JP5051634B2 - Ion beam generating method and ion beam generating apparatus for carrying out the same - Google Patents
Ion beam generating method and ion beam generating apparatus for carrying out the same Download PDFInfo
- Publication number
- JP5051634B2 JP5051634B2 JP2006321053A JP2006321053A JP5051634B2 JP 5051634 B2 JP5051634 B2 JP 5051634B2 JP 2006321053 A JP2006321053 A JP 2006321053A JP 2006321053 A JP2006321053 A JP 2006321053A JP 5051634 B2 JP5051634 B2 JP 5051634B2
- Authority
- JP
- Japan
- Prior art keywords
- ion beam
- helium
- laser
- line
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electron Sources, Ion Sources (AREA)
Description
本発明は、ヘリウムイオンビームを用いて表面・界面の原子配列を解析する装置におけるイオンビーム発生方法とそれを実施する為のイオンビーム発生装置に関する。 The present invention relates to an ion beam generating method in an apparatus for analyzing an atomic arrangement at a surface / interface using a helium ion beam and an ion beam generating apparatus for carrying out the method.
前記のようにヘリウムイオンビームを使用する分野では、しばしば、いかにイオンビームを大電流化するかが課題となっていた。
例えば、非特許文献1から3に示すようにこのイオンビームの大電流化を達成するために、高周波放電イオン源では、放電電力や外部磁場印加など、従来から様々な工夫がなされてきた。
For example, as shown in Non-Patent Documents 1 to 3, various devices such as discharge power and application of an external magnetic field have been conventionally made in a high-frequency discharge ion source in order to achieve a large current of the ion beam.
しかし、上記従来技術による大電流化は、イオンビームの利用分野に様々な制約を与える問題があった。例えば、放電電力の大電力化は、しばしば電気的ノイズの誘発や放電管温度の上昇、等の問題を引き起こす。したがって、大電力化と同時にこれらの問題への対策が必要であるが、この対策は必ずしも容易ではない。そこで、イオンビームの利用が、電気的ノイズや放電管温度上昇が問題とならない分野にしばしば限定される問題があった。また、外部磁場の印加は、イオンビームを利用した電子分光において、漏れ磁場がスペクトル強度の低下を招く問題があった。本発明は、簡便で汎用性のあるイオンビームの大電流化方法を提供することで、これらの問題を解決することを目的とする。
However, the increase in current according to the above prior art has a problem of restricting various fields in the field of application of the ion beam. For example, increasing the discharge power often causes problems such as induction of electrical noise and an increase in discharge tube temperature. Therefore, it is necessary to take measures against these problems simultaneously with the increase in power consumption, but this measure is not always easy. Therefore, there is a problem that the use of an ion beam is often limited to a field where electrical noise and discharge tube temperature rise are not a problem. In addition, the application of an external magnetic field has a problem that a leakage magnetic field causes a decrease in spectral intensity in electron spectroscopy using an ion beam. The present invention aims to solve these problems by providing a simple and versatile method for increasing the current of an ion beam.
上記課題を解決するために、発明1のイオンビーム発生方法は、高周波放電によりヘリウムプラズマを発生させてから、前記ヘリウムプラズマ中に生成する準安定ヘリウム原子に、準安定ヘリウム原子2 3 S 1 から2 3 Pへの遷移に対応する1083nmのD 0 線、D 1 線、D 2 線の内のどれかの波長の光を照射して、前記準安定ヘリウム原子2 3 S 1 を2 3 Pへ光ポンピングすることを特徴とする。
In order to solve the above problem, the ion beam generation method of the invention 1 from to generate helium plasma Ri by the high-frequency discharge, the metastable helium atoms produced during the helium plasma, metastable helium atoms 2 3 S The metastable helium atom 2 3 S 1 is changed to 2 3 by irradiating light of any wavelength of the 1083 nm D 0 line, D 1 line, and D 2 line corresponding to the transition from 1 to 2 3 P. It is characterized by optical pumping to P.
発明2は、発明1のイオンビーム発生方法を実施する為のイオンビーム発生装置であって、高周波放電によりヘリウムプラズマを発生させる高周波放電管と、光ポンピングのために、準安定ヘリウム原子2 3 S 1 から2 3 Pへの遷移に対応する1083nmのD 0 線、D 1 線、D 2 線の内のどれかの波長に波長調整したレーザ光を発生可能なレーザ発生装置と、このレーザ発生装置からのレーザ光を前記高周波放電管内に照射するレーザ照射装置と、前記ヘリウムプラズマに照射されたレーザ光の波長を観察する観察装置とからなることを特徴とする。
Invention 2 is an ion beam generator for carrying out the ion beam generating method of Invention 1, and a high-frequency discharge tube for generating helium plasma by high-frequency discharge, and metastable helium atoms 2 3 S for optical pumping. A laser generator capable of generating laser light having a wavelength adjusted to any one of the 1083 nm D 0 line, D 1 line, and D 2 line corresponding to the transition from 1 to 2 3 P, and the laser generator The laser irradiation apparatus irradiates the laser beam from the laser beam into the high-frequency discharge tube and the observation apparatus that observes the wavelength of the laser beam irradiated to the helium plasma.
発明3は、発明2のイオンビーム発生装置において、前記レーザ照射装置には、前記レーザ光を円偏光とする波長板が設けてあることを特徴とする。 A third aspect of the present invention is characterized in that, in the ion beam generator of the second aspect, the laser irradiation device is provided with a wave plate that circularly polarizes the laser light.
発明1により、高周波電力等の放電条件の調整や外部磁場の印可などを行わずに、ヘリウムプラズマから大電力のヘリウムイオンビームを導き出すことができたので、イオンビームの大電流化により利用分野が制約される問題を解消することができた。 The invention 1 can derive a high-power helium ion beam from helium plasma without adjusting discharge conditions such as high-frequency power or applying an external magnetic field. We were able to solve the restricted problem.
発明2により、前記方法を実現することができ、大電力のヘリウムイオンビームを用いることができた。 According to the invention 2, the above method can be realized, and a high power helium ion beam can be used.
発明3によりイオンビームの大電流化に加えて、イオンビームをスピン偏極することが出来た。 According to the invention 3, in addition to increasing the current of the ion beam, the ion beam can be spin-polarized.
本発明は、下記の実施例に限定されるものではなく、発明の主旨に基づき、従来公知の各種技術を組み合わせ又は一部を置換することが可能である。 The present invention is not limited to the following examples, and various known techniques can be combined or partially replaced based on the gist of the invention.
図1は、本発明によるイオンビーム発生装置を示し、以下の構成を有している。
なお、図1に示すのは、発生したイオンビームの内容を如何にして検査したかを示す検査装置を含み示してある。
FIG. 1 shows an ion beam generator according to the present invention, which has the following configuration.
Note that FIG. 1 includes an inspection apparatus that shows how the content of the generated ion beam was inspected.
図1の高周波放電管(1)へヘリウムガスを導入し、高周波電極(2)、マッチングユニット(4)、および高周波電源(5)を用いて、高周波放電管(1)の中で、ヘリウムプラズマを発生させた。このヘリウムプラズマ中で発生したヘリウムイオンを、引き出し電極(3)とリペラー電極(6)に電圧を印加することでコンデンサーレンズ(7)へ導き出した。この引き出されたイオンビームを、コンデンサーレンズ(7)、フォーカシングレンズ(8)、ディフレクター(9)、アインツェルレンズ(10)、減速電極(11)、およびディフレクター(12)を使用してイオンビーム検出電極(28)まで輸送した。この際、電流計(29)の値が最大となるようにこれらの電極(7)〜(12)に印加される電圧を調整した。イオンビーム電流は、イオンビーム検出電極(28)に到達するイオンビームの強度を電流計(29)で測定することにより評価した。 Helium gas is introduced into the high-frequency discharge tube (1) of FIG. 1, and helium plasma is used in the high-frequency discharge tube (1) using the high-frequency electrode (2), the matching unit (4), and the high-frequency power source (5). Was generated. The helium ions generated in the helium plasma were led out to the condenser lens (7) by applying a voltage to the extraction electrode (3) and the repeller electrode (6). The extracted ion beam is detected by using a condenser lens (7), a focusing lens (8), a deflector (9), an Einzel lens (10), a deceleration electrode (11), and a deflector (12). Transported to electrode (28). At this time, the voltage applied to these electrodes (7) to (12) was adjusted so that the value of the ammeter (29) was maximized. The ion beam current was evaluated by measuring the intensity of the ion beam reaching the ion beam detection electrode (28) with an ammeter (29).
光ファイバーレーザー(13)の波長1083nm出力光を、光ファイバー経由で光ファイバー増幅器(14)に入力した。この入力光を、光ファイバー増幅器(14)で増強し、光ファイバーコネクタ(15)から空間に放出した。この放出光を、光ファイバーレーザー(13)内に設置された偏光器を用いて、直線偏光とした。光ファイバーコネクタ(15)から空間に放出された光を、1/2波長板(17)を用いて偏光方向を調整し、次いで1/4波長板(18)を用いて円偏光とした。この円偏光を、レンズ(16,19)を用いて整形した上で、放電管中に発生したヘリウムプラズマへ照射し、プラズマ中に存在する準安定ヘリウム原子を光ポンピングした。また、この円偏光の照射方向を、コイル(30)で作られる磁場と平行となるように調整した。磁場の大きさは、直流電源(31)を調整することで、放電管付近で1ガウス程度となるようにした。
Output light having a wavelength of 1083 nm of the optical fiber laser (13) was input to the optical fiber amplifier (14) via the optical fiber. This input light was amplified by the optical fiber amplifier (14) and emitted from the optical fiber connector (15) into the space. This emitted light was converted into linearly polarized light using a polarizer installed in the optical fiber laser (13). The direction of polarization of light emitted from the optical fiber connector (15) into the space was adjusted using a half-wave plate (17), and then circularly polarized using a quarter-wave plate (18). This circularly polarized light was shaped using the lenses (16, 19), and then irradiated to helium plasma generated in the discharge tube to optically pump metastable helium atoms present in the plasma. Moreover, the irradiation direction of this circularly polarized light was adjusted to be parallel to the magnetic field produced by the coil (30). The magnitude of the magnetic field was adjusted to about 1 gauss near the discharge tube by adjusting the DC power supply (31).
プローブ光レーザーダイオード(20)からの波長1083nmの光を1/2波長板(23)および1/4波長板(25)で円偏光とした。この円偏光をミラー(24)を用いて、コイル(30)で発生した磁場と平行の方向からプラズマへ照射した。このプローブ光の透過強度をパワーメータ(27)で観測した。この際、まず光ポンピングをしない状態の透過強度測定から、プローブ光の波長を、準安定ヘリウム原子の23S1から23P0への遷移(D0線)に対応する波長となるようにプローブ光レーザーダイオード(20)を微調整した。次に、光ポンピングをした状態で、プローブ光の透過強度観測を左回りと右回りの円偏光に対して行った。そして、この観測から求められる準安定ヘリウム原子の偏極率が極大となるように、光ファイバーレーザー(13)からの出力光の波長の調整を行い、その波長が準安定ヘリウム原子の23S1から23Pへの遷移(D0、D1、またはD2線)となるように微調整した。また、準安定ヘリウム原子の偏極率が極大となるように、波長板(17,18)の調整を行った。 Light having a wavelength of 1083 nm from the probe light laser diode (20) was circularly polarized by the half-wave plate (23) and the quarter-wave plate (25). This circularly polarized light was irradiated to the plasma from a direction parallel to the magnetic field generated by the coil (30) using a mirror (24). The transmission intensity of the probe light was observed with a power meter (27). At this time, from the transmission intensity measurement without optical pumping, the wavelength of the probe light is set to a wavelength corresponding to the transition from the 2 3 S 1 to 2 3 P 0 of the metastable helium atom (D 0 line). The probe laser diode (20) was finely adjusted. Next, in the state of optical pumping, the transmission intensity of the probe light was observed for counterclockwise and clockwise circularly polarized light. Then, the wavelength of the output light from the optical fiber laser (13) is adjusted so that the polarization rate of the metastable helium atom obtained from this observation is maximized, and the wavelength is 2 3 S 1 of the metastable helium atom. To 2 3 P transition (D 0 , D 1 , or D 2 line). In addition, the wavelength plates (17, 18) were adjusted so that the polarization rate of metastable helium atoms was maximized.
光ポンピングの照射光の波長は、光ポンピングの高効率化のために、準安定ヘリウム原子23S1の23Pへの遷移(D0、D1、D2線)に対応する波長に調整する。 The wavelength of the irradiation light of the optical pumping is set to a wavelength corresponding to the transition from the metastable helium atom 2 3 S 1 to 2 3 P (D 0 , D 1 , D 2 lines) in order to increase the efficiency of the optical pumping. adjust.
ヘリウムイオンビームは、表面・界面の組成や構造解析などの分析装置、イオン注入装置、イオンビーム加工装置、イオンビーム蒸着装置に利用されており、本技術はこれらの装置への応用が期待される。また、ヘリウムを他のガス種などと混合して放電を起こすことにより他のガス種イオンを発生するイオン源や、同様の原理を用いた分析装置においても本技術の応用が期待される。さらに、ヘリウムを含むプラズ利用分野においても、本技術の応用が期待される。
Helium ion beams are used in analytical equipment such as surface / interface composition and structural analysis, ion implantation equipment, ion beam processing equipment, and ion beam deposition equipment, and this technology is expected to be applied to these equipment. . The application of the present technology is also expected in an ion source that generates ions of other gas species by mixing helium with other gas species to generate a discharge and an analyzer using the same principle. Furthermore, the application of this technology is also expected in the field of plasma utilization including helium.
1.高周波放電管
2.高周波電極
3.引き出し電極
4.マッチングユニット
5.高周波電源
6.リペラー電極
7.コンデンサーレンズ
8.フォーカシングレンズ
9.ディフレクター
10.アインツェルレンズ
11.減速電極
12.ディフレクター
13.光ファイバーレーザー
14.光ファイバー増幅器
15.光ファイバーコネクタ
16.レンズ
17.1/2波長板
18.1/4波長板
19.レンズ
20.プローブ光レーザーダイオード
21.レンズ
22.フィルター
23.1/2波長板
24.ミラー
25.1/4波長板
26.ミラー
27.パワーメータ
28.イオンビーム検出電極
29.電流計
30.コイル
31.直流電源
32.本技術を利用した大電流イオン源
33.試料
34.エネルギー分析器
1. 1. High frequency discharge tube 2. High frequency electrode Extraction electrode 4. 4. Matching unit 5. High frequency power supply 6. Repeller electrode Condenser lens8. 8. Focusing lens Deflector 10. Einzel lens11. Deceleration electrode 12. Deflector 13. Optical fiber laser 14. Optical fiber amplifier 15. Optical fiber connector 16. Lens 17. 1/2 wave plate 18. 1/4 wave plate 19. Lens 20. Probe light laser diode 21. Lens 22. Filter 23. 1/2 wave plate 24. Mirror 25. 1/4 wave plate 26. Mirror 27. Power meter 28. Ion beam detection electrode 29. Ammeter 30. Coil 31. DC power supply 32. High-current ion source using the present technology 33. Sample 34. Energy analyzer
Claims (3)
高周波放電によりヘリウムプラズマを発生させてから、前記ヘリウムプラズマ中に生成する準安定ヘリウム原子2 3 S 1 に、準安定ヘリウム原子2 3 S 1 から2 3 Pへの遷移に対応する1083nmのD 0 線、D 1 線、D 2 線の内のどれかの波長の光を照射して、前記準安定ヘリウム原子2 3 S 1 を2 3 Pへ光ポンピングすることを特徴とするイオンビーム発生方法。 An ion beam generating method in an apparatus for performing a desired work using a helium ion beam,
From by generating by Ri helium plasma RF discharge, the metastable helium atoms 2 3 S 1 generated during the helium plasma, metastable helium atoms 2 3 S 1 from 1083nm corresponding to the transition to the 2 3 P Ion beam generation characterized in that the metastable helium atom 2 3 S 1 is optically pumped to 2 3 P by irradiating light of any one of the D 0 line, D 1 line, and D 2 line Method.
高周波放電によりヘリウムプラズマを発生させる高周波放電管と、
光ポンピングのために準安定ヘリウム原子2 3 S 1 から2 3 Pへの遷移に対応する1083nmのD 0 線、D 1 線、D 2 線の内のどれかの波長へ波長調整したレーザ光を発生可能なレーザ発生装置と、
このレーザ発生装置からのレーザ光を前記高周波放電管内に照射するレーザ照射装置と、
前記ヘリウムプラズマに照射されたレーザ光の波長を観察する観察装置とからなることを特徴とするイオンビーム発生装置。 An ion beam generator for carrying out the ion beam generating method according to claim 1,
A high frequency discharge tube for generating helium plasma by high frequency discharge;
For optical pumping, a laser beam whose wavelength is adjusted to any of the 1083 nm D 0 line, D 1 line, and D 2 line corresponding to the transition from metastable helium atoms 2 3 S 1 to 2 3 P A laser generator capable of generating;
A laser irradiation device for irradiating the high-frequency discharge tube with laser light from the laser generator;
An ion beam generator comprising: an observation device for observing the wavelength of the laser beam irradiated to the helium plasma.
前記レーザ照射装置には、前記レーザ光を円偏光とする波長板が設けてあることを特徴とするイオンビーム発生装置。
In the ion beam generator according to claim 2,
An ion beam generating apparatus, wherein the laser irradiation apparatus is provided with a wave plate that circularly polarizes the laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006321053A JP5051634B2 (en) | 2006-11-29 | 2006-11-29 | Ion beam generating method and ion beam generating apparatus for carrying out the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006321053A JP5051634B2 (en) | 2006-11-29 | 2006-11-29 | Ion beam generating method and ion beam generating apparatus for carrying out the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008135309A JP2008135309A (en) | 2008-06-12 |
JP5051634B2 true JP5051634B2 (en) | 2012-10-17 |
Family
ID=39560012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006321053A Expired - Fee Related JP5051634B2 (en) | 2006-11-29 | 2006-11-29 | Ion beam generating method and ion beam generating apparatus for carrying out the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5051634B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6430638A (en) * | 1987-07-27 | 1989-02-01 | Mitsubishi Electric Corp | Ion source |
JPH07192893A (en) * | 1993-12-27 | 1995-07-28 | Hitachi Ltd | Plasma equipment |
JP3159097B2 (en) * | 1997-01-10 | 2001-04-23 | 日新電機株式会社 | Film formation method |
JP4339068B2 (en) * | 2003-10-10 | 2009-10-07 | 独立行政法人科学技術振興機構 | Spray glow discharge ionization method and apparatus |
JP4202889B2 (en) * | 2003-10-29 | 2008-12-24 | 株式会社神戸製鋼所 | Thin film forming method and apparatus |
JP4481687B2 (en) * | 2004-03-10 | 2010-06-16 | 独立行政法人理化学研究所 | Method and apparatus for simultaneously generating spin-polarized electrons and spin-polarized ions |
-
2006
- 2006-11-29 JP JP2006321053A patent/JP5051634B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008135309A (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Corder et al. | Ultrafast extreme ultraviolet photoemission without space charge | |
Lochbrunner et al. | Methods and applications of femtosecond time-resolved photoelectron spectroscopy | |
JP3623025B2 (en) | Mixed gas component analyzer | |
Grazioli et al. | CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science | |
Raeder et al. | In-source laser spectroscopy developments at TRILIS—towards spectroscopy on actinium and scandium | |
Li et al. | Contribution of nitrogen atoms and ions to the luminescence emission during femotosecond filamentation in air | |
JP5322157B2 (en) | Spin-polarized ion beam generating apparatus, scattering spectroscopic apparatus and method using the spin-polarized ion beam, and sample processing apparatus | |
Qin et al. | Direct observation of field-free alignment of asymmetric molecules in excited states | |
Horsch et al. | Circular dichroism in ion yields in multiphoton ionization of (R)-propylene oxide employing femtosecond laser pulses | |
LIU et al. | Ultrafast dynamics of the first excited state of chlorobenzene | |
JP5051634B2 (en) | Ion beam generating method and ion beam generating apparatus for carrying out the same | |
CN107219182B (en) | The particle beams excites vacuum ultraviolet-visible light wave range magneto-optic spectrum test method and system | |
Kang et al. | Wavelength-dependent ionization suppression of diatomic molecules in intense circularly polarized laser fields | |
Margarone et al. | Measurements of the highest acceleration gradient for ions produced with a long laser pulse | |
JP5212962B2 (en) | Polarized ion beam generating method and polarized ion beam generating apparatus used for the method | |
Liu et al. | Core scattering of quadratic Zeeman orbits in barium | |
Van Duzor et al. | The effect of intracluster photoelectron interactions on the angular distribution in I−⋅ CH3I photodetachment | |
Winchester et al. | Methodology and implementation of a tunable deep-ultraviolet laser source for photoemission electron microscopy | |
Zhang et al. | A direct frequency comb for two-photon transition spectroscopy in a cesium vapor | |
Behrens et al. | XUV-beamline for photoelectron imaging spectroscopy with shaped pulses | |
JP2011029077A (en) | Polarized ion beam generating device, and polarized ion beam generating method | |
Cortázar et al. | The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge | |
Gao et al. | High-order harmonic generation in X-ray range from laser induced noble gas multivalent ions | |
KR101663707B1 (en) | Fiber Laser Based Resonance Ionization Mass Spectrometry Device | |
Viktorov et al. | Photoionization of polarized doublet states of Xenon atom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120717 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |