JP5050537B2 - Thick steel plate cutting method - Google Patents
Thick steel plate cutting method Download PDFInfo
- Publication number
- JP5050537B2 JP5050537B2 JP2007017522A JP2007017522A JP5050537B2 JP 5050537 B2 JP5050537 B2 JP 5050537B2 JP 2007017522 A JP2007017522 A JP 2007017522A JP 2007017522 A JP2007017522 A JP 2007017522A JP 5050537 B2 JP5050537 B2 JP 5050537B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- cut surface
- steel plate
- heating
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、シャー剪断のような機械的切断方法による厚鋼板の切断方法に関し、特に搬送ライン上に設けた冷却装置で冷却を行う高強度鋼板のオンライン切断時に生じる、鋼中残留水素に起因した断面割れの発生防止に好適なものに関する。 The present invention relates to a method for cutting a thick steel plate by a mechanical cutting method such as shear shearing, and in particular, due to residual hydrogen in steel that occurs during online cutting of a high-strength steel plate that is cooled by a cooling device provided on a transfer line. The present invention relates to a material suitable for preventing occurrence of cross-sectional cracks.
近年、厚鋼板は高強度化と厚肉化が要求され、その生産性確保のため、加熱・圧延・冷却・精整の各工程においてオンライン処理化が求められている。ラインパイプ用厚鋼板の場合、大量に生産されるため、オンライン処理化の要望が強く、X120グレード鋼板をオンラインで安定的に生産する技術の確立が急務となっている。 In recent years, thick steel plates are required to have high strength and thickness, and in order to ensure productivity, online processing is required in each process of heating, rolling, cooling, and refining. In the case of thick steel plates for line pipes, since they are produced in large quantities, there is a strong demand for on-line processing, and there is an urgent need to establish technology for stably producing X120 grade steel plates online.
オンライン化された高強度厚鋼板の量産プロセスにおける課題の一つとして、オンライン切断時に生じる断面割れが挙げられる。断面割れは高強度材ほど発生し易く、切断後の断面に板厚1/2部(中心部)の偏析部近傍を起点とした水平割れ及び斜め割れが生じる。 One of the problems in the mass production process of online high-strength thick steel plates is a cross-sectional crack that occurs during online cutting. Cross-sectional cracks are more likely to occur with higher strength materials, and horizontal cracks and oblique cracks starting from the vicinity of the segregated portion with a plate thickness of ½ part (center part) occur in the cut section.
特に、ラインパイプ用厚鋼板の場合、切断時に2〜3mm程度の深い亀裂が生じると、造管時に割れが拡大して重大な欠陥となるため、断面割れの防止が必要である。 In particular, in the case of a thick steel plate for a line pipe, if a deep crack of about 2 to 3 mm occurs at the time of cutting, the crack expands and becomes a serious defect at the time of pipe making, so it is necessary to prevent a cross-sectional crack.
断面割れは鋼板中の水素に起因する水素脆化割れによるものとされ、断面割れを防止する方法として、切断前における鋼板徐冷プロセスが有効なことが従来から知られている。 Cross-sectional cracks are caused by hydrogen embrittlement cracks caused by hydrogen in the steel sheet, and it has been conventionally known that a steel sheet slow cooling process before cutting is effective as a method for preventing cross-sectional cracks.
鋼板徐冷により水素割れを抑制する技術として、例えば特許文献1には、特に鋼板端部において効率的な徐冷を行うための鋼板積重ね方法が開示され、特許文献2には、徐冷ボックス内に鋼板を積置きした後、減圧する事により徐冷効率の向上を図る方法が開示されている。
As a technique for suppressing hydrogen cracking by slow cooling of a steel plate, for example, Patent Document 1 discloses a steel plate stacking method for performing efficient slow cooling, particularly at the end of a steel plate, and
また、特許文献3には、鋼板の降伏応力(YS)の予測値から割れ臨界水素濃度Cthを求め、スラブ徐冷及び成品徐冷による残留水素率から最適な徐冷時間を算定する方法が開示されている。
しかしながら、特許文献1や特許文献2に記載されている鋼板徐冷を行う方法は、冷却床上の鋼板をクレーンにより持ち上げ、徐冷場所に山積みするオフライン処理が必要で、長い処理時間を要する上に、表面疵発生等も懸念される。
However, the method of performing slow cooling of steel sheets described in Patent Document 1 and
更に、一般に積重ね徐冷は、板厚,冷却終了温度によって徐冷温度,徐冷時間が変化するため、十分な徐冷効果が常に得られるわけではない。 Furthermore, in general, the stacked slow cooling does not always provide a sufficient slow cooling effect because the slow cooling temperature and the slow cooling time vary depending on the plate thickness and the cooling end temperature.
また、特許文献3記載の方法は水素割れに及ぼす徐冷の影響のみを考慮したものであり、鋼板の加速冷却の影響は考慮されておらず、ある特定の温度、例えば、切断時の温度(100〜200℃)における鋼板水素量を予測する方法については明記されていない。
In addition, the method described in
例えば、加熱炉挿入直前のスラブ残留水素値(ppm)/鋳込み直後のスラブ残留水素値(ppm)で定義されるα,工場より出荷する直前の製品残留水素値(ppm)/加熱炉挿入直前のスラブ残留水素値(ppm)で定義されるβで規定される残留水素率の値も、実際の水素の拡散現象を的確に評価して与えられたものではなく、切断後の水素割れ発生有無を評価する方法として用いる事は出来ない。 For example, α defined by the slab residual hydrogen value (ppm) immediately before insertion of the heating furnace / slab residual hydrogen value (ppm) immediately after casting, the product residual hydrogen value (ppm) immediately before shipment from the factory / immediately before insertion of the heating furnace The value of residual hydrogen rate defined by β defined by the slab residual hydrogen value (ppm) is not given by accurately evaluating the actual hydrogen diffusion phenomenon. It cannot be used as an evaluation method.
このように、特許文献1〜3に記載の、切断後の水素割れ発生を防止するため、鋼板を徐冷して水素を除去する方法は、実操業においてはその効果が不安定で、X100グレードを超えて、より高強度化・薄肉化が予想されるラインパイプ用厚鋼板に適用できる技術とは言い難い。 Thus, in order to prevent the occurrence of hydrogen cracking after cutting described in Patent Documents 1 to 3, the method of gradually cooling the steel sheet to remove hydrogen is unstable in actual operation, and X100 grade. It is hard to say that this technology can be applied to thick steel plates for line pipes, which are expected to have higher strength and thinner walls.
そこで、本発明は、加速冷却により製造されるX100グレードを超える高強度厚鋼板であっても、オンライン切断において鋼中水素に起因する断面割れを水冷後における厚鋼板の徐冷を行うことなく防止する方法を提供することを目的とする。 Therefore, the present invention prevents even a high-strength thick steel plate exceeding the X100 grade manufactured by accelerated cooling without slow cooling of the thick steel plate after water cooling during online cutting. It aims to provide a way to do.
本発明の課題は以下の手段で達成される。
1.熱間圧延後に冷却し、切断後は切断面が溶接される厚鋼板の切断方法であって、前記厚鋼板の切断面を切断面の温度TsがAc1 変態温度以上となるまで35℃/sec以上で加熱することを特徴とする、厚鋼板の切断方法。
2.熱間圧延後に冷却した厚鋼板を切断した後、切断面を35℃/sec以上でA c1 変態温度以上まで加熱する厚鋼板の切断方法において、前記切断面に対して垂直方向に距離α+β(α:切断面切削予定代,β:溶接時の溶接金属との融合代、但し、α=0を含む)以上内側となる母材側の最高到達温度Tmaxが、500℃以下になるように切断面を35℃/sec以上で加熱することを特徴とする、厚鋼板の切断方法。
3.切断面の加熱を行った直後に、前記切断面を冷却することを特徴とする、1または2記載の厚鋼板の切断方法。
The object of the present invention is achieved by the following means.
1. It is a method of cutting a thick steel plate that is cooled after hot rolling, and the cut surface is welded after cutting. The cut surface of the thick steel plate is 35 ° C./until the temperature T s of the cut surface becomes equal to or higher than the Ac1 transformation temperature. A method for cutting a thick steel plate, characterized by heating at a sec .
2. After cutting the steel plate cooling after hot rolling, in the cutting method of steel plate heated to above A c1 transformation temperature cut surfaces at 35 ° C. / sec or more, the distance in a direction perpendicular to the cutting plane α + β (α : cutting plane preset cutting allowance, beta: fusion allowance of the weld metal during welding, however, the maximum temperature T max of the base material side to be) more inner containing alpha = 0 is cut into 500 ° C. or less A method for cutting a thick steel plate, wherein the surface is heated at 35 ° C./sec or more .
3. Immediately after the heating of the cut surface, characterized by cooling the cutting surface, 1 or 2 thick steel cutting method according.
本発明によれば、鋸刃切削方式やシャーによる剪断方式などオンライン化が容易な非加熱式切断方法において割れ発生を効果的に抑制する事が可能で、厚鋼板の切断作業前に、水素除去のための徐冷が不要となる。 According to the present invention, it is possible to effectively suppress cracking in a non-heating type cutting method that is easy to be on-line such as a saw blade cutting method or a shearing method using a shear, and hydrogen removal can be performed before cutting a thick steel plate. Slow cooling is not required.
その結果、厚鋼板搬送ライン上に設けた冷却装置による冷却後、引き続き、オンライン上で切断し、生産性良く大量の高強度厚鋼板を製造することが可能で、産業上極めて有用である。 As a result, after cooling by the cooling device provided on the thick steel plate conveyance line, it is possible to continuously cut on-line and manufacture a large amount of high-strength thick steel plate with high productivity, which is extremely useful industrially.
本発明は、厚鋼板の切断面を局所的に急速加熱してAc1変態温度以上まで加熱する事により、切断面近傍の加工組織のみを選択的に変態させ組織を軟化させると共に、切断時の残留応力を低減させる方法である。以下、説明する。 In the present invention, the cut surface of the thick steel plate is locally rapidly heated and heated to the Ac1 transformation temperature or higher, thereby selectively transforming only the processed structure in the vicinity of the cut surface and softening the structure. This is a method for reducing the residual stress. This will be described below.
まず、鋼板1を切断線11で機械的切断すると(図1(a)),鋼板1に切断面2が生じる。切断面2の近傍は、加工歪を受けた領域21となり変形する(図1(b))。
First, when the steel plate 1 is mechanically cut along the cutting line 11 (FIG. 1A), a
本発明で、切断面のみを局所的に急速加熱する理由は、シャー剪断など厚鋼板の機械的切断では、切断時に加工歪を受ける部分は切断面近傍に限定されるためである。 The reason why only the cut surface is locally heated in the present invention is that, in mechanical cutting of a thick steel plate such as shear shearing, the portion that undergoes processing strain during cutting is limited to the vicinity of the cut surface.
加工歪を受ける部分は、切断面から母材側へ切断時の上下刃のクリアランス(通常、板厚の約10%程度)分だけ内側にはいった領域で、当該領域は加工硬化して割れ易くなっている上に、高い引張り残留応力が残存しているため、偏析や鋼中水素等による僅かな脆化要因でも割れが発生する。本発明で切断面とは切断面と上記領域を含む部分までとする。 The part subjected to processing strain is the area that is inserted inward by the clearance of the upper and lower blades (usually about 10% of the plate thickness) when cutting from the cut surface to the base material side, and the area is work hardened and easily cracked In addition, since a high tensile residual stress remains, cracking occurs even with slight embrittlement factors such as segregation and hydrogen in steel. In the present invention, the term “cut surface” refers to a portion including the cut surface and the region.
本発明では、加工硬化(即ち転位歪)及び残留応力に伴う残存歪エネルギーを低減するため、切断面の急速加熱を行い、該加工組織をAc1変態温度以上まで加熱する。即ち、変態により残存歪エネルギーを低減させる。 In the present invention, in order to reduce the residual strain energy accompanying work hardening (that is, dislocation strain) and residual stress, the cut surface is rapidly heated to heat the processed structure to the Ac1 transformation temperature or higher. That is, residual strain energy is reduced by transformation.
Ac1変態温度未満で回復・再結晶主体に残留応力を低減する方法と異なり、切断面の材質そのものが急速加熱前の材質から変化するが、厚鋼板の場合、溶接により切断面は溶融されるので当該切断面における材質変化は許容される。 Unlike the method of reducing the residual stress mainly by recovery and recrystallization below the Ac1 transformation temperature, the material of the cut surface itself changes from the material before rapid heating, but in the case of a thick steel plate, the cut surface is melted by welding. Therefore, the material change in the cut surface is allowed.
即ち、切断面のごく近傍は切断後の溶接により、溶接材料と共に高温で溶融されて溶接金属となるため、溶接前に自由に熱履歴を与える事が可能である。 That is, in the very vicinity of the cut surface, since welding is performed at a high temperature together with the welding material by welding after cutting, a heat history can be freely given before welding.
切断面加熱を急速加熱とする理由は、溶接により溶融しない、切断面から離れた母材側も、切断面を加熱することにより材質が変化する可能性があるためで、該切断面加熱を急速加熱、即ち切断面近傍の局所領域のみを短時間で昇温させ、母材側への入熱を出来るだけ小さくする。 The reason why the heating of the cut surface is rapid heating is that the base material side that is not melted by welding and that is away from the cut surface may change the material by heating the cut surface. Heating, that is, raising the temperature of only the local region in the vicinity of the cut surface in a short time, and making the heat input to the base material side as small as possible.
急速加熱の昇温速度は、例えば加熱前の切断処理ピッチを阻害しないように、少なくとも28℃/sec以上(700℃昇温であれば25秒以内)の昇温速度を選択すればよい。 The rapid heating rate may be selected at a rate of at least 28 ° C./sec or more (within 25 seconds if heated to 700 ° C.), for example, so as not to disturb the cutting pitch before heating.
本発明では、急速加熱は、前記切断面に対して垂直方向に距離α+β(α:切断面切削予定代,β:溶接時の溶接金属との融合代、但し、α=0を含む)以上内側となる母材側の最高到達温度Tmaxが、母材材質に影響を及ぼす最低温度Tr以下になるように行う。 In the present invention, the rapid heating is performed at a distance α + β (α: cutting plane cutting allowance, β: fusion allowance with weld metal at the time of welding, including α = 0) in a direction perpendicular to the cutting plane. The maximum temperature T max on the base material side is set to be equal to or lower than the minimum temperature Tr that affects the base material.
本発明を突合せ溶接継手を対象に説明する。開先加工のために切断面から切削する切削代(開先加工前の切断面4を原点とし、切断面4から開先線3までの切削距離)を距離α、突合せ溶接継手における溶接金属6の幅の1/2を距離βとすると、切断面4から距離α+β以内の部分は、切断面加熱後に切削または溶接により溶融されるため、切断面加熱の段階では自由に熱履歴を与える事が可能である(図2、3)。
The present invention will be described for a butt weld joint. The cutting allowance for cutting from the cut surface for groove processing (the
一方で、距離α+βを超えて母材側に近づいた位置における入熱量、即ち昇温量が大きくなり、該位置での最高到達温度Tmaxが、母材材質に影響を与える温度Trを超える温度まで上昇すると、母材材質が変化する。 On the other hand, the amount of heat input, that is, the amount of temperature rise at a position that exceeds the distance α + β and approaches the base material side increases, and the maximum temperature T max at the position exceeds the temperature Tr that affects the base material. When the temperature rises, the base material changes.
従って、本発明では、母材材質への影響を回避しつつ、切断面近傍の硬度低減及び残留応力低減効果のみを得るため、Tmax≦Trとなるように切断面の加熱速度を制御する。 Therefore, in the present invention, in order to obtain only the hardness reduction and residual stress reduction effect in the vicinity of the cut surface while avoiding the influence on the base material, the heating rate of the cut surface is controlled so that T max ≦ T r. .
具体的な加熱条件は、予め、実験により、切断面を加熱する際の加熱速度が、切断面より母材側で、溶接後も残留する位置での最高到達温度Tmaxに及ぼす影響を求めておき、得られた結果を利用して選定する。
例えばαとしては5〜10mm、βは板厚によるが15mm厚の板で10mm、Trとしては、例えば再結晶温度(500℃前後,内部歪等に依存して変化)等を対象材の目標材質に応じて決定する。Tmaxについては、例えば伝熱距離が短いために1次元的な熱拡散のみを考慮すれば、端面入熱条件と一般的な1次元非定常熱伝導方程式を与える事で容易に導出出来る。
The specific heating conditions were determined in advance by experiments to determine the effect of the heating rate when heating the cut surface on the maximum temperature T max at the position remaining on the base metal side of the cut surface after welding. Select using the results obtained.
For example, α is 5 to 10 mm, β is 10 mm for a 15 mm-thick plate, and Tr is, for example, recrystallization temperature (around 500 ° C., change depending on internal strain etc.), etc. Determine according to the material. Tmax can be easily derived, for example, by giving an end face heat input condition and a general one-dimensional unsteady heat conduction equation if only one-dimensional heat diffusion is taken into account because the heat transfer distance is short.
図5は切断面から母材側に1mmとなる位置での最高到達温度を、切断面の加熱速度(本実験では、バーナー火口送り速度とする)vを種々に変化させた場合について求めた結果で、加熱速度v=2mm/secの条件にて切断面温度は最も上昇し、最高到達温度はAc1変態温度以上の約740℃に達している。 FIG. 5 shows the results obtained when the maximum temperature at the position of 1 mm from the cut surface to the base metal side is variously changed when the heating speed of the cut surface (in this experiment, the burner crater feed rate) v is varied. Thus, the cutting surface temperature rose most at the heating rate of v = 2 mm / sec, and the highest temperature reached about 740 ° C., which is higher than the Ac1 transformation temperature.
同時に、切断面から母材側に10mmとなる位置での最高到達温度を求めた結果を図6に示す。切断面から母材側に1mmとなる位置での最高到達温度と比較すると、加熱速度v=2mm/secの条件では母材側の昇温も大きくなり、最高到達温度は500℃以上に達している。 At the same time, FIG. 6 shows the result of obtaining the maximum temperature reached at a position of 10 mm from the cut surface to the base material side. Compared with the maximum temperature achieved at a position of 1 mm from the cut surface to the base material side, the temperature rise on the base material side increases under the condition of the heating rate v = 2 mm / sec, and the maximum temperature reached 500 ° C. or higher. Yes.
鋼材は、500℃を超えると、一般に回復や再結晶により材質変化が生じるので、500℃をTrとすると、図5、6より母材の材質変化をもたらさずに切断面を局所的に急速加熱してAc1変態温度以上まで加熱する場合、必要な加熱速度としてv=2mm/sec以上が必要なことが、把握される。 When steel exceeds 500 ° C, the material generally changes due to recovery or recrystallization. Therefore, if 500 ° C is defined as Tr , the cutting surface is locally and rapidly changed without causing the material change of the base material from Figs. It is understood that when heating to the Ac1 transformation temperature or higher, v = 2 mm / sec or higher is necessary as a necessary heating rate.
切断面近傍の昇温速度は、図5のAc1変態温度以上まで加熱する際の加熱速度v=2mm/secでの昇温カーブの平均的な勾配より、昇温速度35℃/sec以上となる。尚、Tmaxは、切断面の温度を加熱条件から推定した
計算値、或いは放射温度計により実測して得られた値とし、距離α+βにおける温度の最高温度とする。
The heating rate in the vicinity of the cut surface is 35 ° C./sec or higher due to the average slope of the heating curve at the heating rate v = 2 mm / sec when heating to the A c1 transformation temperature or higher in FIG. Become. T max is a calculated value obtained by estimating the temperature of the cut surface from the heating condition or a value obtained by actual measurement with a radiation thermometer, and is the maximum temperature at the distance α + β.
図7、8は上述の実験結果を模式的に示し、切断面での加熱速度(昇温速度)を早くして(図7)、切断面より内側となる母材での最高到達温度をTr以下とする(図8)本発明の技術的思想を示している。 FIGS. 7 and 8 schematically show the results of the above-described experiment. The heating rate (temperature increase rate) at the cut surface is increased (FIG. 7), and the maximum reached temperature at the base material inside the cut surface is defined as Tr. The following (FIG. 8) shows the technical idea of the present invention.
上述した実験は、図4に示す試験片(18厚×100幅×25長(mm))を用いて、機械的切断法による切断面2をアセチレンガスバーナーのバーナー火口送り速度vを2〜10mm/secで変化させて加熱を行った。
In the above-described experiment, the test piece (18 thickness × 100 width × 25 length (mm)) shown in FIG. 4 was used, and the
切断面2の中央において、垂直距離aがそれぞれ1mm(切断面)、10mm(母材側)となる位置にφ0.5mmのKシース熱電対を取り付け、切断面2を加熱した際の温度履歴を記録した。
At the center of the
バーナーは厚鋼板溶断用の火口を用いた。加熱条件は、酸素分圧0.2MPa、アセチレンガス分圧0.03MPa、火口高さ10mmとした。 The burner used a crater for cutting thick steel plates. The heating conditions were an oxygen partial pressure of 0.2 MPa, an acetylene gas partial pressure of 0.03 MPa, and a crater height of 10 mm.
ここで、距離a=10mmが前記α+βに相当する距離と仮定すれば、切断面から10mmを超えて母材側に近づいた位置での温度が母材側熱影響を表す指標となる。 Here, if the distance a = 10 mm is assumed to be a distance corresponding to α + β, the temperature at a position closer to the base material side than 10 mm from the cut surface is an index representing the base material side thermal effect.
切断面の加熱速度の調整のみで母材の最高到達温度をTr温度とすることが難しい場合は、切断面を加熱後に、冷却を行う。 If it is difficult to set the maximum temperature of the base material to the Tr temperature only by adjusting the heating speed of the cut surface, cooling is performed after heating the cut surface.
例えば誘導加熱装置のように材料自体の発熱を利用した加熱方法を用いる場合、加熱速度は大きくとれるものの、発熱領域が大きければ母材側への入熱も同時に大きくなる。 For example, when a heating method using the heat generated by the material itself, such as an induction heating device, is used, the heating rate can be increased. However, if the heat generating area is large, the heat input to the base material side also increases simultaneously.
また、加熱する板自体の板厚が大きい場合、必然的に断面からの入熱量が大きくなるため、母材側への入熱も大きくなる。 In addition, when the thickness of the plate to be heated is large, the amount of heat input from the cross section inevitably increases, so the heat input to the base material side also increases.
このような場合、切断面を十分に昇温させた後に切断面を衝風ないし水冷等の方法で冷却する事により、切断面へ与えた熱を外部に逃がし、母材側への入熱を抑える事が可能である。 In such a case, by sufficiently raising the temperature of the cut surface and then cooling the cut surface by a method such as blast or water cooling, the heat applied to the cut surface is released to the outside and the heat input to the base material side is reduced. It is possible to suppress.
尚、距離βより母材側となる部分は溶接前にTr以下に加熱され、溶接により更に溶接熱サイクルが重畳されるが、本発明では当該溶接熱サイクルによる材質劣化は考慮しない。 In addition, although the part which becomes a base material side from distance (beta) is heated below Tr before welding and a welding heat cycle is further superimposed by welding, material deterioration by the said welding heat cycle is not considered in this invention.
14mm厚のX100グレードの鋼板(Ac1変態点:723℃)より、14mm厚×100mm幅×320mm長のサンプル2枚を切り出した後、実験用剪断機によりクリアランスd=1.5mmでそれぞれ切断を行った。 Two samples of 14 mm thickness x 100 mm width x 320 mm length were cut out from a 14 mm thick X100 grade steel plate (Ac1 transformation point: 723 ° C.), and then cut at a clearance d = 1.5 mm using an experimental shearing machine. It was.
切断後サンプルのうち1枚について加熱速度を変えて、切断面加熱を行い、切断面近傍の残留応力変化及び水素割れ感受性の比較を行った。他の一枚は切断ままで、切断面近傍の残留応力及び水素割れ感受性を測定した。 The heating rate was changed for one of the samples after cutting, the cutting surface was heated, and the residual stress change and hydrogen cracking sensitivity in the vicinity of the cutting surface were compared. The other sheet was cut and the residual stress and hydrogen cracking susceptibility near the cut surface were measured.
切断面加熱は、アセチレンガスバーナー(酸素分圧0.2MPa、アセチレンガス分圧0.03MPa、火口高さ10mm)を用いた。バーナー火口送り速度vは、切断時に加工歪みを受ける部分が切断面から深さ方向1.5mm程度であるので、当該部分の到達温度が440℃となるv=6mm/secと、740℃となるv=2mm/secの加熱速度で加熱した。
For the cutting surface heating, an acetylene gas burner (oxygen partial pressure 0.2 MPa, acetylene gas partial pressure 0.03 MPa,
図9に各サンプルの断面中央位置X線残留応力測定結果及び硬度測定結果を示す。縦軸のσzは板厚方向、σyは板幅方向の残留応力を示す。切断ままのサンプルは強加工の影響で非常に大きい引張り残留応力が生じているのに対し、切断後に断面バーナー加熱を行った試験材のうち、加熱速度v=2mm/secで加熱した場合、即ちAc1変態温度以上まで急速加熱を行ったサンプルにおいて、σz、σyともに切断ままのサンプルより大幅に低減されている。また、残留応力の低減と共に、硬度についても大幅に低減された。
一方、加熱速度v=6mm/secで加熱した場合は、図5の結果に示したように到達温度がAc1変態温度以下であるため、若干の残留応力低減が見られるものの、効果は極めて限定的である。
FIG. 9 shows the X-ray residual stress measurement result and the hardness measurement result of the cross-sectional center position of each sample. Σ z on the vertical axis indicates the residual stress in the plate thickness direction, and σ y indicates the residual stress in the plate width direction. While the sample as-cut has a very large tensile residual stress due to the influence of strong processing, among the test materials subjected to cross-section burner heating after cutting, when heated at a heating rate of v = 2 mm / sec, In the sample that is rapidly heated to the A c1 transformation temperature or higher, both σ z and σ y are significantly reduced as compared with the sample that has been cut. In addition to the reduction in residual stress, the hardness was greatly reduced.
On the other hand, when heated at a heating rate of v = 6 mm / sec, the ultimate temperature is not higher than the Ac1 transformation temperature as shown in the results of FIG. Is.
次に水素割れ感受性を調査するため、切断ままのサンプルと切断後にバーナー加熱を行ったサンプルに水素チャージを行った後、カラーチェックにより断面割れの有無を観察した。 Next, in order to investigate the sensitivity to hydrogen cracking, the sample as-cut and the sample heated by burner after cutting were charged with hydrogen, and then the presence or absence of cross-sectional cracks was observed by color check.
まず、前記X線残留応力測定後の各サンプルから、当該測定面、すなわち切断面を残して、14mm×100mm×30mmの寸法に切り出し、断面部以外を表面研磨し0.1N−H2SO4中で陰極水素チャージ(−1.2V〔vsSCE〕,24h)を行った。 First, from each sample after the X-ray residual stress measurement, the measurement surface, that is, the cut surface is left, and the sample is cut into a size of 14 mm × 100 mm × 30 mm, and the surface other than the cross section is subjected to surface polishing and 0.1 N—H 2 SO 4 The cathode hydrogen charge (-1.2V [vs SCE], 24h) was performed in it.
カラーチェック後に断面観察を行ったところ、切断ままのサンプルでは断面に多数の割れが発生しており、微小な水素量でも水素割れが起こり易い事が認めら、一方、切断後に加熱速度v=2mm/secでバーナー加熱を行ったサンプルについては割れが発生せず、切断後の急速加熱による水素割れ発生抑制効果が確認された。
加熱速度v=6mm/secでバーナー加熱を行ったサンプルについては微小ではあるが割れが発生しており、図9の残留応力測定結果も含め、加熱効果が不十分である事を示している。表1に試験結果を示す。
When the cross section was observed after the color check, it was found that the sample as cut had many cracks in the cross section, and it was found that hydrogen cracking was likely to occur even with a small amount of hydrogen, while the heating rate v = 2 mm after cutting. No cracking occurred in the sample that was burner-heated at / sec, and the effect of suppressing the occurrence of hydrogen cracking by rapid heating after cutting was confirmed.
The sample that was burner-heated at a heating rate of v = 6 mm / sec was cracked but was small, indicating that the heating effect was insufficient, including the residual stress measurement results of FIG. Table 1 shows the test results.
図10は、バーナー加熱の替わりに誘導加熱装置(50kHz,Max150kW)を用いて上記同様にサンプルの急速加熱を行い、更に、加熱直後に水冷を行ったサンプル切断面について、X線残留応力の測定を行った結果である。 FIG. 10 shows the measurement of X-ray residual stress on a sample cut surface in which a sample was rapidly heated in the same manner as described above using an induction heating device (50 kHz, Max 150 kW) instead of the burner heating, and further water-cooled immediately after heating. It is the result of having performed.
切断ままのサンプルの試験結果を合わせて示す。切断ままの時点で大きな引張り残留応力が発生しているのに対し、誘導加熱+水冷後のサンプルでは残留応力が低減され、むしろ冷却時の温度履歴に起因して若干の圧縮残留応力となっていることが確認された。 The test results of the cut samples are also shown. While a large tensile residual stress is generated at the time of cutting, the residual stress is reduced in the sample after induction heating and water cooling, rather, it becomes a slight compressive residual stress due to the temperature history during cooling. It was confirmed that
表2に水素チャージ実験を行った結果を示す。誘導加熱+水冷を行ったサンプルでは割れ抑制効果が確認された。本発明によれば、切断面急速加熱を行った後に水冷を行った場合も、割れ抑制効果が得られる。 Table 2 shows the results of a hydrogen charge experiment. The crack suppression effect was confirmed in the sample which performed induction heating + water cooling. According to the present invention, even when water cooling is performed after rapid heating of the cut surface, a crack suppressing effect can be obtained.
1、1a,1b 鋼板
11 切断線
2 切断面
21 領域
3 開先線
31 突合せ面(ルートフェース)
4 切断面
6 溶接金属
7 溶接熱影響部
8 試験片
1, 1a,
4 Cut
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017522A JP5050537B2 (en) | 2007-01-29 | 2007-01-29 | Thick steel plate cutting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017522A JP5050537B2 (en) | 2007-01-29 | 2007-01-29 | Thick steel plate cutting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008184636A JP2008184636A (en) | 2008-08-14 |
JP5050537B2 true JP5050537B2 (en) | 2012-10-17 |
Family
ID=39727878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007017522A Expired - Fee Related JP5050537B2 (en) | 2007-01-29 | 2007-01-29 | Thick steel plate cutting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5050537B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5481100B2 (en) * | 2009-06-08 | 2014-04-23 | 高周波熱錬株式会社 | Induction heating coil, induction heating apparatus and component manufacturing apparatus |
WO2024127063A1 (en) * | 2022-12-14 | 2024-06-20 | Arcelormittal | Side trimming method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5147423B2 (en) * | 1972-11-15 | 1976-12-15 | ||
JPS5992104A (en) * | 1982-11-15 | 1984-05-28 | Kawasaki Steel Corp | Method and device for treating steel strip for cold rolling |
JPS6342327A (en) * | 1986-08-08 | 1988-02-23 | Nippon Steel Corp | Manufacturing method of high carbon steel plate |
JP3820974B2 (en) * | 2000-12-04 | 2006-09-13 | Jfeスチール株式会社 | Heat treatment method and heat treatment apparatus for steel |
JP3945238B2 (en) * | 2000-12-28 | 2007-07-18 | Jfeスチール株式会社 | Steel plate manufacturing method |
JP3709794B2 (en) * | 2001-02-02 | 2005-10-26 | Jfeスチール株式会社 | Manufacturing method of high strength and high toughness steel sheet |
-
2007
- 2007-01-29 JP JP2007017522A patent/JP5050537B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008184636A (en) | 2008-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103045906B (en) | Process method of producing high-grade TC4 alloy hot rolled plate with high material-obtaining rate and low cost | |
US11167369B2 (en) | Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel | |
CN103111724A (en) | Turbine blade laser cladding area flaw welding method | |
CN102398105A (en) | Process method for integral quenching and tempering of X80 steel-grade submerged-arc automatic welding pipe fitting | |
JP5050537B2 (en) | Thick steel plate cutting method | |
US20190211411A1 (en) | Method of Manufacturing Welded Structure of Ferritic Heat-Resistant Steel and Welded Structure of Ferritic Heat-Resistant Steel | |
JP4462440B2 (en) | Method for producing hot-rolled bearing steel | |
JP5720592B2 (en) | Welded joint | |
JPH09194998A (en) | Welded steel tube and its production | |
JP4514137B2 (en) | Method for preventing rolling surface flaw of Ni-containing steel | |
JP2017217684A (en) | Repair method of continuous casting mold | |
JP5130838B2 (en) | Method for eliminating shear warpage of thick steel plate, shearing method and shearing line | |
JP5397406B2 (en) | Thick steel plate shearing method and shearing machine | |
Bowyer | A study of defects which might arise in the copper steel canister | |
JP2009012040A (en) | Manufacturing method and equipment of thick steel plate | |
RU2421312C2 (en) | Method of producing clad metal sheet | |
JP4770274B2 (en) | Thick steel plate shearing method | |
JP4815913B2 (en) | Method for preventing shear cracking of thick steel plates | |
RU84763U1 (en) | BIMETALLIC PROCESSING | |
JP2007245261A (en) | Method for cutting thick steel plate | |
JP2007098462A (en) | Flash butt welding method | |
JP4586515B2 (en) | Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same | |
JPH09194997A (en) | Welded steel tube and its production | |
JP2008080344A (en) | Method for manufacturing steel sheet | |
CN105033420A (en) | Welding method for furnace wall and furnace door oxygen lance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20111107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111115 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |