JP5052081B2 - Sewage treatment equipment - Google Patents
Sewage treatment equipment Download PDFInfo
- Publication number
- JP5052081B2 JP5052081B2 JP2006247425A JP2006247425A JP5052081B2 JP 5052081 B2 JP5052081 B2 JP 5052081B2 JP 2006247425 A JP2006247425 A JP 2006247425A JP 2006247425 A JP2006247425 A JP 2006247425A JP 5052081 B2 JP5052081 B2 JP 5052081B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- front tank
- raw water
- time
- diffuser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010865 sewage Substances 0.000 title claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 147
- 238000012546 transfer Methods 0.000 claims description 101
- 238000005273 aeration Methods 0.000 claims description 72
- 239000007788 liquid Substances 0.000 claims description 71
- 239000012528 membrane Substances 0.000 claims description 61
- 238000000926 separation method Methods 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 20
- 238000004065 wastewater treatment Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 16
- 238000007872 degassing Methods 0.000 claims 2
- 230000007423 decrease Effects 0.000 description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 30
- 239000001301 oxygen Substances 0.000 description 30
- 229910052760 oxygen Inorganic materials 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 9
- 230000033116 oxidation-reduction process Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 238000004904 shortening Methods 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、汚水の処理装置に関し、窒素含有汚濁物を含む汚水を処理する技術に係るものである。 The present invention relates to a wastewater treatment apparatus and relates to a technique for treating wastewater containing nitrogen-containing contaminants.
従来、この種の汚水の処理方法としては、例えば特許文献1に記載する排水処理方法がある。これは、流入汚水を連続供給し、嫌気槽と間欠曝気槽と膜分離槽とに順次に導き、膜分離槽から間欠曝気槽へ槽内混合液を硝化液循環として返送し、間欠曝気槽から嫌気槽へ非曝気時においてのみ槽内混合液を返送し、膜分離槽に浸漬した膜分離装置によって固液分離した膜濾液を処理水として取り出すものであり、嫌気槽では間欠曝気槽から非曝気時においてのみ槽内混合液を返送することでDO(溶存酸素)の持ち込みを防止して確実な脱リンを行い、流入汚水の水質の変化に応じて間欠曝気のサイクルを調整することにより間欠曝気槽および膜分離槽におけるDO(溶存酸素)の調整を行って適切に脱窒を行うものである。
Conventionally, as this kind of wastewater treatment method, for example, there is a wastewater treatment method described in
また、特許文献2に記載する排水処理方法がある。これは、被処理水を第1の処理槽に連続供給し、間欠曝気処理する工程と、第1の処理槽内の用水を分離膜が配設された第2の処理槽に導いて連続曝気処理するとともに、分離膜を介して吸引濾過して膜透過水を系外に排出する工程と、第2の処理槽内の用水の一部を第1の処理槽に返送する工程とを有している。
In addition, there is a wastewater treatment method described in
そして、被処理水を原水ポンプにより定量的に第1の処理槽へ送液し、第1の処理槽において間欠曝気処理する工程と、第2の処理槽において連続曝気処理する工程と、第2の処理槽内の用水の一部を第1の処理槽に返送する工程とを同時に行って、被処理水を連続的に処理している。 Then, the process water is quantitatively fed to the first treatment tank by the raw water pump, the intermittent aeration process in the first treatment tank, the continuous aeration process in the second treatment tank, and the second The water to be treated is continuously treated by simultaneously performing a step of returning a part of the water in the treatment tank to the first treatment tank.
この処理により、間欠曝気方式と比較して第一の処理槽での硝化時間に余裕をとる必要がないので、第一の処理槽での嫌気状態の形成が保証され、脱窒が確実に行なわれる。
他の先行技術文献としては特許文献3および4がある。
Other prior art documents include
しかし、従来の構成においては、系内に流入する汚水を連続処理するものであるために、特許文献1においては間欠ばっ気槽と膜分離槽の間において槽内混合液が常に循環し、間欠ばっ気槽において脱窒処理を行う非ばっ気時にも溶存酸素を含む硝化液が膜分離槽から流入するので、脱窒効率の安定化がときに困難となる。
However, in the conventional configuration, since the sewage flowing into the system is continuously processed, in
また、間欠ばっ気槽へは嫌気槽を経て汚水が流入するので、間欠ばっ気槽において脱窒処理時に十分なBODが確保されるとは限らず、この点においても脱窒効率の安定化がときに困難となる。 In addition, since sewage flows into the intermittent aeration tank through the anaerobic tank, a sufficient BOD is not always ensured during the denitrification process in the intermittent aeration tank. Sometimes it becomes difficult.
また、特許文献2においても、第1の処理槽と第2の処理槽の間において槽内混合液が常に循環し、第1の処理槽において脱窒処理を行う非ばっ気時にも溶存酸素を含む硝化液が第2の処理槽から流入するので、脱窒効率の安定化がときに困難となる。
Also in
本発明は上記の課題を解決するものであり、窒素含有汚濁物を含む汚水を硝化脱窒処理するに際し、安定した脱窒効率の下で優れた窒素除去能を発揮する汚水の処理装置を提供することを目的とする。 The present invention solves the above problems, and provides a sewage treatment apparatus that exhibits excellent nitrogen removal performance under stable denitrification efficiency when sewage containing nitrogen-containing contaminants is nitrified and denitrified. The purpose is to do.
上記課題を解決するために、本発明の汚水の処理装置は、槽内の前槽散気装置を間欠に運転し、前槽散気装置を所定の停止時間にわたって停止する非ばっ気時に脱窒処理を行い、前槽散気装置を所定の運転時間にわたって運転するばっ気時に硝化処理を行う前槽と、槽内の後槽散気装置を連続運転して槽内の膜分離装置による膜分離処理と硝化処理を行う後槽と、前槽へ原水を供給する原水供給系と、前槽から後槽へ槽内混合液を送り移送する送り移送系と、後槽から前槽へ槽内混合液を戻り移送する戻り移送系とを備え、前槽散気装置の停止に同期して非ばっ気状態の前槽へ原水供給系から所定の供給時間にわたって原水を供給し、送り移送系および戻り移送系による槽内混合液の移送を前槽散気装置の運転に同期して開始し、前槽散気装置の停止に同期して停止することを特徴とする。 In order to solve the above-mentioned problems, the wastewater treatment apparatus of the present invention denitrifies during non-aeration when the front tank aeration apparatus in the tank is intermittently operated and the front tank aeration apparatus is stopped for a predetermined stop time. The membrane is separated by the membrane separator in the tank by continuously operating the front tank that performs nitrification during aeration and the rear tank diffuser in the tank. A rear tank that performs treatment and nitrification, a raw water supply system that supplies raw water to the front tank, a feed transfer system that feeds and transfers the liquid mixture in the tank from the front tank to the rear tank, and mixing in the tank from the rear tank to the front tank A return transfer system for returning and transferring the liquid, and supplying the raw water from the raw water supply system to the non-aerated front tank for a predetermined supply time in synchronization with the stop of the front tank aeration apparatus. The transfer of the liquid mixture in the tank by the transfer system is started in synchronization with the operation of the front tank diffuser. Of synchronization with the stop, wherein the stop.
本発明の汚水の処理装置は、槽内の前槽散気装置を間欠に運転し、前槽散気装置を所定の停止時間にわたって停止する非ばっ気時に脱窒処理を行い、前槽散気装置を所定の運転時間にわたって運転するばっ気時に硝化処理を行う前槽と、槽内の後槽散気装置を連続運転して槽内の膜分離装置による膜分離処理と硝化処理を行う後槽と、前槽へ原水を供給する原水供給系と、前槽から後槽へ槽内混合液を送り移送する送り移送系と、後槽から前槽へ槽内混合液を戻り移送する戻り移送系とを備え、前槽散気装置の停止に同期して非ばっ気状態の前槽へ原水供給系から所定の供給時間にわたって原水を供給し、送り移送系による槽内混合液の移送を前槽散気装置の停止時および運転時に連続して行い、戻り移送系による槽内混合液の移送を前槽散気装置の運転に同期して開始し、前槽散気装置の停止に同期して停止することを特徴とする。 The sewage treatment apparatus of the present invention intermittently operates the front tank diffuser in the tank, performs a denitrification process during non-aeration to stop the front tank diffuser for a predetermined stop time, The front tank that performs nitrification during aeration when the apparatus is operated for a predetermined operating time, and the rear tank that performs membrane separation processing and nitrification processing by the membrane separation device in the tank by continuously operating the rear tank diffuser in the tank A raw water supply system for supplying raw water to the front tank, a feed transfer system for sending and transferring the liquid mixture in the tank from the front tank to the rear tank, and a return transfer system for returning and transferring the liquid mixture in the tank from the rear tank to the front tank The raw water is supplied over a predetermined supply time from the raw water supply system to the non-aerated front tank in synchronization with the stop of the front tank diffuser, and the transfer of the mixed liquid in the tank by the feed transfer system is performed in the front tank. This is performed continuously when the air diffuser is stopped and operating, and the liquid mixture in the tank is transferred by the return transfer system. Start in synchronism with the operation of the apparatus, characterized by stopping in synchronization with the stop of the front tank air diffuser.
本発明の汚水の処理装置は、槽内の前槽散気装置を間欠に運転し、前槽散気装置を所定の停止時間にわたって停止する非ばっ気時に脱窒処理を行い、前槽散気装置を所定の運転時間にわたって運転するばっ気時に硝化処理を行う前槽と、槽内の後槽散気装置を連続運転して槽内の膜分離装置による膜分離処理と硝化処理を行う後槽と、前槽へ原水を供給する原水供給系と、前槽から後槽へ槽内混合液を送り移送する送り移送系と、後槽から前槽へ槽内混合液を戻り移送する戻り移送系とを備え、前槽散気装置の停止に同期して非ばっ気状態の前槽へ原水供給系から所定の供給時間にわたって原水を供給し、送り移送系および戻り移送系による槽内混合液の移送を原水の流入停止後に所定のインターバル時間を経て前槽散気装置の運転前に開始し、前槽散気装置の停止に同期して停止することを特徴とする。 The sewage treatment apparatus of the present invention intermittently operates the front tank diffuser in the tank, performs a denitrification process during non-aeration to stop the front tank diffuser for a predetermined stop time, The front tank that performs nitrification during aeration when the apparatus is operated for a predetermined operating time, and the rear tank that performs membrane separation processing and nitrification processing by the membrane separation device in the tank by continuously operating the rear tank diffuser in the tank A raw water supply system for supplying raw water to the front tank, a feed transfer system for sending and transferring the liquid mixture in the tank from the front tank to the rear tank, and a return transfer system for returning and transferring the liquid mixture in the tank from the rear tank to the front tank The raw water is supplied over a predetermined supply time from the raw water supply system to the non-aerated front tank in synchronization with the stop of the front tank diffuser, and the mixed liquid in the tank by the feed transfer system and the return transfer system is supplied. Transfer starts after operation of the front tank diffuser after a predetermined interval after stopping the flow of raw water , Wherein the stop in synchronism with the stop of the front tank air diffuser.
本発明の汚水の処理装置は、槽内の前槽散気装置を間欠に運転し、前槽散気装置を所定の停止時間にわたって停止する非ばっ気時に脱窒処理を行い、前槽散気装置を所定の運転時間にわたって運転するばっ気時に硝化処理を行う前槽と、槽内の後槽散気装置を連続運転して槽内の膜分離装置による膜分離処理と硝化処理を行う後槽と、前槽へ原水を供給する原水供給系と、前槽から後槽へ槽内混合液を送り移送する送り移送系と、後槽から前槽へ槽内混合液を戻り移送する戻り移送系とを備え、前槽散気装置の停止に同期して非ばっ気状態の前槽へ原水供給系から所定の供給時間にわたって原水を供給し、送り移送系による槽内混合液の移送を前槽散気装置の停止時および運転時に連続して行い、戻り移送系による槽内混合液の移送を、原水の流入停止後に所定のインターバル時間を経て前槽散気装置の運転前に開始し、前槽散気装置の停止に同期して停止することを特徴とする。 The sewage treatment apparatus of the present invention intermittently operates the front tank diffuser in the tank, performs a denitrification process during non-aeration to stop the front tank diffuser for a predetermined stop time, The front tank that performs nitrification during aeration when the apparatus is operated for a predetermined operating time, and the rear tank that performs membrane separation processing and nitrification processing by the membrane separation device in the tank by continuously operating the rear tank diffuser in the tank A raw water supply system for supplying raw water to the front tank, a feed transfer system for sending and transferring the liquid mixture in the tank from the front tank to the rear tank, and a return transfer system for returning and transferring the liquid mixture in the tank from the rear tank to the front tank The raw water is supplied over a predetermined supply time from the raw water supply system to the non-aerated front tank in synchronization with the stop of the front tank diffuser, and the transfer of the mixed liquid in the tank by the feed transfer system is performed in the front tank. This is performed continuously when the air diffuser is stopped and in operation, and the mixed liquid in the tank is transferred to the raw water by the return transfer system. After a predetermined interval time after the inflow stop it started before the operation of the front tank air diffuser, wherein the stop in synchronism with the stop of the front tank air diffuser.
また、前槽における嫌気化の応答性能を示す嫌気指標値および好気化の応答性能を示す好気指標値の少なくとも一方を測定する測定手段と、測定手段で測定した嫌気指標値および好気指標値の少なくとも一方の測定値に基づいてサイクル調整制御を行なう制御手段とを備え、サイクル調整制御において制御手段は、測定手段の測定値に基づいて前槽散気装置の運転時間と停止時間からなる間欠運転サイクルの単位サイクル時間を増減調整し、あるいは間欠運転サイクル内の停止時間と運転時間の割合いを変更調整することを特徴とする。 Further, a measuring means for measuring at least one of an anaerobic index value indicating anaerobic response performance and an aerobic index value indicating aerobic response performance in the front tank, and an anaerobic index value and an aerobic index value measured by the measuring means Control means for performing cycle adjustment control based on at least one of the measured values, and in the cycle adjustment control, the control means is an intermittent consisting of an operation time and a stop time of the front tank aeration device based on the measurement value of the measurement means. The unit cycle time of the operation cycle is increased or decreased, or the ratio between the stop time and the operation time in the intermittent operation cycle is changed and adjusted.
また、前槽における嫌気化の応答性能を示す嫌気指標値および好気化の応答性能を示す好気指標値の少なくとも一方を測定する測定手段と、測定手段で測定した嫌気指標値および好気指標値の少なくとも一方の測定値に基づいてインターバル時間調整制御を行なう制御手段とを備え、インターバル時間調整制御において制御手段は、測定手段の測定値に基づいて原水の流入停止後のインターバル時間を増減調整することを特徴とする。 Further, a measuring means for measuring at least one of an anaerobic index value indicating anaerobic response performance and an aerobic index value indicating aerobic response performance in the front tank, and an anaerobic index value and an aerobic index value measured by the measuring means Control means for performing interval time adjustment control based on at least one of the measured values, and in the interval time adjustment control, the control means increases or decreases the interval time after stopping the inflow of raw water based on the measurement value of the measurement means. It is characterized by that.
以上のように本発明によれば、前槽において回分的に硝化・脱窒処理を行い、後槽において連続的に硝化処理と膜分離処理を行って、原水の間欠的な供給と膜分離した処理水の連続的な取り出しとを実現する。 As described above, according to the present invention, nitrification / denitrification treatment is performed batchwise in the front tank, and nitrification treatment and membrane separation treatment are continuously performed in the rear tank, and the raw water is intermittently supplied and membrane separated. Realizes continuous removal of treated water.
このため、前槽と後槽の間において槽内混合液を常に循環することは行わず、前槽のばっ気時にのみ後槽から前槽へ酸素富裕状態の硝化液を供給し、前槽の非ばっ気時には原水のみを原水供給系から供給して無酸素状態で脱窒処理を行うことで、窒素含有汚濁物を含む汚水を硝化脱窒処理するに際し、安定した脱窒効率の下で優れた窒素除去能を発揮することができる。 For this reason, the liquid mixture in the tank is not always circulated between the front tank and the rear tank, but the oxygen-rich nitrification liquid is supplied from the rear tank to the front tank only when the front tank is aerated. When non-aeration is performed, only raw water is supplied from the raw water supply system, and denitrification is performed in an oxygen-free state, so that nitrification and denitrification of sewage containing nitrogen-containing contaminants is excellent under stable denitrification efficiency. Nitrogen removal ability can be exhibited.
また、前槽における嫌気化の応答性能を示す嫌気指標値および好気化の応答性能を示す好気指標値の少なくとも一方を運転制御の指標としてサイクル調整制御もしくはインターバル時間調整制御を行なうことにより、安定した運転を行える。嫌気指標値には、例えば原水の投入時におけるDO減少速度(換言すると溶存酸素濃度がOになるまでの嫌気化に要する時間、又は所定時間内でのDOの減少量)があり、好気指標値には、例えば散気開始時におけるDOの増加速度(換言すると溶存酸素濃度が所定値になるまでの好気化に要する時間、又は所定時間内でのDOの増加量)がある。 In addition, by performing cycle adjustment control or interval time adjustment control using at least one of an anaerobic index value indicating anaerobic response performance and an aerobic index value indicating aerobic response performance in the front tank as an operation control index, Can be operated. The anaerobic index value includes, for example, the DO reduction rate (in other words, the time required for anaerobicization until the dissolved oxygen concentration reaches O, or the amount of decrease in DO within a predetermined time) when raw water is added. The value includes, for example, a DO increase rate at the start of aeration (in other words, a time required for aerobicization until the dissolved oxygen concentration reaches a predetermined value, or an increase amount of DO within a predetermined time).
嫌気指標値、好気指標値としては、他にORPの減少速度、増加速度がある。DOの増加速度もしくは減少速度と原水のBOD負荷との相関や、ORPの増加速度もしくは減少速度と原水のBOD負荷との相関、特に原水を投入した直後におけるDOの減少速度もしくはORPの減少速度と原水のBOD負荷との関係を予め測定評価してその相関を求めることにより、測定手段の測定値を指標として原水のBOD負荷の評価値を決定することができる。 Other examples of the anaerobic index value and the aerobic index value include a decrease rate and an increase rate of ORP. Correlation between DO increase rate or decrease rate and BOD load of raw water, correlation between ORP increase rate or decrease rate and BOD load of raw water, especially DO decrease rate or ORP decrease rate immediately after raw water is added By measuring and evaluating the relationship with the BOD load of the raw water in advance and obtaining the correlation, the evaluation value of the BOD load of the raw water can be determined using the measurement value of the measuring means as an index.
以下、本発明の実施の形態を図面に基づいて説明する。図1において、汚水の処理装置は、回分的に硝化・脱窒処理を行う前槽1と、連続的に硝化処理と膜分離処理を行う後槽2とを備え、原水の間欠的な供給と膜分離した処理水の連続的な取り出しとを実現するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the sewage treatment apparatus includes a
前槽1は槽内に前槽散気装置3を備えており、前槽散気装置3は槽内に設置する散気管4と散気管4に接続したブロア5からなる。前槽1は前槽散気装置3を間欠に運転することで、前槽散気装置3が所定の停止時間にわたって停止する非ばっ気時に脱窒処理を行い、前槽散気装置3が所定の運転時間にわたって運転するばっ気時に硝化処理を行う。
The
また、前槽1には攪拌機6および測定装置7を設置しており、測定装置7は槽内混合液中のDO(溶存酸素)を測定するDO計もしくは、ORP(酸化還元電位)を測定するORP計からなり、後述する制御装置とでDOの増加速度、減少速度もしくはORPの増加速度、減少速度を測定する測定手段を構成する。
In addition, a
さらに、前槽1には原水供給ポンプ8aを備えた原水供給系8が連通しており、原水供給系8は前槽1へ窒素含有汚濁物を含む汚水を原水として供給する。原水供給ポンプ8aはバルブによって代替することも可能である。
Furthermore, the raw
後槽2は槽内に後槽散気装置9および後槽散気装置9の上方に配置する浸漬型膜分離装置10を備えており、後槽散気装置9は槽内に設置する散気管11と散気管11に接続したブロア12からなる。後槽2は後槽散気装置9を連続運転する間に浸漬型膜分離装置10による膜分離処理と硝化処理を行う。
The
浸漬型膜分離装置10は、ケーシング13の内部に複数の膜カートリッジ14を平行に配列し、相互に隣接する膜カートリッジ14の間に上下方向の流路を形成してなる。各膜カートリッジ14は、濾板の表裏の表面に濾過膜を配置し、濾板と濾過膜との間の透過液流路がチューブ等を介して集水管15に連通している。集水管15に続く排出管16の途中には吸引ポンプ17を介装しており、吸引ポンプ17の吸引圧力が各膜カートリッジ14に駆動圧力として作用する。本実施の形態では吸引ポンプ17の吸引圧力を駆動圧力としたが、槽内の水頭を駆動圧力として重力濾過することも可能である。
The submerged
前槽1と後槽2の間には、送り移送ポンプ18を備えた送り移送系19と、戻り移送ポンプ20を備えた戻り移送系21を設けている。送り移送系19は前槽1から後槽2へ槽内混合液を送り移送し、戻り移送系21は後槽2から前槽1へ槽内混合液を戻り移送する。戻り移送系21は前槽1と後槽2を連通する連通管にバルブを介装した構成とすることも可能である。
Between the
制御装置22には、前槽散気装置3のブロア5、攪拌機6、測定装置7、原水供給ポンプ8、浸漬型膜分離装置10の吸引ポンプ17、送り移送ポンプ18、戻り移送ポンプ20が接続しており、制御装置22は測定装置7の測定値に基づいて各機器を制御する。制御については後述する。
Connected to the
上記の構成における汚水の処理装置の運転について以下に説明する。
運転例1
図2(a)、(b)は運転サイクルの前期における運転状態を示し、図2(c)、(d)は運転サイクルの後期における運転状態を示し、図6は各機器のタイミングチャートを示している。
The operation of the sewage treatment apparatus having the above configuration will be described below.
Driving example 1
2 (a) and 2 (b) show the operation state in the first half of the operation cycle, FIGS. 2 (c) and 2 (d) show the operation state in the second half of the operation cycle, and FIG. 6 shows a timing chart of each device. ing.
図2(a)、(b)に示すように、運転サイクルの前期における前槽1では無酸素状態で脱窒処理を行う。このため、前槽散気装置3のブロア5を所定の停止時間にわたって停止し、この間に攪拌機6を駆動し、原水供給ポンプ8aを運転して原水供給系8から前槽1へ原水を供給する。
As shown in FIGS. 2A and 2B, the denitrification process is performed in an oxygen-free state in the
攪拌機6および原水供給ポンプ8は前回運転サイクルの終了時における前槽散気装置3のブロア5の停止に同期して起動し、非ばっ気状態の前槽1へ原水供給系9から所定の供給時間(T0〜T1)にわたって原水を供給する。この原水の供給によって前槽1が最高水位となる。
The
運転サイクルの前期における後槽2では酸素富裕状態で硝化処理および膜分離処理を行う。このため、浸漬型膜分離装置10の吸引ポンプ17を運転して槽内混合液を膜カートリッジ14を通して膜分離し、膜透過液を集水管15、排出管16および吸引ポンプ17を通して系外へ取り出す。
In the
また、後槽散気装置9のブロア12を運転し、ブロア12から供給する空気を散気管11から膜洗浄用空気として散気し、膜カートリッジ14の膜面を洗浄するとともに、槽内混合液をばっ気して酸素供給を行う。
Further, the
次に、原水の流入が停止(T1)した後に所定のインターバル時間(T1〜T3)を経て運転サイクルの後期となる。このとき、後槽2は最低水位となる。
図2(c)、(d)に示すように、運転サイクルの後期における前槽1では酸素富裕状態で硝化処理を行う。このため、攪拌機6を停止し、前槽散気装置3のブロア5を所定の運転時間にわたって運転を継続し、次回の運転サイクルの初期(−T0)に前槽散気装置3の運転を停止する。
Next, after the inflow of raw water is stopped (T1), it passes through a predetermined interval time (T1 to T3) and becomes the second half of the operation cycle. At this time, the
As shown in FIGS. 2 (c) and 2 (d), the nitrification treatment is performed in an oxygen-rich state in the
運転サイクルの後期における後槽2では、前期に引き続いて酸素富裕状態で硝化処理および膜分離処理を行う。
そして、前槽散気装置3の運転の開始(T3)に同期して送り移送ポンプ18および戻り移送ポンプ20を起動し、送り移送系19により前槽1から後槽2へ槽内混合液を送り移送し、戻り移送系21により後槽2から前槽1へ槽内混合液を戻り移送し、前槽1と後槽2の間で槽内混合液(硝化液および活性汚泥)を循環させ、次回の運転サイクルの初期(−T0)まで送り移送ポンプ18および戻り移送ポンプ20の運転を継続し、前槽散気装置3の停止に同期して送り移送系19および戻り移送系21による槽内混合液の移送を停止する。
In the
Then, the
上述した操作において、後槽には前槽がばっ気状態のときに槽内混合液が前槽から流入するので、完全な好気条件の下でアンモニア態窒素の硝化処理を行うことができ、運転サイクルの後期に前槽1と後槽2の間において槽内混合液を循環することで、後槽2の浸漬型膜分離装置10によって濃縮した活性汚泥が前槽1へ流入し、前槽1の汚泥濃度は高濃度に高まる。
In the operation described above, the mixed liquid in the tank flows into the rear tank from the front tank when the front tank is in an aerated state, so that nitrification treatment of ammonia nitrogen can be performed under perfect aerobic conditions, By circulating the mixed liquid in the tank between the
この状態で、運転サイクルの前期において前槽1と後槽2の間において槽内混合液を循環することは行わず、前回の運転サイクルの後期において硝化処理した前槽1へ非ばっ気状態で原水のみを原水供給系8から供給して無酸素状態で脱窒処理を行う。
In this state, the mixed liquid in the tank is not circulated between the
この結果、窒素含有汚濁物を含む汚水を硝化脱窒処理するに際し、流水する原水のBODを脱窒処理のBOD源として、かつ無酸素状態で安定した脱窒効率の下で優れた窒素除去能を発揮することができる。 As a result, when sewage containing nitrogen-containing contaminants is nitrified and denitrified, the BOD source of the flowing raw water is used as a BOD source for denitrification, and the nitrogen removal ability is excellent under stable denitrification efficiency in anoxic conditions. Can be demonstrated.
また、前槽1は前期の脱窒優先工程、後期の硝化優先工程に分けて環境条件を調整でき、後槽2は完全好気条件に調整できるので、系内での硝化・脱窒状態が安定し、脱窒効率が高まる。
In addition, environmental conditions can be adjusted by dividing the
図13は前槽1における窒素濃度の変化を示すものであり、TKN(トータルケルダー窒素)は前期の間は減少することなく一定であり、後期に硝化によって減少し、硝酸態窒素は前期において減少し、後期において増加する。
FIG. 13 shows the change in the nitrogen concentration in the
図14は後槽2における窒素濃度の変化を示すものであり、TKN(トータルケルダー窒素)は前期の間は硝化されて0を維持し、後期に前槽1から原水が流入することで一時期に多少の上昇を示し、硝酸態窒素は前期において硝化に余力を示すほどに十分な値を維持し、後期において前槽1へ流出することで一時期に多少の減少を示す。
FIG. 14 shows the change in the nitrogen concentration in the
ところで、単位時間当たりに投入する原水量は槽容量に対して一定であり、1回の運転サイクル時間と1回の運転サイクル当たりに供給される原水量は比例し、1回の運転サイクル時間と希釈倍率は反比例する。このとき、前期および後期を含む運転サイクルのサイクル時間を短縮することは硝化液に対する原水の希釈倍率を高めることになる。また、後期の硝化処理による硝酸濃度の高まりはばっ気運転時間の長さに比例する。よって、サイクル時間を短縮すれば硝酸濃度は高まらない。以上によって、運転サイクルを短縮することにより硝酸濃度は高まらず、窒素除去率が高くなるので、運転サイクルは短くすることが望ましい。 By the way, the amount of raw water input per unit time is constant with respect to the tank capacity, and the amount of raw water supplied per operation cycle is proportional to the amount of raw water supplied per operation cycle. The dilution factor is inversely proportional. At this time, shortening the cycle time of the operation cycle including the first period and the latter period increases the dilution ratio of the raw water with respect to the nitrification liquid. Further, the increase in nitric acid concentration due to the late nitrification treatment is proportional to the length of the aeration operation time. Therefore, the nitric acid concentration does not increase if the cycle time is shortened. As described above, since the nitric acid concentration does not increase and the nitrogen removal rate increases by shortening the operation cycle, it is desirable to shorten the operation cycle.
しかし、図10において前槽1の溶存酸素濃度と酸化還元電位の挙動を示すように、運転サイクル時間を50分程度とする場合には、酸化還元電位が脱窒に最適とされる−50〜−100(mV)の範囲まで低下するが、図11に示すように、同じ処理条件において
運転サイクル時間を25分程度にすると、前槽1における酸化還元電位が脱窒に最適とされる−50〜−100(mV)の範囲まで低下しない。
However, as shown in FIG. 10, the behavior of dissolved oxygen concentration and oxidation-reduction potential in the
また、比較の参考として図12に示すように、前期、後期を通して槽内混合液を連続循環し、原水を連続投入する場合には、運転サイクル時間当たりの原水投入量を図10の場合と同じにしたとき、前槽1における酸化還元電位を脱窒に最適とされる−50〜−100(mV)の範囲まで低下させるには運転サイクル時間として100分程度を必要とする。
As a reference for comparison, as shown in FIG. 12, in the case where the mixed liquid in the tank is continuously circulated throughout the first and second periods and the raw water is continuously charged, the amount of raw water charged per operation cycle time is the same as in FIG. In order to reduce the oxidation-reduction potential in the
このため、本実施の形態のように、回分的に硝化・脱窒処理を行う前槽1と、連続的に硝化処理と膜分離処理を行う後槽2とにおいて、前期の脱窒優先工程、後期の硝化優先工程に分けて環境条件を調整することで、短い運転サイクル時間において脱窒に最適とされる酸化還元電位の環境条件を実現できる。
For this reason, as in the present embodiment, in the
しかし、前槽1における脱窒に好適な無酸素条件の成立には、溶存酸素を消費する時間と、脱窒反応に要する時間を確保する必要があり、好適な無酸素条件の成立には硝化反応に要する時間を確保する必要がある。このため、運転サイクル時間を短くし過ぎることは、前期と後期の環境条件を確実に成立させることを困難とする。
However, in order to establish an oxygen-free condition suitable for denitrification in the
このため、運転サイクル時間には適値が存在し、原水投入後に溶存酸素を早期に消費することが望ましい。本実施の形態では、後期に後槽2から前槽1へ濃縮した活性汚泥を循環することで原水投入時における前槽の汚泥濃度を高めているので、溶存酸素の消費速度が高く、1回の運転サイクル分の原水を短時間で投入することで、溶存酸素を早期に消費することができる。
For this reason, there is an appropriate value for the operation cycle time, and it is desirable to consume dissolved oxygen at an early stage after charging raw water. In the present embodiment, since the activated sludge concentrated from the
ところで、前槽1におけるDOの増加速度もしくは減少速度と原水のBOD負荷との相関や、ORPの増加速度もしくは減少速度と原水のBOD負荷との相関、特に原水を投入した直後におけるDOの減少速度もしくはORPの減少速度と原水のBOD負荷との関係を予め測定評価してその相関を求めることにより、測定装置7の測定値を指標として原水のBOD負荷の評価値を決定することができる。
By the way, the correlation between the DO increase rate or decrease rate in the
このため、制御装置22は測定装置7の測定値に基づいてDOの増加速度、減少速度もしくはORPの増加速度、減少速度を算出し、算出したDOの増加速度、減少速度もしくはORPの増加速度、減少速度に基づいて、前槽散気装置3のブロア5、攪拌機6、測定装置7、原水供給ポンプ8、浸漬型膜分離装置10の吸引ポンプ17、送り移送ポンプ18、戻り移送ポンプ20の各機器を制御する。
For this reason, the
例えば、原水がBOD負荷の時間的変動を伴う性状の不安定なものである場合に、測定したDOの増加速度、減少速度もしくはORPの増加速度、減少速度に基づいて、制御装置22は前槽散気装置3の運転時間と停止時間からなる間欠運転サイクルの単位サイクル時間を増減調整し、あるいは間欠運転サイクル内の停止時間と運転時間の割合いを変更調整する。このことで、安定した脱窒効率の下で優れた窒素除去能を発揮することができる。
For example, when the raw water is unstable in nature with time variation of the BOD load, the
あるいは、制御装置22がDOの増加速度、減少速度もしくはORPの増加速度、減少速度に基づいて、原水の流入が停止(T1)した後に送り移送ポンプ18および戻り移送ポンプ21を起動するまでのインターバル時間を増減調整する。
Alternatively, the interval until the
ところで、硝化脱窒処理が硝化反応により律速される場合、つまり運転サイクルの硝化処理の時間が不足してアンモニア態窒素が残留する場合がある。以下に対応を説明する。運転例2
運転サイクルの前期において、その終了際には後槽2の水位が最低水位になる。この状態において洗浄用空気による膜カートリッジ14の膜面洗浄効果は最も低くなるので、運転サイクルの前期および後期を通して前槽1の水位はできるだけ高く、前槽1および後槽2の水位が同等に推移することが望ましい。
By the way, when nitrification denitrification treatment is rate-determined by nitrification reaction, that is, there is a case where ammonia nitrogen remains due to insufficient time for nitrification treatment in the operation cycle. The correspondence will be described below. Driving example 2
In the first half of the operation cycle, the water level in the
このため、図3(a)、(b)および図8に示すように、運転サイクルの前期において前槽散気装置3の停止に同期して非ばっ気状態の前槽1へ原水供給系8から所定の供給時間(T0〜T2)にわたって原水を供給するとともに、攪拌機6を駆動し、原水供給ポンプ8aを運転して原水供給系8から前槽1へ原水を供給する。送り移送系19の送り移送ポンプ18を運転し、槽内混合液を前槽1から後槽2へ移送する。
Therefore, as shown in FIGS. 3 (a), 3 (b) and FIG. 8, the raw
送り移送系19による槽内混合液の移送は前槽散気装置3の停止時および運転時を通して連続して行う。この間に、前槽1では前槽散気装置3のブロア5を所定の停止時間にわたって停止し、この間に無酸素状態で脱窒処理を行い、後槽2では酸素富裕状態で硝化処理および膜分離処理を行う。
The transfer of the liquid mixture in the tank by the
そして、原水の流入が停止(T2)した後に所定のインターバル時間(T2〜T3)を経て運転サイクルの後期となる。図3(c)、(d)に示すように、運転サイクルの後期における前槽1では酸素富裕状態で硝化処理を行う。このため、攪拌機6を停止し、前槽散気装置3のブロア5を所定の運転時間にわたって運転を継続し、次回の運転サイクルの初期(−T0)に前槽散気装置3の運転を停止する。戻り移送系19による槽内混合液の移送は前槽散気装置3の運転に同期して送り移送ポンプ18を起動して開始し、前槽散気装置3の停止に同期して送り移送ポンプ18を停止して終了する。
And after the inflow of raw water stops (T2), it becomes the latter half of an operation cycle through predetermined interval time (T2-T3). As shown in FIGS. 3C and 3D, the nitrification treatment is performed in an oxygen-rich state in the
運転サイクルの後期における後槽2では、前期に引き続いて酸素富裕状態で硝化処理および膜分離処理を行う。
運転例3
図4(a)、(b)および図7に示すように、運転サイクルの前期における前槽1では無酸素状態で脱窒処理を行うために、前槽散気装置3のブロア5を所定の停止時間にわたって停止し、この間に攪拌機6を駆動し、原水供給ポンプ8aを運転して原水供給系8から前槽1へ原水を供給する。
In the
Driving example 3
As shown in FIGS. 4 (a), (b) and FIG. 7, in order to perform the denitrification process in the oxygen-free state in the
攪拌機6および原水供給ポンプ8は前回運転サイクルの終了時における前槽散気装置3のブロア5の停止に同期して起動し、非ばっ気状態の前槽1へ原水供給系9から所定の供給時間(T0〜T1)にわたって原水を供給する。この原水の供給によって前槽1が最高水位となる。
The
運転サイクルの前期における後槽2では酸素富裕状態で硝化処理および膜分離処理を行う。このため、浸漬型膜分離装置10の吸引ポンプ17を運転して槽内混合液を膜カートリッジ14により膜分離し、膜透過液を集水管15、排出管16および吸引ポンプ17を通して系外へ取り出す。
In the
また、後槽散気装置9のブロア12を運転し、ブロア12から供給する空気を散気管11から膜洗浄用空気として散気し、膜カートリッジ14の膜面を洗浄するとともに、槽内混合液をばっ気して酸素供給を行う。
Further, the
次に、図4(c)、(d)に示すように、原水の流入が停止(T1)した後、所定のインターバル時間(T1〜T2)を経た時点で、かつ運転サイクルの後期に入る前の中期であって後槽2が最低水位となる時に、送り移送ポンプ18および戻り移送ポンプ20を起動し、送り移送系19により前槽1から後槽2へ槽内混合液を送り移送し、戻り移送系21により後槽2から前槽1へ槽内混合液を戻り移送し、前槽1と後槽2の間で槽内混合液(硝化液および活性汚泥)を循環させる。
Next, as shown in FIGS. 4 (c) and 4 (d), after the inflow of the raw water stops (T 1), after a predetermined interval time (
この中期において、前槽1の槽内混合液を後槽2へ供給することで、運転サイクルの後期における硝化処理に先立って、前槽1のアンモニア態窒素の一部が事前に後槽2で硝化され、硝化処理時間が実質的に長く確保される。このため、後述する運転サイクルの後期の硝化処理における負荷、つまり前槽1におけるアンモニア態窒素が減少し、後期の運転時間内で硝化処理を完了することが可能となる。
In this middle period, by supplying the mixed liquid in the
また、後槽2で硝化された硝化液が非ばっ気の無酸素状態の前槽1へ戻って脱窒されることで、本来は次回の運転サイクルの前期に脱窒されるべき硝酸も脱窒処理されるので、実質的に脱窒処理が促進される。
In addition, the nitrification liquid nitrified in the
インターバル時間(T1〜T2)は前槽1の嫌気性条件が壊れない範囲で設定する必要がある。
そして、送り移送ポンプ18および戻り移送ポンプ20を起動して後、つまり送り移送系19により前槽1から後槽2へ槽内混合液を送り移送を開始し、戻り移送系21により後槽2から前槽1へ槽内混合液を戻り移送を開始してから所定のインターバル時間(T2〜T3)を経て運転サイクルの後期となる。
The interval time (T1 to T2) needs to be set within a range where the anaerobic condition of the
Then, after the
図4(e)、(f)に示すように、運転サイクルの後期における前槽1では酸素富裕状態で硝化処理を行う。このため、攪拌機6を停止し、前槽散気装置3のブロア5を所定の運転時間にわたって運転を継続し、次回の運転サイクルの初期(−T0)に前槽散気装置3の運転を停止する。送り移送ポンプ18および戻り移送ポンプ20は、次回の運転サイクルの初期(−T0)まで運転を継続し、前槽散気装置3の停止に同期して送り移送系19および戻り移送系21による槽内混合液の移送を停止する。
As shown in FIGS. 4E and 4F, the nitrification treatment is performed in an oxygen-rich state in the
運転サイクルの後期における後槽2では、前期に引き続いて酸素富裕状態で硝化処理および膜分離処理を行う。
また、制御装置22が測定装置7の測定値に基づいてDOの増加速度、減少速度もしくはORPの増加速度、減少速度を算出し、算出したDOの増加速度、減少速度もしくはORPの増加速度、減少速度に基づいて、前槽散気装置3のブロア5、攪拌機6、測定装置7、原水供給ポンプ8、浸漬型膜分離装置10の吸引ポンプ17、送り移送ポンプ18、戻り移送ポンプ20の各機器を制御し、原水の流入停止後のインターバル時間を増減調整し、送り移送ポンプ18および戻り移送ポンプ20を起動させるタイミングを遅くしたり、速めたりすることで、安定した脱窒効率の下で優れた窒素除去能を発揮できる。
運転例4
上述の運転操作においても、運転サイクルの前期および後期を通して前槽1の水位はできるだけ高く、前槽1および後槽2の水位が同等に推移することが望ましい。
In the
Further, the
Driving example 4
Also in the above-described operation, it is desirable that the water level of the
このため、図5(a)、(b)および図9に示すように、運転サイクルの前期において前槽散気装置3の停止に同期して非ばっ気状態の前槽1へ原水供給系8から所定の供給時間(T0〜T2)にわたって原水を供給するとともに、攪拌機6を駆動し、原水供給ポンプ8aを運転して原水供給系8から前槽1へ原水を供給する。送り移送系19の送り移送ポンプ18を運転し、槽内混合液を前槽1から後槽2へ移送する。
For this reason, as shown in FIGS. 5A, 5B, and 9, the raw
送り移送系19による槽内混合液の移送は前槽散気装置3の停止時および運転時を通して連続して行う。この間に、前槽1では前槽散気装置3のブロア5を所定の停止時間にわたって停止し、この間に無酸素状態で脱窒処理を行い、後槽2では酸素富裕状態で硝化処理および膜分離処理を行う。
The transfer of the liquid mixture in the tank by the
そして、図5(a)、(b)に示すように、原水の流入が停止(T2)した時点で、かつ運転サイクルの後期に入る前の中期において、戻り移送ポンプ20を起動し、戻り移送系21により後槽2から前槽1へ槽内混合液を戻り移送し、前槽1と後槽2の間で槽内混合液(硝化液および活性汚泥)を循環させる。この後の作用効果は運転例3と同様であり、説明を省略する。
運転例5
上述した運転例1では、本発明の運転制御の指標をなす嫌気指標値および好気指標値としてDOの増加速度、減少速度もしくはORPの増加速度、減少速度を採用し、DOの増加速度、減少速度もしくはORPの増加速度、減少速度に基づいてサイクル調整制御、もしくはインターバル時間調整制御を行なった。つまり、サイクル調整制御では単位サイクル時間を増減調整し、あるいは間欠運転サイクル内の停止時間と運転時間の割合いを変更調整することを行った。また、インターバル時間調整制御では原水の流入停止後のインターバル時間を増減調整することを行った。
Then, as shown in FIGS. 5 (a) and 5 (b), when the inflow of raw water stops (T2) and in the middle period before the latter half of the operation cycle, the
Example 5
In the operation example 1 described above, the DO increase rate, the decrease rate or the ORP increase rate, the decrease rate are adopted as the anaerobic index value and the aerobic index value that are the indexes of the operation control of the present invention, and the DO increase rate, the decrease rate are reduced. Cycle adjustment control or interval time adjustment control was performed based on the rate or the rate of increase or decrease in ORP. That is, in the cycle adjustment control, the unit cycle time is adjusted to increase or decrease, or the ratio between the stop time and the operation time in the intermittent operation cycle is changed and adjusted. In the interval time adjustment control, the interval time after stopping the inflow of raw water was increased or decreased.
ところで、本発明における運転制御の指標をなす嫌気指標値、つまり前槽1における嫌気化の応答性能を示すものには、他の例として原水の投入時におけるDO減少速度(換言すると溶存酸素濃度がOになるまでの嫌気化に要する時間)があり、好気指標値、つまり好気化の応答性能を示すものには、他の例として散気開始時おけるDOの増加速度を採用することも可能である。
By the way, for an anaerobic index value which is an index of operation control in the present invention, that is, an anaerobic response performance in the
そして、嫌気指標値および好気指標値に基づいてサイクル調整制御もしくはインターバル時間調整制御もしくはサイクル調整制御とインターバル時間調整制御を組み合わせて行なう。
サイクル調整制御
サイクル調整制御は、前槽散気装置3の運転時間と停止時間からなる間欠運転サイクルの単位サイクル時間を増減調整し、あるいは間欠運転サイクル内の停止時間と運転時間の割合いを変更調整するものである。これは流量、濃度などの調整を目的とするものであり、原水の負荷が低くなる時、特に原水の流量が少なくなる時で、嫌気化の応答性能が悪化し、つまり原水の投入時に溶存酸素濃度がOになるまでの嫌気化に要する時間が5分以上となり極めて遅くなる場合に、サイクル時間の延長等を行なう。
Then, based on the anaerobic index value and the aerobic index value, cycle adjustment control or interval time adjustment control or cycle adjustment control and interval time adjustment control are combined.
Cycle adjustment control Cycle adjustment control increases or decreases the unit cycle time of the intermittent operation cycle consisting of the operation time and stop time of the
図19は制御を行なわない場合における、BOD負荷、サイクル時間、DOが0になるまでの時間、もどり開始時間を示しており、図18はサイクル調整制御を行なう場合におけるBOD負荷、サイクル時間、DOが0になるまでの時間、もどり開始時間を示している。 FIG. 19 shows BOD load, cycle time, time until DO becomes 0, and return start time when control is not performed. FIG. 18 shows BOD load, cycle time, DO when cycle adjustment control is performed. This shows the time until the value of 0 and the return start time.
また、サイクルの嫌気開始時におけるDO減少速度がサイクルを重ねるにつれて速くなり、サイクルの好気化開始時におけるDO増加速度がサイクルを重ねるにつれて遅くなる場合には、原水の流量が徐々に増えていることが要因であると判断し、サイクル調整制御においてサイクル時間を短くすることで希釈率を大きくし、制御を行なわない場合に増加するTKNを抑制する。 Also, if the DO decrease rate at the start of anaerobic cycle increases as the cycle repeats and the DO increase rate at the start of cycle aerobic decreases as the cycle repeats, the flow rate of raw water gradually increases Is determined as a factor, and in the cycle adjustment control, the cycle time is shortened to increase the dilution rate, and the TKN that increases when the control is not performed is suppressed.
また、サイクルの嫌気開始時におけるDO減少速度がサイクルを重ねるにつれて速くなり、サイクルの好気化開始時におけるDO増加速度がサイクルを重ねるにつれて遅くなる場合には、平均濃度よりも原水濃度が増え、あるいはMLSS濃度が増えたことが要因であると判断し、サイクル調整制御においてサイクル時間を短くすることで希釈率を大きくし、制御を行なわない場合に増加するNOxを抑制する。
インターバル時間調整制御
インターバル時間調整制御は、原水の流入停止後のインターバル時間を増減調整するものである。これは濃度などの調整を目的とするものであり、原水による負荷が高くなる時、特にアンモニアの残留などにより酸素が消費されてしまい、好気化の応答性能が悪化し、つまり散気開始時おけるDOの増加速度が遅くなる場合に、インターバル時間を短縮する。
Also, if the DO decrease rate at the start of anaerobic cycle increases as the cycle repeats and the DO increase rate at the start of cycle aerobic rate decreases as the cycle repeats, the raw water concentration increases from the average concentration, or It is determined that the increase in the MLSS concentration is a factor, and in the cycle adjustment control, the cycle time is shortened to increase the dilution rate, and the NOx that increases when the control is not performed is suppressed.
Interval time adjustment control The interval time adjustment control is to increase or decrease the interval time after stopping the inflow of raw water. This is for the purpose of adjusting the concentration, etc. When the load due to the raw water increases, oxygen is consumed due to residual ammonia, etc., and the aerobic response performance deteriorates. When the DO increase rate becomes slow, the interval time is shortened.
例えば、表3に示すように、サイクルの嫌気開始時におけるDO減少速度がサイクルを重ねるにつれて速くなり、サイクルの好気化開始時におけるDO増加速度がサイクルを重ねるにつれて遅くなる場合には、平均濃度よりも原水濃度が増え、あるいはMLSS濃度が増えたことが要因であると判断し、インターバル時間調整制御においてインターバル時間を短くして、送り時間を早めることで、制御を行なわない場合やサイクル調整制御を行なう場合増加するTKNを抑制する。 For example, as shown in Table 3, when the DO decrease rate at the start of the anaerobic cycle becomes faster as the cycle is repeated and the DO increase rate at the start of the aerobic cycle becomes slower as the cycle is repeated, However, it is judged that the increase in the raw water concentration or the increase in MLSS concentration is the cause, and the interval time is shortened and the feed time is shortened in the interval time adjustment control. TKN which increases when performing is suppressed.
また、当初の計画負荷よりも原水の負荷が多くて嫌気化の応答性能が過剰で、原水の投入時に溶存酸素濃度がOになるまでの嫌気化に要する時間が短すぎる場合で、かつ好気化の応答性能が悪化し、つまり散気開始時おけるDOの増加速度が遅くなる場合には、サイクル調整制御とインターバル時間調整制御を組み合わせて行なう。 Also, when the load of raw water is larger than the original planned load and the response performance of anaerobic is excessive, the time required for anaerobic until the dissolved oxygen concentration becomes O when the raw water is charged is too short, and aerobic When the DO response speed deteriorates, that is, when the DO increase rate at the start of air diffusion slows, cycle adjustment control and interval time adjustment control are combined.
図17はサイクル調整制御とインターバル時間調整制御を組み合わせて行なう場合における負荷、サイクル時間、DOが0になるまでの時間、もどり開始時間の変化を示している。 FIG. 17 shows changes in load, cycle time, time until DO becomes 0, and return start time when cycle adjustment control and interval time adjustment control are performed in combination.
この結果、図20に示すように、制御を行なわない場合には、負荷の増える時に、ここではサイクル回数が20回程度の時に、窒素濃度が上昇する傾向が大きくなるが、サイクル調整制御あるいはサイクル調整制御とインターバル時間調整制御を組み合わせることで、窒素濃度を常に低い濃度に抑制することができる。 As a result, as shown in FIG. 20, when the control is not performed, when the load increases, here, when the number of cycles is about 20 times, the nitrogen concentration tends to increase. By combining the adjustment control and the interval time adjustment control, the nitrogen concentration can always be suppressed to a low concentration.
サイクル時間(希釈倍率)調整やインターバル時間調整でも、良好な処理が行われないときは、計画以上の負荷、あるいは想定外の酸素消費物質があるなどの要因が考えられる。その場合は、窒素除去の大幅な悪化を防ぐ制御として、間欠ばっ気の停止時間と運転時間の割合を変えることが有効である。例えば、想定以上に高MLSSで酸素消費が増加していれば、それはDO減少速度の増大として表れるが、それがサイクル時間(希釈倍率)調整やインターバル時間調整でもなかなか解消されなければ、想定外の状況になっていると判断して、間欠ばっ気の停止時間割合を減少させ、運転時間の割合を増加させることにより、酸素の供給量を増大させる。逆の状況もあり、そのときは、間欠ばっ気の停止時間割合を増加させ、運転時間の割合を減少させることにより、酸素の供給量を減少させる。 Even if the cycle time (dilution ratio) adjustment or interval time adjustment is not successful, there may be factors such as a load exceeding the plan or an unexpected oxygen consumption substance. In this case, it is effective to change the ratio of the intermittent aeration stop time and the operation time as control for preventing a significant deterioration in nitrogen removal. For example, if oxygen consumption increases at a higher MLSS than expected, it appears as an increase in the DO reduction rate, but if this is not solved easily by adjusting the cycle time (dilution factor) or adjusting the interval time, it is unexpected. It is determined that the situation is in effect, and the oxygen supply amount is increased by decreasing the intermittent aeration stop time ratio and increasing the operation time ratio. There is also an opposite situation, in which case the oxygen supply amount is reduced by increasing the intermittent aeration stop time ratio and decreasing the operation time ratio.
1 前槽
2 後槽
3 前槽散気装置
4 散気管
5 ブロア
6 攪拌機
7 測定装置
8 原水供給系
8a 原水供給ポンプ
9 後槽散気装置
10 浸漬型膜分離装置
11 散気管
12 ブロア
13 ケーシング
14 膜カートリッジ
15 集水管
16 排出管
17 吸引ポンプ
18 送り移送ポンプ
19 送り移送系
20 戻り移送ポンプ
21 戻り移送系
22 制御装置
DESCRIPTION OF
Claims (6)
サイクル調整制御において制御手段は、測定手段の測定値に基づいて前槽散気装置の運転時間と停止時間からなる間欠運転サイクルの単位サイクル時間を増減調整し、あるいは間欠運転サイクル内の停止時間と運転時間の割合いを変更調整することを特徴とする請求項1〜4の何れか1項に記載の汚水の処理装置。 Measuring means for measuring at least one of an anaerobic index value indicating anaerobic response performance and an aerobic index value indicating aerobic response performance in the front tank, and at least an anaerobic index value and an aerobic index value measured by the measuring means Control means for performing cycle adjustment control based on one measurement value,
In the cycle adjustment control, the control means adjusts the unit cycle time of the intermittent operation cycle consisting of the operation time and the stop time of the front tank diffuser based on the measurement value of the measurement means, or the stop time in the intermittent operation cycle The wastewater treatment apparatus according to any one of claims 1 to 4, wherein the proportion of the operation time is changed and adjusted.
インターバル時間調整制御において制御手段は、測定手段の測定値に基づいて原水の流入停止後のインターバル時間を増減調整することを特徴とする請求項3または4に記載の汚水の処理装置。 Measuring means for measuring at least one of an anaerobic index value indicating anaerobic response performance and an aerobic index value indicating aerobic response performance in the front tank, and at least an anaerobic index value and an aerobic index value measured by the measuring means Control means for performing interval time adjustment control based on one measurement value,
5. The wastewater treatment apparatus according to claim 3, wherein in the interval time adjustment control, the control unit adjusts the interval time after stopping the inflow of the raw water based on the measurement value of the measurement unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247425A JP5052081B2 (en) | 2006-09-13 | 2006-09-13 | Sewage treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247425A JP5052081B2 (en) | 2006-09-13 | 2006-09-13 | Sewage treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008068174A JP2008068174A (en) | 2008-03-27 |
JP5052081B2 true JP5052081B2 (en) | 2012-10-17 |
Family
ID=39290243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006247425A Expired - Fee Related JP5052081B2 (en) | 2006-09-13 | 2006-09-13 | Sewage treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5052081B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6007679B2 (en) * | 2012-08-31 | 2016-10-12 | Jfeスチール株式会社 | Biological treatment method for wastewater containing nitrogen |
JP6070443B2 (en) * | 2013-06-28 | 2017-02-01 | 株式会社明電舎 | Wastewater treatment method |
JP6634862B2 (en) * | 2015-03-16 | 2020-01-22 | 三菱ケミカル株式会社 | Wastewater treatment method and wastewater treatment device |
JP2020179340A (en) * | 2019-04-25 | 2020-11-05 | 株式会社クボタ | Operational method of organic wastewater treatment facility and organic wastewater treatment facility |
-
2006
- 2006-09-13 JP JP2006247425A patent/JP5052081B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008068174A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7850851B2 (en) | Biological phosphorus removal | |
US6616843B1 (en) | Submerged membrane bioreactor for treatment of nitrogen containing water | |
US7931802B2 (en) | Water treatment system | |
EP1931603B1 (en) | Dynamic control of membrane bioreactor system | |
JP6666165B2 (en) | Nitrification and denitrification treatment method for ammoniacal nitrogen-containing liquid to be treated | |
JP2018138292A (en) | Water treatment method and apparatus | |
WO2000037369A1 (en) | Submerged membrane bioreactor for treatment of nitrogen containing water | |
JP5052081B2 (en) | Sewage treatment equipment | |
JP5105243B2 (en) | Membrane separation activated sludge treatment apparatus and method | |
JP2003154394A (en) | Biological denitrification method and apparatus | |
JP2016182551A (en) | Treatment method for organic waste water and treatment system therefor | |
KR102281691B1 (en) | Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater | |
JP7015117B2 (en) | Organic wastewater treatment method and organic wastewater treatment system | |
JP4386054B2 (en) | Intermittent biological treatment method | |
KR100453646B1 (en) | advanced wastwater treatment system using a submerged type membrane | |
JP2004148144A (en) | Method for treating sewage | |
JPH1034185A (en) | Drainage treatment method | |
JP2005279347A (en) | Biological treatment method employing membrane separator, and biological treatment apparatus | |
JP4307275B2 (en) | Wastewater treatment method | |
JP2003266096A (en) | Wastewater treatment apparatus | |
JP2001314892A (en) | Method for controlling denitrification apparatus of wastewater | |
JP4612078B2 (en) | Biological treatment method and biological treatment apparatus | |
KR100469641B1 (en) | advanced wastwater treatment apparatus using a submerged type membrane | |
JP3807945B2 (en) | Method and apparatus for treating organic wastewater | |
RU2644904C1 (en) | Method of biological purification of wastewater from nitrogen phosphoric and organic compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080430 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5052081 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |