductive layer portion 3b2 makes it easier to obtain dimensional stabilization of the wiring board material than in the first embodiment, reduces thermal stress distortion during reflow heat treatment during electronic component mounting, and reduces the wiring board material 10 It may be easy to suppress warping.

前記パターン化導電層31のパーターニング、前記溝部3d1やビヤホールVHの形成手法などは前記実施例1の場合と同様である。また、図2(b)に示すように、前記配線基板材10を処理ステージ4に設置した後、導電性ペーストPをスキージSでスキージング印刷してビアホールVHに充填することによって層間導電ビア5を形成する一連の処理方法は、実施例1の場合と同様に適用され、同様な発明の効果が得られる。   The patterning of the patterned conductive layer 31 and the method of forming the groove 3d1 and the via hole VH are the same as in the first embodiment. Further, as shown in FIG. 2B, after the wiring board material 10 is placed on the processing stage 4, the conductive paste P is squeegee printed with the squeegee S and filled into the via holes VH, whereby the interlayer conductive vias 5 are formed. A series of processing methods for forming the are applied in the same manner as in the first embodiment, and the same effects of the invention can be obtained.

ところで、前記実施例1及び2における各々の溝部3dや3d1は、その平面パターンが溝長に沿って溝幅均一な平行溝とされているが、溝部の形状は、例えばテーパ状やオリフィス状のように溝幅の狭い部分と広い部分とが混在するパターン形状、或いは蛇行形状など種々のパターンとすることもできる。   By the way, each of the groove portions 3d and 3d1 in the first and second embodiments is a parallel groove having a flat pattern with a uniform groove width along the groove length. The shape of the groove portion is, for example, a taper shape or an orifice shape. Thus, various patterns such as a pattern shape in which a narrow portion and a wide portion are mixed, or a meandering shape can be used.

次に、前記実施例に示した本発明に基づく真空印刷処理工程後の配線基板材の評価結果について図3を参照して説明する。   Next, the evaluation result of the wiring board material after the vacuum printing process based on the present invention shown in the above embodiment will be described with reference to FIG.

まず、図3(a)は評価用配線基板材30を模式的に示す概略平面図であり、図3(b)は、前記評価用配線基板材30に真空印刷処理を施した後の折れ皺不良の発生率を測定した結果を示すグラフである。ここで、評価用配線基板材30は、図1(a)に示された実施例1の配線基板材1と同様な構造であり、同一部分については同一符号を付しその部分の詳細説明を省略する。   First, FIG. 3A is a schematic plan view schematically showing the evaluation wiring board material 30, and FIG. 3B is a crease after the evaluation wiring board material 30 is subjected to vacuum printing. It is a graph which shows the result of having measured the incidence rate of a defect. Here, the evaluation wiring board material 30 has the same structure as that of the wiring board material 1 of the first embodiment shown in FIG. 1A, and the same portions are denoted by the same reference numerals and detailed description of the portions will be given. Omitted.

そして、評価用配線基板材30における前記第1導電層領域3a1は、実施例1における第1導電層領域3aに対応する領域であり、回路面付け数を300個とする複数の回路パターン形状で構成され、図3(a)中に複数の円形パターンをもって模式的に表現されている。   And the said 1st conductive layer area | region 3a1 in the wiring board material 30 for evaluation is an area | region corresponding to the 1st conductive layer area | region 3a in Example 1, and is a several circuit pattern shape which makes a circuit imposition number 300 pieces. 3 and is schematically represented with a plurality of circular patterns in FIG.

このような評価用配線基板材30は、絶縁基板2として厚さ25μmで250mm×330mmの矩形状のポリイミド樹脂フィルムを用い、パターン化導電層3として厚さ12μmの銅箔層を用いて構成されている。また、溝部3dの幅や深さを種々異ならせ、溝断面積が異なる複数種類の評価用配線基板材を各溝断面積毎に100枚ずつ用意した。   Such an evaluation wiring board material 30 is formed using a rectangular polyimide resin film having a thickness of 250 μm and a thickness of 250 μm as the insulating substrate 2 and a copper foil layer having a thickness of 12 μm as the patterned conductive layer 3. ing. In addition, a plurality of types of evaluation wiring board materials having different groove cross-sectional areas and different groove cross-sectional areas were prepared for each groove cross-sectional area by varying the width and depth of the groove 3d.

そうして、真空度0.8Torr、スキージ圧力0.4MPa、スキージ速度20mm/secの条件のもとで、前記複数種類の評価用配線基板材毎にスキージング印刷処理をおこなった。   Then, the squeezing printing process was performed for each of the plurality of types of evaluation wiring board materials under the conditions of a degree of vacuum of 0.8 Torr, a squeegee pressure of 0.4 MPa, and a squeegee speed of 20 mm / sec.

図3(b)には、前記条件のもとでの真空印刷処理工程後の配線基板材の評価結果が示されている。図3(b)の横軸は溝部3dの断面積(μm)、縦軸は折れ皺不良発生率(%)をそれぞれ示している。 FIG. 3B shows the evaluation result of the wiring board material after the vacuum printing process under the above conditions. The horizontal axis of FIG.3 (b) has shown the cross-sectional area (micrometer < 2 >) of the groove part 3d, and the vertical axis | shaft has shown the broken crease defect incidence (%), respectively.

即ち、溝部のない従来技術では、不良発生率が20%と非常に大きな発生率であった。これに対して、溝部を設けた本発明技術では、溝断面積が大きくなるに従って、折れ皺不良発生率が減少するという効果を得ることができる。更に、不良発生率が、溝断面積が200μm未満の場合に15%程度あるのに対して200μm以上になると、3%以下に大きく低減されるという評価結果が得られた。従って、前記溝部の溝断面積は200μm以上であることがより好ましい。 That is, in the conventional technique without a groove portion, the defect occurrence rate is as high as 20%. On the other hand, according to the technology of the present invention in which the groove portion is provided, it is possible to obtain an effect that the rate of occurrence of broken creases decreases as the groove cross-sectional area increases. Furthermore, an evaluation result was obtained that the defect occurrence rate was about 15% when the groove cross-sectional area was less than 200 μm 2, but greatly reduced to 3% or less when it became 200 μm 2 or more. Therefore, the groove cross-sectional area of the groove is more preferably 200 μm 2 or more.

ところで、前記溝部の溝断面積は、溝部3d、3d1が閉ループ孔3cに連通する方向に対して垂直な断面での面積である。また、溝部3d、3d1の平面パターンが前述のようにテーパ状やオリフィス状であると、溝幅の狭い部分と広い部分が存在するので、このような場合の溝断面積の範囲は最小溝断面積を基準にして定めればよい。   By the way, the groove cross-sectional area of the groove portion is an area in a cross section perpendicular to the direction in which the groove portions 3d, 3d1 communicate with the closed loop hole 3c. In addition, if the planar pattern of the groove portions 3d and 3d1 is tapered or orifice-shaped as described above, there are a narrow portion and a wide portion of the groove width. What is necessary is just to determine on the basis of an area.

なお、前記各実施例において、一方の面にパターン化導電層3が形成された絶縁基板2の他方の面側への処理は、導電性ペーストを印刷してビアホールVHに充填する例について示したが、これに限らず、誘電体ペーストや樹脂ペーストなど種々の材料を印刷充填することであってももよいし、例えばLVHの窪みのめっき層に樹脂ペーストを充填するなど種々の処理がある。また、絶縁基板2の他方の面側への処理は、絶縁基板2の他方の面に直接処理を施す場合であってもよいし、他の層を介して間接的に処理を施す場合のいずれをも含む。更に、閉ループ孔は、図1及び図2に示されるような環状に限定されるものではなく、実質的に密閉された空間(隙間)を形成するような形状の孔全般を含むものである。   In each of the above embodiments, the treatment on the other surface side of the insulating substrate 2 on which the patterned conductive layer 3 is formed on one surface is shown as an example in which a conductive paste is printed and filled into the via hole VH. However, the present invention is not limited to this, and various materials such as a dielectric paste and a resin paste may be printed and filled. For example, there are various treatments such as filling a plating layer in a recess of LVH with a resin paste. Further, the process on the other surface side of the insulating substrate 2 may be a case where the other surface of the insulating substrate 2 is directly processed, or a case where the processing is indirectly performed via another layer. Is also included. Further, the closed loop hole is not limited to the annular shape as shown in FIGS. 1 and 2, and includes all holes shaped so as to form a substantially sealed space (gap).

本発明の実施例1に係る配線基板の製造方法及び配線基板材を説明するための図であり、(a)はその配線基板材を示す概略斜視図、(b)配線基板の製造方法を説明するための一部切欠側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the manufacturing method and wiring board material of a wiring board which concern on Example 1 of this invention, (a) is a schematic perspective view which shows the wiring board material, (b) Explains the manufacturing method of a wiring board. It is a partially cutaway side view for doing. 本発明の実施例2に係る配線基板の製造方法及び配線基板材を説明するための図であり、(a)はその配線基板材を示す概略斜視図、(b)配線基板の製造方法を説明するための一部切欠側面図である。It is a figure for demonstrating the manufacturing method and wiring board material of a wiring board which concern on Example 2 of this invention, (a) is a schematic perspective view which shows the wiring board material, (b) Explains the manufacturing method of a wiring board. It is a partially cutaway side view for doing. 本発明の実施例に係る配線基板の製造方法によって製造された配線基板の評価結果を説明するための図であり、(a)は評価用配線基板材を示す概略平面図、(b)は、配線基板の折れ皺不良発生率を示すグラフである。It is a figure for demonstrating the evaluation result of the wiring board manufactured by the manufacturing method of the wiring board which concerns on the Example of this invention, (a) is a schematic plan view which shows the wiring board material for evaluation, (b) is It is a graph which shows the crease defect incidence rate of a wiring board. 従来技術の配線基板の製造方法及び配線基板材を説明するための図であり、(a)はその配線基板材を示す概略斜視図、(b)配線基板の製造方法を説明するための一部切欠側面図である。It is a figure for demonstrating the manufacturing method and wiring board material of a prior art wiring board, (a) is a schematic perspective view which shows the wiring board material, (b) A part for demonstrating the manufacturing method of a wiring board It is a notch side view.

符号の説明Explanation of symbols

1、10、 配線基板材
2 絶縁基板
3、31 パターン化導電層
3a、3a1 第1導電層領域
3b、3b1 第2導電層領域
3c 閉ループ孔(隙間)
3d、3d1 溝部
4 処理ステージ
5 層間導電ビア
30 評価用配線基板材
P 導電性ペースト
VH ビアホール
1, 10, Wiring board material 2 Insulating board 3, 31 Patterned conductive layer 3a, 3a1 First conductive layer region 3b, 3b1 Second conductive layer region 3c Closed loop hole (gap)
3d, 3d1 Groove 4 Processing stage 5 Interlayer conductive via 30 Evaluation circuit board material P Conductive paste VH Via hole

Claims (6)

絶縁基板の一方の面に閉ループ孔を有するパターン化導電層が設けられた配線基板材の前記絶縁基板の他方の面側に処理工程を施す配線基板の製造方法であって、
(A)前記配線基板材のパターン化導電層に、前記閉ループ孔に連通し前記絶縁基板周縁に通じる溝部を形成する工程と、
(B)前記配線基板材を、前記パターン化導電層が平坦表面を有する処理ステージ表面上に接するように配置する工程と、
(C)真空雰囲気中において、前記絶縁基板の他方の面側に処理を施す工程と、
を備えていることを特徴とする配線基板の製造方法。
A method of manufacturing a wiring board, wherein a processing step is performed on the other surface side of the insulating substrate of the wiring substrate material provided with a patterned conductive layer having a closed loop hole on one surface of the insulating substrate,
(A) forming a groove in the patterned conductive layer of the wiring board material that communicates with the closed loop hole and communicates with the periphery of the insulating substrate;
(B) arranging the wiring board material so that the patterned conductive layer is in contact with the processing stage surface having a flat surface;
(C) In a vacuum atmosphere, a step of processing the other surface side of the insulating substrate;
A method of manufacturing a wiring board, comprising:
前記配線基板材の絶縁基板には、予め前記パターン導電層の一部に達するビアホールが形成され、前記(C)工程における処理工程は、前記絶縁基板の他方の面側に導電性ペースト印刷を施して、前記導電性ペーストを前記ビアホールに充填することによって層間導電ビアを形成する工程であることを特徴とする請求項1に記載の配線基板の製造方法。   A via hole reaching a part of the pattern conductive layer is formed in the insulating substrate of the wiring board material in advance, and the processing step in the step (C) performs conductive paste printing on the other surface side of the insulating substrate. The method of manufacturing a wiring board according to claim 1, wherein an interlayer conductive via is formed by filling the via hole with the conductive paste. 前記溝部は、前記閉ループ孔に連通する方向に対して垂直な断面積が200μm以上であることを特徴とする請求項1または請求項2に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 1, wherein the groove portion has a cross-sectional area perpendicular to a direction communicating with the closed loop hole of 200 μm 2 or more. 絶縁基板と、前記絶縁基板の一方の面に形成された閉ループ孔を有するパターン化導電層と、前記パターン化導電層に形成され前記閉ループ孔に連通し前記絶縁基板周縁に通じる溝部と、前記絶縁基板に貫通形成され前記パターン化導電層の一部に達し前記絶縁基板の他方の面側に開口するビアホールとを備え
前記パターン化導電層は、第1導電層領域と、前記第1導電層領域の周囲を離間して囲む第2導電層領域と、第1導電層領域と前記第2導電層領域との間に形成された前記閉ループ孔と、を有し、
前記溝部は、前記第2導電層領域に設けられ、前記絶縁基板に接する側に導電層部分を残して形成されていることを特徴とする配線基板材。
An insulating substrate; a patterned conductive layer having a closed loop hole formed on one surface of the insulating substrate; a groove formed in the patterned conductive layer and communicating with the periphery of the insulating substrate; A via hole formed in the substrate and reaching a part of the patterned conductive layer and opening on the other surface side of the insulating substrate ;
The patterned conductive layer includes a first conductive layer region, a second conductive layer region surrounding and surrounding the first conductive layer region, and a gap between the first conductive layer region and the second conductive layer region. The closed loop hole formed,
The wiring board material , wherein the groove is provided in the second conductive layer region and is formed leaving a conductive layer portion on a side in contact with the insulating substrate.
更に、前記ビアホール内に導電性ペーストを充填して形成された層間導電ビアを有することを特徴とする請求項4に記載の配線基板材。   The wiring board material according to claim 4, further comprising an interlayer conductive via formed by filling the via hole with a conductive paste. 前記溝部は、前記閉ループ孔に連通する方向に対して垂直な断面積が200μm以上であることを特徴とする請求項4または請求項5に記載の配線基板材。 6. The wiring board material according to claim 4, wherein the groove portion has a cross-sectional area perpendicular to a direction communicating with the closed loop hole of 200 μm 2 or more.
JP2007208152A 2007-08-09 2007-08-09 Wiring board manufacturing method and wiring board material Expired - Fee Related JP5055062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208152A JP5055062B2 (en) 2007-08-09 2007-08-09 Wiring board manufacturing method and wiring board material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208152A JP5055062B2 (en) 2007-08-09 2007-08-09 Wiring board manufacturing method and wiring board material

Publications (2)

Publication Number Publication Date
JP2009043986A JP2009043986A (en) 2009-02-26
JP5055062B2 true JP5055062B2 (en) 2012-10-24

Family

ID=40444396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208152A Expired - Fee Related JP5055062B2 (en) 2007-08-09 2007-08-09 Wiring board manufacturing method and wiring board material

Country Status (1)

Country Link
JP (1) JP5055062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401791B2 (en) 2021-08-06 2023-12-20 日亜化学工業株式会社 Circuit board, light emitting device, and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190169U (en) * 1985-05-17 1986-11-27
JPH0312996A (en) * 1989-06-12 1991-01-21 Ibiden Co Ltd Multilayer printed wiring board
JPH08222823A (en) * 1995-02-13 1996-08-30 Murata Mfg Co Ltd Through hole wiring board
JP2002280734A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Paste filling method and paste filling device
JP3893930B2 (en) * 2001-10-12 2007-03-14 株式会社デンソー Sheet material holder, sheet material holding method, and multilayer substrate manufacturing method
JP3918674B2 (en) * 2002-07-31 2007-05-23 株式会社デンソー Method for manufacturing printed circuit board
JP2005167141A (en) * 2003-12-05 2005-06-23 Ibiden Co Ltd Method of manufacturing printed wiring board and multilayer printed wiring board

Also Published As

Publication number Publication date
JP2009043986A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5088138B2 (en) Mounting board and electronic equipment
TWI601468B (en) Method for filling conductive paste and method for manufacturing multilayer printed wiring board
JP4818888B2 (en) Manufacturing method of printed wiring board with built-in resistor
CN102271463A (en) Circuit board manufacturing method
JP2014107552A (en) Multilayer printed circuit board and method of manufacturing the same
US20200072873A1 (en) Manufacturing method of a multi-layer for a probe card
CN101534610A (en) Embedded capacitor element circuit board and manufacturing method thereof
CN102469691A (en) Printed circuit board and method for manufacturing the same
JP5055062B2 (en) Wiring board manufacturing method and wiring board material
CN101919319A (en) Printed circuit board, manufacturing method thereof, and panel used for manufacturing the printed circuit board
JP3956703B2 (en) Manufacturing method of multilayer ceramic electronic component
CN108156746A (en) Multilayer circuit board and method for manufacturing same
JP2011040648A (en) Method of manufacturing circuit board, and the circuit board
JP2002176258A (en) Method of manufacturing printed wiring board
JP2005285945A (en) Electric conductive path formation method
JP2007088058A (en) Multilayer substrate and method of manufacturing same
CN108156754B (en) Vertical connection interface structure, circuit board with said structure, and manufacturing method thereof
JP3846209B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR101051590B1 (en) Ceramic substrate and its manufacturing method
KR100871034B1 (en) Paste bump formation method of printed circuit board
KR101022869B1 (en) Manufacturing Method of Printed Circuit Board for Image Sensor Module
JP2006351971A (en) Base for multilayer wiring, and multilayer wiring board
KR100776685B1 (en) Embedded printed circuit board with flat carbon resistance and manufacturing method
JP2006049457A (en) Wiring board with built-in parts and manufacturing method thereof
JP2009094330A (en) Substrate for wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R151 Written notification of patent or utility model registration

Ref document number: 5055062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees