JP5050499B2 - Method for producing hollow fiber membrane and hollow fiber membrane - Google Patents
Method for producing hollow fiber membrane and hollow fiber membrane Download PDFInfo
- Publication number
- JP5050499B2 JP5050499B2 JP2006315157A JP2006315157A JP5050499B2 JP 5050499 B2 JP5050499 B2 JP 5050499B2 JP 2006315157 A JP2006315157 A JP 2006315157A JP 2006315157 A JP2006315157 A JP 2006315157A JP 5050499 B2 JP5050499 B2 JP 5050499B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- solution
- solvent
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims description 116
- 239000012510 hollow fiber Substances 0.000 title claims description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 239000002904 solvent Substances 0.000 claims description 71
- 229920005992 thermoplastic resin Polymers 0.000 claims description 46
- 239000007788 liquid Substances 0.000 claims description 42
- 229920005989 resin Polymers 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 33
- 238000005345 coagulation Methods 0.000 claims description 29
- 230000015271 coagulation Effects 0.000 claims description 29
- 238000005191 phase separation Methods 0.000 claims description 18
- 239000002033 PVDF binder Substances 0.000 claims description 8
- 238000002425 crystallisation Methods 0.000 claims description 8
- 230000008025 crystallization Effects 0.000 claims description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 8
- 238000002145 thermally induced phase separation Methods 0.000 claims description 8
- 230000001112 coagulating effect Effects 0.000 claims description 7
- 239000012046 mixed solvent Substances 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 104
- 239000000243 solution Substances 0.000 description 101
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 46
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 16
- 230000000903 blocking effect Effects 0.000 description 16
- 229920001519 homopolymer Polymers 0.000 description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000002346 layers by function Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- -1 polyethylene Polymers 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 229930188620 butyrolactone Natural products 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920002284 Cellulose triacetate Polymers 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920001893 acrylonitrile styrene Polymers 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 244000000010 microbial pathogen Species 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- YMRMDGSNYHCUCL-UHFFFAOYSA-N 1,2-dichloro-1,1,2-trifluoroethane Chemical compound FC(Cl)C(F)(F)Cl YMRMDGSNYHCUCL-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、液状混合物の成分を選択分離するための中空糸膜の製造方法に関する。さらに詳しくは、排水処理、浄水処理、工業用水製造などの水処理に用いられる中空糸精密ろ過膜や中空糸限外ろ過膜の製造方法に関する。 The present invention relates to a method for producing a hollow fiber membrane for selectively separating components of a liquid mixture. More specifically, the present invention relates to a method for producing a hollow fiber microfiltration membrane or a hollow fiber ultrafiltration membrane used for water treatment such as wastewater treatment, water purification treatment, and industrial water production.
精密ろ過膜や限外ろ過膜などの分離膜は食品工業、医療、用水製造および排水処理分野などをはじめとして様々な方面で利用されている。特に近年では、飲料水製造分野すなわち浄水処理においても分離膜が使われるようになってきている。浄水処理などの水処理用途で用いられる場合、処理しなければならない水量が大きいため、単位体積あたり有効膜面積が大きい中空糸膜が一般的に用いられている。 Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including food industry, medicine, water production and wastewater treatment. Particularly in recent years, separation membranes have come to be used also in the field of drinking water production, that is, water purification treatment. When used in water treatment applications such as water purification, a hollow fiber membrane having a large effective membrane area per unit volume is generally used because of the large amount of water that must be treated.
ここで、水処理用の中空糸膜には次のような性能、即ち、純水透過性能に優れること、耐圧性能が高いこと、耐薬品性が高いこと、病原性微生物等に対する阻止性能が高いこと及び強伸度性能が高いことが求められている。まず第一に、中空糸膜の純水透過性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費が節約でき、膜交換費や設置面積の点からも有利になってくる。つぎに耐圧性能が高いと長期間運転でも中空糸膜がつぶれて中空部が閉塞することがなかったり、同じ純水透過性能の中空糸膜でも高圧運転により処理水量を増やすことが可能となったりする。また透過水の殺菌や膜のバイオファウリング防止の目的で次亜塩素酸ナトリウムなどの殺菌剤を中空糸膜モジュール部分に添加したり、中空糸膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸、水酸化ナトリウム水溶液などのアルカリ、塩素、および界面活性剤などで膜を洗浄したりすることがあるため、中空糸膜の素材としては耐薬品性が高くなければならない。さらに、浄水処理分野では、クリプトスポリジウムなどの耐塩素性を有する病原性微生物が飲料水に混入する問題が20世紀終盤から顕在化してきており、中空糸膜には高い阻止性能と、膜が切れて原水が混入しないような高い強伸度性能が要求されている。 Here, the hollow fiber membrane for water treatment has the following performance, that is, excellent in pure water permeation performance, high pressure resistance, high chemical resistance, and high blocking performance against pathogenic microorganisms, etc. And high elongation performance is demanded. First of all, if the hollow fiber membrane has excellent pure water permeation performance, the membrane area can be reduced, and the equipment can be saved because the device is compact, and from the viewpoint of membrane replacement costs and installation area. It will be advantageous. Next, if the pressure resistance is high, the hollow fiber membrane will not be crushed even during long-term operation, and the hollow part will not be clogged, or even if the hollow fiber membrane has the same pure water permeation performance, the amount of treated water can be increased by high-pressure operation. To do. In addition, disinfectants such as sodium hypochlorite are added to the hollow fiber membrane module for the purpose of sterilizing permeated water and preventing biofouling of the membrane, and hydrochloric acid, citric acid, oxalic acid are used for chemical cleaning of the hollow fiber membrane. The membrane may be washed with an acid such as an alkali such as an aqueous solution of sodium hydroxide, chlorine, and a surfactant, so that the material of the hollow fiber membrane must have high chemical resistance. Furthermore, in the field of water purification, the problem that chlorine-resistant pathogenic microorganisms such as Cryptosporidium are mixed in drinking water has become apparent since the end of the 20th century. Therefore, high elongation performance is required so that raw water is not mixed.
水処理用途に用いられる中空糸膜の多くは、一種類の製膜溶液を中空部を形成する内部凝固液と同時に、二重管構造の口金から吐出し凝固させて製造される、単一の層からなるものである。このような中空糸膜は製造工程が容易であるが、単一の層により前記諸性能を併せ有することは非常に困難である。 Many of the hollow fiber membranes used in water treatment applications are produced by discharging a single type of membrane-forming solution from the double tube structure die at the same time as the internal coagulation liquid forming the hollow part, and coagulating it. It consists of layers. Such a hollow fiber membrane is easy to manufacture, but it is very difficult to combine the above-mentioned performances with a single layer.
そこでこれまでに二種類の製膜溶液を用いて製造される、二層からなる複合中空糸膜が開発されている。中空糸膜が二層からなると、それぞれの層に前記諸性能を分担させることができ、結果的に多くの諸性能を高水準で保持させることができる。 Thus, a composite hollow fiber membrane consisting of two layers produced using two types of membrane-forming solutions has been developed so far. When the hollow fiber membrane is composed of two layers, the various performances can be shared by the respective layers, and as a result, many performances can be maintained at a high level.
従来よりこのような複合中空糸膜の製造方法としては、高強伸度性能を有する支持層上に高阻止性能を有する機能層としての薄膜を塗布するコーティング法が知られているが、支持層と機能層との界面の剥離、機能層の厚さムラやピンホールの発生などの問題点が指摘されている。また製造工程が複雑となるため、効率よく大量に製造することが難しいという問題がある。 Conventionally, as a method for producing such a composite hollow fiber membrane, a coating method in which a thin film as a functional layer having a high blocking performance is applied on a support layer having a high strength and elongation performance is known. Problems such as peeling of the interface with the functional layer, uneven thickness of the functional layer and occurrence of pinholes have been pointed out. In addition, since the manufacturing process is complicated, there is a problem that it is difficult to manufacture in large quantities efficiently.
また、上記コーティング法の欠点を解消する方法として、二種類の製膜溶液と内部凝固液を三重管構造の口金から同時に吐出し、凝固液に浸漬させる方法が提案されている。例えば特許文献1には二種類のポリスルホン樹脂溶液をポリスルホン樹脂の非溶媒または貧溶媒の内部凝固液と同時に吐出し、外部凝固液である水に浸漬して固化させ、外層が支持層で内層が機能層からなる複合中空糸膜を製造する方法が開示されている。この方法では、支持層および機能層はともに、良溶媒に溶解された樹脂溶液を非溶媒あるいは貧溶媒に接触させて凝固させる非溶媒誘起相分離法により形成される。一般的に非溶媒誘起相分離法により形成される層は緻密層を有するため阻止性能は高いが、その純水透過性能を高くするためには、その層を形成する樹脂溶液の樹脂濃度を低くする必要があり、そうすると十分な強伸度性能が得られない。すなわちこの方法では高純水透過性能および高強伸度性能を両立することが困難である。 Further, as a method for solving the drawbacks of the coating method, there has been proposed a method in which two types of film-forming solution and an internal coagulating liquid are simultaneously discharged from a triple tube structure die and immersed in the coagulating liquid. For example, Patent Document 1 discloses that two types of polysulfone resin solutions are discharged simultaneously with a non-solvent or poor solvent internal coagulation liquid of polysulfone resin and immersed in water, which is an external coagulation liquid, to solidify, and the outer layer is a support layer and the inner layer is A method for producing a composite hollow fiber membrane comprising a functional layer is disclosed. In this method, both the support layer and the functional layer are formed by a non-solvent induced phase separation method in which a resin solution dissolved in a good solvent is brought into contact with a non-solvent or a poor solvent to solidify. In general, a layer formed by a non-solvent induced phase separation method has a dense layer and therefore has a high blocking performance, but in order to increase its pure water permeation performance, the resin concentration of the resin solution forming the layer must be lowered. In such a case, sufficient strength / elongation performance cannot be obtained. That is, with this method, it is difficult to achieve both high pure water permeation performance and high strength elongation performance.
さらにまた、特許文献2には、二種類のポリフッ化ビニリデン樹脂溶液をポリフッ化ビニリデン樹脂の貧溶媒の内部凝固液と同時に吐出し、外部凝固液である水に浸漬して固化させ、外層が機能層で内層が支持層からなる複合中空糸膜を製造する方法が開示されている。この方法では、支持層は高温で溶解した樹脂溶液を冷却することにより固化せしめる熱誘起相分離法により形成され、機能層は非溶媒誘起相分離法により形成される。熱誘起相分離法により形成される層は、阻止性能は低いが、その層を形成する樹脂溶液の濃度が比較的高くても、高い純水透過性能を有する。従って、このような方法によると、阻止性能、純水透過性能および強伸度性能が高い中空糸膜を得ることができる。 Furthermore, Patent Document 2 discloses that two types of polyvinylidene fluoride resin solutions are discharged simultaneously with the poor internal solvent of the polyvinylidene fluoride resin and immersed in water that is the external solidification solution to solidify the outer layer. A method for producing a composite hollow fiber membrane in which an inner layer is a support layer is disclosed. In this method, the support layer is formed by a thermally induced phase separation method in which a resin solution dissolved at a high temperature is cooled to solidify, and the functional layer is formed by a non-solvent induced phase separation method. The layer formed by the thermally induced phase separation method has low blocking performance, but has high pure water permeation performance even if the concentration of the resin solution forming the layer is relatively high. Therefore, according to such a method, a hollow fiber membrane having high blocking performance, pure water permeation performance and high elongation performance can be obtained.
しかしながら、同じ外部凝固液で二層のうちの一層で非溶媒誘起相分離のみを発現させ、かつ、もう一層で熱誘起相分離のみを発現させることは、実際には難しい。特許文献2に示されている外部凝固液として水を用いる方法では、機能層が薄く支持層が厚いと支持層でも非溶媒誘起相分離が起こり透水性能が著しく低下するという問題が生じるので、透水性能を高くするためには機能層を厚く支持層を薄くする必要があり、そうすると耐圧性能が十分ではないという問題が生じ、要求性能を同時に満足する二層中空糸膜は製造困難であった。 However, it is actually difficult to develop only non-solvent induced phase separation in one of the two layers with the same external coagulation liquid, and develop only thermally induced phase separation in the other layer. In the method using water as the external coagulation liquid shown in Patent Document 2, if the functional layer is thin and the support layer is thick, there is a problem that non-solvent induced phase separation occurs in the support layer and the water permeability performance is significantly reduced. In order to increase the performance, it is necessary to make the functional layer thick and the support layer thin, and this causes a problem that the pressure resistance is not sufficient, and it is difficult to produce a two-layer hollow fiber membrane that satisfies the required performance at the same time.
本発明では上記した従来技術における問題点に鑑み、耐薬品性の高い熱可塑性樹脂を用いて、高強伸度性能、高純水透過性能、高阻止性能、高耐圧性能を併せ有する、二層からなる複合中空糸膜を、安価かつ容易に製造する方法を提供することを目的とする。 In the present invention, in view of the problems in the prior art described above, a two-layer composite having a high strength elongation performance, a high purity water permeation performance, a high blocking performance, and a high pressure resistance performance using a thermoplastic resin having high chemical resistance. It aims at providing the method of manufacturing a hollow fiber membrane cheaply and easily.
上記目的を達成するための本発明は、
(1)熱可塑性樹脂1を溶媒に溶解した溶液1と、熱可塑性樹脂2を溶媒に溶解した溶液2と、内部凝固液とを、それぞれ、三重管構造の口金の外側の環状口、内側の環状口、中心の管から同時に外部凝固液中に吐出し、固化せしめることにより中空糸膜を製造するに際し、前記口金の温度Tsと前記溶液2の結晶化温度Tcとを、Tc+20℃≦Ts≦Tc+70℃ の範囲内とし、前記溶液1の吐出重量W1と前記溶液2の吐出重量W2とを、0.1≦W1/W2≦1 の範囲内とし、前記外部凝固液の温度TをT≦Tc−10℃とし、かつ、前記外部凝固液として、50重量%以上90重量%以下が前記熱可塑性樹脂1の非溶媒で10重量%以上50重量%以下が前記熱可塑性樹脂1の貧溶媒あるいは良溶媒である混合溶媒を用いる中空糸膜の製造方法。
(2)口金の外側の環状口から吐出した前記溶液1を非溶媒誘起相分離により固化せしめ、かつ、口金の内側の環状口から吐出した前記溶液2を熱誘起相分離により固化せしめる上記(1)記載の中空糸膜の製造方法。
(3)前記溶液1中における熱可塑性樹脂1の濃度が5重量%以上30重量%以下であり、かつ、前記溶液2中における熱可塑性樹脂2の濃度が20重量%以上60重量%以下である上記(1)又は(2)に記載の中空糸膜の製造方法。
(4)前記熱可塑性樹脂1および/または前記熱可塑性樹脂2がポリフッ化ビニリデン系樹脂である上記(1)〜(3)のいずれかに記載の中空糸膜の製造方法。
To achieve the above object, the present invention provides:
(1) A solution 1 in which the thermoplastic resin 1 is dissolved in a solvent, a solution 2 in which the thermoplastic resin 2 is dissolved in a solvent, and an internal coagulation liquid are respectively connected to an annular mouth and an inner When the hollow fiber membrane is produced by simultaneously discharging and solidifying into the external coagulation liquid from the annular port and the central tube, the temperature Ts of the die and the crystallization temperature Tc of the solution 2 are Tc + 20 ° C. ≦ Ts ≦ The discharge weight W1 of the solution 1 and the discharge weight W2 of the solution 2 are in the range of 0.1 ≦ W1 / W2 ≦ 1, and the temperature T of the external coagulation liquid is T ≦ Tc. -10 ° C. and 50 wt% or more and 90 wt% or less of the external coagulation liquid is a non-solvent of the thermoplastic resin 1 and 10 wt% or more and 50 wt% or less of the poor solvent or good of the thermoplastic resin 1 Hollow using mixed solvent as solvent Method of manufacturing the film.
(2) The solution 1 discharged from the annular port outside the die is solidified by non-solvent induced phase separation, and the solution 2 discharged from the annular port inside the die is solidified by thermally induced phase separation (1) ) A method for producing a hollow fiber membrane as described above.
(3) The concentration of the thermoplastic resin 1 in the solution 1 is 5 wt% or more and 30 wt% or less, and the concentration of the thermoplastic resin 2 in the solution 2 is 20 wt% or more and 60 wt% or less. The manufacturing method of the hollow fiber membrane as described in said (1) or (2).
(4) The method for producing a hollow fiber membrane according to any one of (1) to (3), wherein the thermoplastic resin 1 and / or the thermoplastic resin 2 is a polyvinylidene fluoride resin.
(5)上記(1)〜(4)のいずれかに記載の製造方法により製造される、外径が1100μm以上2000μm以下の中空糸膜であって、外層が三次元網目構造、内層が球状構造からなり、前記外層の平均厚さをTh1、内層の平均厚さをTh2とした際に、0.2≦Th1/Th2≦0.8であり、50kPa、25℃における純水透過性能が0.5m3/m2・hr以上であり、破断強度が8MPa以上であり、破断伸度が80%以上であり、かつ耐圧性能が200kPa以上であることを特徴とする中空糸膜。
(6)上記(1)〜(4)のいずれかに記載の製造方法により製造される、外径が500μm以上1100μm未満の中空糸膜であって、外層が三次元網目構造、内層が球状構造からなり、前記外層の平均厚さをTh1、内層の平均厚さをTh2とした際に、0.2≦Th1/Th2≦0.8であり、50kPa、25℃における純水透過性能が0.2m3/m2・hr以上であり、破断強度が10MPa以上であり、破断伸度が20%以上であり、かつ耐圧性能が100kPa以上であることを特徴とする中空糸膜。
により構成される。
(5) A hollow fiber membrane having an outer diameter of 1100 μm or more and 2000 μm or less manufactured by the manufacturing method according to any one of (1) to (4) above, wherein the outer layer is a three-dimensional network structure and the inner layer is a spherical structure When the average thickness of the outer layer is Th1 and the average thickness of the inner layer is Th2, 0.2 ≦ Th1 / Th2 ≦ 0.8 and the pure water permeation performance at 50 kPa and 25 ° C. is 0.00. A hollow fiber membrane having 5 m 3 / m 2 · hr or more, a breaking strength of 8 MPa or more, a breaking elongation of 80% or more, and a pressure resistance of 200 kPa or more.
(6) A hollow fiber membrane having an outer diameter of 500 μm or more and less than 1100 μm manufactured by the manufacturing method according to any one of (1) to (4) above, wherein the outer layer is a three-dimensional network structure and the inner layer is a spherical structure When the average thickness of the outer layer is Th1 and the average thickness of the inner layer is Th2, 0.2 ≦ Th1 / Th2 ≦ 0.8 and the pure water permeation performance at 50 kPa and 25 ° C. is 0.00. A hollow fiber membrane characterized by being 2 m 3 / m 2 · hr or more, a breaking strength of 10 MPa or more, a breaking elongation of 20% or more, and a pressure resistance of 100 kPa or more.
Consists of.
本発明では、三重管構造の口金から二種類の熱可塑性樹脂溶液を内部凝固液と同時に吐出し、外部凝固液に浸漬して固化させることにより、機能層である外層と支持層である内層の二層からなる複合中空糸膜を製造するに際し、外部凝固液の非溶媒濃度、および二層を形成する前記二種類の樹脂溶液の吐出重量比等を特定の範囲に制御することにより、外層が非溶媒誘起相分離のみにより、内層が熱誘起相分離のみにより形成させることができるので、外層は高阻止性能および高純水透過性能を、内層は高強伸度性能、高純水透過性能および高耐圧性能を有する複合中空糸膜を製造することができる。 In the present invention, two types of thermoplastic resin solutions are simultaneously discharged from the triple-tube structure die and simultaneously solidified by immersing them in the external coagulation liquid, thereby solidifying the outer layer as a functional layer and the inner layer as a support layer. When producing a composite hollow fiber membrane composed of two layers, the outer layer is controlled by controlling the non-solvent concentration of the external coagulation liquid, the discharge weight ratio of the two types of resin solutions forming the two layers, etc. to a specific range. Since the inner layer can be formed only by heat-induced phase separation only by non-solvent induced phase separation, the outer layer has high blocking performance and high pure water permeation performance, and the inner layer has high strength elongation performance, high pure water permeation performance and high pressure resistance performance. A composite hollow fiber membrane can be produced.
したがって、本発明によれば、高強伸度性能、高純水透過性能、高阻止性能、高耐圧性能を併せ有する中空糸膜を、安価かつ容易に製造することが可能となる。 Therefore, according to the present invention, it is possible to easily and inexpensively manufacture a hollow fiber membrane having both high strength elongation performance, high pure water permeation performance, high blocking performance, and high pressure resistance performance.
本発明の製造方法では、三重管構造の口金の外側の環状口から熱可塑性樹脂1の溶液1を、内側の環状口から熱可塑性樹脂2の溶液2を、中心の管から内部凝固液を、同時に外部凝固液中に吐出することにより固化せしめて二層からなる複合中空糸膜を製造するに際し、外部凝固液の非溶媒濃度、二層を形成する前記二種類の樹脂溶液の吐出重量比、及び口金や外部凝固液の温度を特定の範囲に制御することにより、外層が非溶媒誘起相分離のみにより、内層が熱誘起相分離のみにより形成させることができる。この結果、外層は高阻止性能および高純水透過性能を、内層は高強伸度性能、高純水透過性能および高耐圧性能を有する複合中空糸膜を製造することができる。 In the production method of the present invention, the thermoplastic resin 1 solution 1 from the outer annular port of the triple tube structure die, the thermoplastic resin 2 solution 2 from the inner annular port, the internal coagulating liquid from the central tube, When producing a composite hollow fiber membrane consisting of two layers by simultaneously solidifying by discharging into an external coagulation liquid, the non-solvent concentration of the external coagulation liquid, the discharge weight ratio of the two kinds of resin solutions forming the two layers, In addition, by controlling the temperature of the base and the external coagulation liquid within a specific range, the outer layer can be formed only by non-solvent induced phase separation and the inner layer can be formed only by thermally induced phase separation. As a result, it is possible to produce a composite hollow fiber membrane in which the outer layer has high blocking performance and high pure water permeation performance, and the inner layer has high strength elongation performance, high pure water permeation performance and high pressure resistance performance.
ここで非溶媒誘起相分離とは樹脂溶液を非溶媒に接触させて固化せしめる相分離であり、熱誘起相分離とは高温で溶解した樹脂溶液を冷却することにより固化せしめる相分離である。 Here, the non-solvent induced phase separation is a phase separation in which a resin solution is brought into contact with a non-solvent to solidify, and the thermally induced phase separation is a phase separation in which a resin solution dissolved at high temperature is solidified by cooling.
本発明における熱可塑性樹脂とは、鎖状高分子物質からできており、加熱すると、外力によって変形・流動する性質が現れる樹脂のことをいう。この熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン、アクリロニトリル−スチレン(AS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変成ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリフッ化ビニリデン、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンおよびこれらの混合物や共重合体が挙げられる。これらと混和可能な他の樹脂および多価アルコールや界面活性剤を50重量%以下含んでいてもよい。 The thermoplastic resin in the present invention refers to a resin that is made of a chain polymer substance and exhibits a property of being deformed / flowed by an external force when heated. Examples of this thermoplastic resin include polyethylene, polypropylene, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, acrylonitrile-styrene (AS) resin, vinyl chloride resin, polyethylene terephthalate, polyamide, polyacetal, Examples thereof include polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyvinylidene fluoride, polyamideimide, polyetherimide, polysulfone, polyethersulfone, and mixtures and copolymers thereof. Other resins miscible with these and polyhydric alcohols or surfactants may be contained in an amount of 50% by weight or less.
本発明に用いられる熱可塑性樹脂としては、耐薬品性の高いポリフッ化ビニリデン系樹脂が好ましい。ポリフッ化ビニリデン系樹脂とはフッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂を意味し、複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。かかる共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていても良い。 As the thermoplastic resin used in the present invention, a polyvinylidene fluoride resin having high chemical resistance is preferable. The polyvinylidene fluoride resin means a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of types of vinylidene fluoride copolymers. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. Further, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired.
また熱可塑性樹脂1および熱可塑性樹脂2は同一の樹脂でも、異なる樹脂でもよい。熱可塑性樹脂1および熱可塑性樹脂2を同一の樹脂で構成した場合は、両者の親和性が高くなり、製造される中空糸膜を構成する外層と内層間の接着性が良くなるので好ましい。一方、異なる樹脂で構成した場合は、製造される中空糸膜の強伸度性能、純水透過性能、阻止性能などの性能をより広い範囲で調整することができる。また熱可塑性樹脂1および熱可塑性樹脂2を他方と同一の樹脂を含むポリマーブレンドで構成することも好ましい。これにより、両者の親和性を高く保ちつつ、中空糸膜の性能を広い範囲で調整することができる。 The thermoplastic resin 1 and the thermoplastic resin 2 may be the same resin or different resins. When the thermoplastic resin 1 and the thermoplastic resin 2 are made of the same resin, the affinity between the two is increased, and the adhesion between the outer layer and the inner layer constituting the manufactured hollow fiber membrane is improved, which is preferable. On the other hand, when it comprises with different resin, performances, such as the strong elongation performance of a hollow fiber membrane manufactured, a pure water permeation performance, a blocking performance, can be adjusted in a wider range. Further, it is also preferable that the thermoplastic resin 1 and the thermoplastic resin 2 are made of a polymer blend containing the same resin as the other. Thereby, the performance of the hollow fiber membrane can be adjusted in a wide range while keeping the affinity between the two high.
次に、本発明の製造方法では、口金の外側の環状口から吐出した溶液1を非溶媒誘起相分離により固化せしめ、口金の内側の環状口から吐出した溶液2を熱誘起相分離により固化せしめることが重要である。そのために、溶液1の溶媒としては、熱可塑性樹脂1の良溶媒、あるいは95重量%以上の熱可塑性樹脂1の良溶媒と5重量%以下の熱可塑性樹脂1の非溶媒との混合溶媒が好ましい。また溶液2の溶媒としては、熱可塑性樹脂2の貧溶媒あるいは良溶媒が好ましい。 Next, in the manufacturing method of the present invention, the solution 1 discharged from the annular port outside the die is solidified by non-solvent induced phase separation, and the solution 2 discharged from the annular port inside the die is solidified by thermally induced phase separation. This is very important. Therefore, the solvent of the solution 1 is preferably a good solvent for the thermoplastic resin 1 or a mixed solvent of 95% by weight or more of the good solvent for the thermoplastic resin 1 and 5% by weight or less of the non-solvent for the thermoplastic resin 1. . Moreover, as a solvent of the solution 2, the poor solvent or good solvent of the thermoplastic resin 2 is preferable.
ここで、貧溶媒とは、樹脂を60℃以下の低温では5重量%以上溶解させることができないが、60℃以上かつ樹脂の融点以下の高温領域で5重量%以上溶解させることができる溶媒と定義する。これに対し、60℃以下の低温でも樹脂を5重量%以上溶解させることが可能な溶媒が良溶媒であり、また、樹脂の融点または液体の沸点まで、樹脂を溶解も膨潤もさせない溶媒が非溶媒である。 Here, the poor solvent is a solvent that cannot dissolve 5% by weight or more at a low temperature of 60 ° C. or less, but can dissolve 5% by weight or more in a high temperature region of 60 ° C. or more and below the melting point of the resin. Define. On the other hand, a solvent capable of dissolving 5 wt% or more of the resin even at a low temperature of 60 ° C. or less is a good solvent, and a solvent that does not dissolve or swell the resin up to the melting point of the resin or the boiling point of the liquid. It is a solvent.
ここで、例えばポリフッ化ビニリデン系樹脂の貧溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステルおよび有機カーボネート等およびその混合溶媒が挙げられる。また、良溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびその混合溶媒が挙げられる。さらにまた、非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒などが挙げられる。 Here, as a poor solvent for polyvinylidene fluoride resin, for example, medium chain length such as cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, etc. And alkyl ketones, esters, glycol esters, organic carbonates, and the like, and mixed solvents thereof. Examples of good solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, trimethyl phosphate, and other lower alkyl ketones, esters, amides, and the like, and mixtures thereof. A solvent is mentioned. Furthermore, as the non-solvent, water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, Aliphatic hydrocarbons such as pentanediol, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids and mixtures thereof A solvent etc. are mentioned.
また溶液の熱可塑性樹脂濃度は、高い膜性能を発現させるために次の範囲内とすることが好ましい。溶液1の熱可塑性樹脂1の濃度は5重量%以上30重量%以下が好ましく、より好ましくは10重量%以上20重量%以下である。5重量%未満では、溶液1により形成される層の物理的耐久性が低くなり、30重量%を超えると純水透過性能が低くなる。また溶液2の熱可塑性樹脂2の濃度は20重量%以上60重量%以下が好ましく、より好ましくは25重量%以上45重量%以下である。20重量%未満では、溶液2により形成される層の強伸度性能が低くなり、60重量%を超えると純水透過性能が低くなる。 The thermoplastic resin concentration of the solution is preferably within the following range in order to exhibit high film performance. The concentration of the thermoplastic resin 1 in the solution 1 is preferably 5% by weight or more and 30% by weight or less, more preferably 10% by weight or more and 20% by weight or less. If it is less than 5% by weight, the physical durability of the layer formed from the solution 1 is low, and if it exceeds 30% by weight, the pure water permeation performance is low. The concentration of the thermoplastic resin 2 in the solution 2 is preferably 20% by weight to 60% by weight, and more preferably 25% by weight to 45% by weight. If it is less than 20% by weight, the strength elongation performance of the layer formed by the solution 2 is low, and if it exceeds 60% by weight, the pure water permeation performance is low.
以下にこのように調整された溶液1および溶液2を用い、中空糸膜を製造する方法を説明する。 Hereinafter, a method for producing a hollow fiber membrane using the solution 1 and the solution 2 prepared as described above will be described.
三重管構造の口金の外側の環状口から溶液1を、内側の環状口から溶液2を、中心の管から内部凝固液を、同時に外部凝固液中に吐出することにより固化せしめて中空糸膜を製造する。ここで三重管構造の口金の温度Tsは、溶液2の結晶化温度をTcとした際にTc+20℃≦Ts≦Tc+70℃の範囲内とする。好ましくは、Tc+35℃≦Ts≦Tc+60℃である。Ts<Tc+20℃では溶液2の粘度が高くなりすぎて口金からの吐出が困難となる。Ts>Tc+70℃では吐出された溶液2の凝固が遅く、結果的に中空糸構造が形成できない。 The hollow fiber membrane is solidified by discharging the solution 1 from the outer annular port of the triple tube structure die, the solution 2 from the inner annular port, the internal coagulating liquid from the central tube and simultaneously into the external coagulating liquid. To manufacture. Here, the temperature Ts of the die having the triple-tube structure is set in the range of Tc + 20 ° C. ≦ Ts ≦ Tc + 70 ° C. when the crystallization temperature of the solution 2 is Tc. Preferably, Tc + 35 ° C. ≦ Ts ≦ Tc + 60 ° C. When Ts <Tc + 20 ° C., the viscosity of the solution 2 becomes too high and it becomes difficult to discharge from the die. When Ts> Tc + 70 ° C., solidification of the discharged solution 2 is slow, and as a result, a hollow fiber structure cannot be formed.
ここで溶液2の結晶化温度Tcは次のように定義する。示差走査熱量測定(DSC測定)装置を用いて、熱可塑性樹脂2と溶媒など溶液2の組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度をTcとする。 Here, the crystallization temperature Tc of the solution 2 is defined as follows. Using a differential scanning calorimetry (DSC measurement) device, a mixture having the same composition as the composition of the solution 2 such as the thermoplastic resin 2 and a solvent is sealed in a sealed DSC vessel, and the temperature is increased to a dissolution temperature at a temperature rising rate of 10 ° C./min. Warm up and hold for 30 minutes to dissolve uniformly, then Tc is the rising temperature of the crystallization peak observed in the process of lowering the temperature at a temperature lowering rate of 10 ° C./min.
内部凝固液に用いることができる溶媒としては、溶液2中の溶媒と同じ溶媒、溶液2中の溶媒と同じ溶媒70重量%以上と熱可塑性樹脂2の非溶媒30重量%以下との混合溶媒、あるいは、溶液2中の溶媒と混和しない溶媒が好ましい。また外部凝固液の温度Tは、口金の内側の環状口から吐出した溶液2を十分な降温速度で冷却し熱誘起相分離させるため、T≦Tc−10℃であることが好ましく、より好ましくはT≦Tc−30℃である。T>Tc−10℃では溶液2が固化せず中空糸構造が形成できない。なお、この外部凝固液は液状であるので、その温度はその融点よりも高い温度である。 As a solvent that can be used for the internal coagulation liquid, the same solvent as the solvent in the solution 2, a mixed solvent of 70% by weight or more of the same solvent as the solvent in the solution 2 and 30% by weight or less of the non-solvent of the thermoplastic resin 2, Alternatively, a solvent that is immiscible with the solvent in the solution 2 is preferable. In addition, the temperature T of the external coagulation liquid is preferably T ≦ Tc−10 ° C., more preferably, in order to cool the solution 2 discharged from the annular port inside the base at a sufficient temperature-decreasing rate and cause heat-induced phase separation. T ≦ Tc−30 ° C. At T> Tc-10 ° C., the solution 2 does not solidify and a hollow fiber structure cannot be formed. Since the external coagulation liquid is in a liquid state, its temperature is higher than its melting point.
次に、本発明では、外部凝固液には、50重量%以上90重量%以下の熱可塑性樹脂1の非溶媒と10重量%以上50重量%以下の熱可塑性樹脂1の貧溶媒あるいは良溶媒とからなる混合溶媒を用いる。さらには、この混合溶媒の組成は、60重量%以上80重量%以下の熱可塑性樹脂1の非溶媒と20重量%以上40重量%以下の熱可塑性樹脂1の貧溶媒あるいは良溶媒とすることが好ましい。外部凝固液中の非溶媒の割合が90重量%より高い場合、外部凝固液から溶液1の層内を多量の非溶媒が拡散し、溶液2の層に非溶媒が接触することとなるので、熱誘起相分離させるべき溶液2が非溶媒誘起相分離させられ、製造される中空糸膜の内層の外側部分に緻密層が形成され、純水透過性能が著しく低下する。また外部凝固液の非溶媒が50重量%未満では、溶液1の層の凝固が遅過ぎるので、溶液1が外部凝固液中に拡散してしまったり、製造される中空糸膜の外層の厚みムラが著しかったり、また、外表面に緻密層が形成されず阻止性能が低下したり、という問題が生じる。 Next, in the present invention, the external coagulation liquid contains 50 wt% or more and 90 wt% or less of the non-solvent of the thermoplastic resin 1 and 10 wt% or more and 50 wt% or less of the poor solvent or good solvent of the thermoplastic resin 1. A mixed solvent consisting of Furthermore, the composition of the mixed solvent may be 60% by weight or more and 80% by weight or less of the non-solvent of the thermoplastic resin 1 and 20% by weight or more and 40% by weight or less of the poor or good solvent of the thermoplastic resin 1. preferable. When the ratio of the non-solvent in the external coagulation liquid is higher than 90% by weight, a large amount of non-solvent diffuses from the external coagulation liquid in the layer of the solution 1, and the non-solvent comes into contact with the layer of the solution 2. The solution 2 to be thermally induced phase-separated is subjected to non-solvent-induced phase separation, a dense layer is formed on the outer portion of the inner layer of the manufactured hollow fiber membrane, and the pure water permeation performance is significantly lowered. If the non-solvent of the external coagulation liquid is less than 50% by weight, solidification of the layer of the solution 1 is too slow, so that the solution 1 diffuses into the external coagulation liquid or the thickness of the outer layer of the hollow fiber membrane to be manufactured is uneven. Or the dense layer is not formed on the outer surface and the blocking performance is lowered.
また、本発明では、溶液1の吐出重量をW1、溶液2の吐出重量をW2とした際に0.1≦W1/W2≦1とする。さらには0.2≦W1/W2≦0.8とすることが好ましい。W1/W2<0.1では、溶液2層に対する溶液1層の体積割合が小さく、溶液2が熱誘起相分離する前に、外部凝固液から非溶媒が溶液1層内を拡散して溶液2層に非溶媒が接触し、製造される中空糸膜の内層の外側部分に緻密層が形成され、純水透過性能が著しく低下する。W1/W2>1では製造される中空糸膜の内層が薄くなり過ぎて、強伸度性能または耐圧性能が著しく低下する。 In the present invention, when the discharge weight of the solution 1 is W1 and the discharge weight of the solution 2 is W2, 0.1 ≦ W1 / W2 ≦ 1. Furthermore, it is preferable that 0.2 ≦ W1 / W2 ≦ 0.8. When W1 / W2 <0.1, the volume ratio of the solution 1 layer to the solution 2 layer is small, and the non-solvent diffuses in the solution 1 layer from the external coagulation liquid before the solution 2 undergoes heat-induced phase separation. A non-solvent comes into contact with the layer, and a dense layer is formed on the outer portion of the inner layer of the produced hollow fiber membrane, so that the pure water permeation performance is significantly lowered. When W1 / W2> 1, the inner layer of the manufactured hollow fiber membrane becomes too thin, and the strength elongation performance or pressure resistance performance is significantly lowered.
以上の製造方法に加えて、中空糸膜の空隙を拡大し純水透過性能を向上させることおよび破断強度を強化するために延伸を行うことも有用であり好ましい。延伸の方法は好ましくは中空糸膜を構成する熱可塑性樹脂のガラス転移点より高く、融点より低い温度範囲で、好ましくは1.1倍以上4倍以下、より好ましくは1.1倍以上2倍以下の延伸倍率で行う。また延伸は液体中で行う方が温度制御が容易であり好ましいが、スチームなどの気体中で行っても構わない。液体としては水が簡便で好ましいが、90℃程度以上で延伸する場合には、中空糸膜を構成する熱可塑性樹脂を溶解しない高沸点の液体を用いることができる。一方、このような延伸を行わない場合は、延伸を行う場合と比べて、多くの場合、純水透過性能および破断強度は低下するが、破断伸度および阻止性能は向上する。したがって、延伸の有無および延伸倍率は中空糸膜の用途に応じて適宜設定することができる。 In addition to the above production method, it is useful and preferable to perform stretching in order to expand the voids of the hollow fiber membrane to improve the pure water permeation performance and to enhance the breaking strength. The stretching method is preferably higher than the glass transition point of the thermoplastic resin constituting the hollow fiber membrane and lower than the melting point, preferably 1.1 to 4 times, more preferably 1.1 to 2 times. The following draw ratio is used. Further, stretching is preferably performed in a liquid because temperature control is easy, but it may be performed in a gas such as steam. As the liquid, water is simple and preferable, but when stretching at about 90 ° C. or higher, a high boiling point liquid that does not dissolve the thermoplastic resin constituting the hollow fiber membrane can be used. On the other hand, in the case where such stretching is not performed, in many cases, the pure water permeation performance and the breaking strength are lowered as compared with the case where stretching is performed, but the breaking elongation and blocking performance are improved. Therefore, the presence / absence of stretching and the stretching ratio can be appropriately set according to the use of the hollow fiber membrane.
本発明の製造方法の条件をとることにより、口金の外側の環状口から吐出した溶液1を非溶媒誘起相分離により、かつ、口金の内側の環状口から吐出した溶液2を熱誘起相分離により固化せしめることができる。この方法により製造された中空糸膜は、外層が三次元網目構造となり、内層が球状構造となる。このとき、外層は高阻止性能および高純水透過性能を担う機能層であり、内層は高強伸度性能と高純水透過性能を担う支持層である。 By taking the conditions of the production method of the present invention, the solution 1 discharged from the outer annular port of the die is subjected to non-solvent induced phase separation, and the solution 2 discharged from the inner annular port of the die is thermally induced phase separated. It can be solidified. In the hollow fiber membrane produced by this method, the outer layer has a three-dimensional network structure and the inner layer has a spherical structure. At this time, the outer layer is a functional layer responsible for high blocking performance and high pure water permeation performance, and the inner layer is a support layer responsible for high strength elongation performance and high pure water permeation performance.
外層を構成する三次元網目構造とは、固形分が三次元的に網目状に広がっている構造のことをいう。三次元網目構造は、網を形成する固形分に仕切られた細孔およびボイドを有する。また外表面には内部の細孔よりも小さい細孔を有する緻密層が形成されることが好ましく、これにより阻止性能が高くなる。外表面の平均孔径は用途によって異なるが、0.005μm以上0.5μm以下であることが好ましく、より好ましくは0.007μm以上0.2μm以下である。平均孔径がこの範囲にあると、高純水透過性能および高阻止性能を両立できる。また孔径分布も狭い方が好ましい。さらには水中の汚れ物質が細孔に詰まりにくく、また詰まった場合でも、いわゆる逆洗や空洗によって汚れ物質を容易に除去でき中空糸膜をより長時間連続して使用できる。 The three-dimensional network structure that constitutes the outer layer refers to a structure in which solid content spreads in a three-dimensional network. The three-dimensional network structure has pores and voids partitioned by solid contents forming a network. In addition, it is preferable that a dense layer having pores smaller than the internal pores is formed on the outer surface, thereby improving the blocking performance. Although the average pore diameter of the outer surface varies depending on the application, it is preferably 0.005 μm or more and 0.5 μm or less, more preferably 0.007 μm or more and 0.2 μm or less. When the average pore diameter is within this range, both high pure water permeation performance and high blocking performance can be achieved. Further, it is preferable that the pore size distribution is narrow. Furthermore, dirt substances in water are less likely to clog the pores, and even when clogged, the dirt substances can be easily removed by so-called backwashing or air washing, and the hollow fiber membrane can be used continuously for a longer time.
次に、内層を構成する球状構造とは多数の球状あるいは略球状の固形分が直接もしくは筋状の固形分を介して連結している構造のことをいう。球状構造の平均直径は、0.1μm以上5μm以下、より好ましくは0.5μm以上2μm以下である。0.1μm未満では球状構造間の空隙が小さくなり、強伸度性能は高くなるが純水透過性能が低下する。また5μmより大きいと球状構造間の空隙が大きくなり純水透過性能は高くなるが、強伸度性能が低下する。 Next, the spherical structure constituting the inner layer refers to a structure in which a large number of spherical or substantially spherical solids are connected directly or via streak-like solids. The average diameter of the spherical structure is 0.1 μm or more and 5 μm or less, more preferably 0.5 μm or more and 2 μm or less. If it is less than 0.1 μm, the space between the spherical structures becomes small, and the high elongation performance increases, but the pure water permeation performance decreases. On the other hand, if it is larger than 5 μm, the gap between the spherical structures is increased and the pure water permeation performance is improved, but the strength elongation performance is lowered.
本発明の製造方法により得られる中空糸膜は、外層の平均厚さをTh1、内層の平均厚さをTh2とした際に0.2≦Th1/Th2≦0.8であることが好ましく、より好ましくは0.25≦Th1/Th2≦0.7である。さらに強伸度性能、耐圧性能、および純水透過性能の観点から40μm≦Th1≦150μmかつ70μm≦Th2≦300μmが好ましく、より好ましくは50μm≦Th1≦120μmかつ100μm≦Th2≦250μmである。ここで各層の平均厚さは、中空糸膜の断面を走査型電子顕微鏡を用いて写真を撮り、10箇所以上、好ましくは20箇所以上の任意の箇所で層の厚さを測定し、数平均して求めることができる。 The hollow fiber membrane obtained by the production method of the present invention preferably has 0.2 ≦ Th1 / Th2 ≦ 0.8 when the average thickness of the outer layer is Th1 and the average thickness of the inner layer is Th2. Preferably, 0.25 ≦ Th1 / Th2 ≦ 0.7. Furthermore, 40 μm ≦ Th1 ≦ 150 μm and 70 μm ≦ Th2 ≦ 300 μm are preferable from the viewpoint of strong elongation performance, pressure resistance performance, and pure water permeation performance, and more preferably 50 μm ≦ Th1 ≦ 120 μm and 100 μm ≦ Th2 ≦ 250 μm. Here, the average thickness of each layer is obtained by taking a photograph of the cross-section of the hollow fiber membrane using a scanning electron microscope, measuring the thickness of the layer at 10 or more, preferably 20 or more, and the number average. Can be obtained.
また中空糸膜の外径は、水処理の運転方法に応じて選択される必要がある。まず、100kPa以上の高圧運転に用いられる場合、耐圧性能を高くするために、外径は1100μm以上2000μm以下が好ましい。1100μm未満では耐圧性能が不十分で、運転時に中空部が閉塞してしまい、2000μmより大きいと、単位体積あたりの有効膜面積が小さくなり、純水透過性能が低下してしまう。次に、100kPa未満の低圧運転に用いられる場合、単位体積あたりの有効膜面積を大きくするために、外径は500μm以上1100μm未満が好ましい。500μm未満では耐圧性能が不十分で、さらに中空部が小さいために流動抵抗が高くなり、純水透過性能が低下してしまう。1100μm以上では、単位体積あたりの有効膜面積が小さくなり、純水透過性能が低下してしまう。 The outer diameter of the hollow fiber membrane needs to be selected according to the operation method of the water treatment. First, when used in a high-pressure operation of 100 kPa or more, the outer diameter is preferably 1100 μm or more and 2000 μm or less in order to increase pressure resistance. If the pressure is less than 1100 μm, the pressure resistance is insufficient, and the hollow portion is closed during operation. Next, when used for low pressure operation of less than 100 kPa, the outer diameter is preferably 500 μm or more and less than 1100 μm in order to increase the effective membrane area per unit volume. If it is less than 500 μm, the pressure resistance is insufficient, and the flow resistance becomes high because the hollow portion is small, and the pure water permeation performance is lowered. If it is 1100 μm or more, the effective membrane area per unit volume is reduced, and the pure water permeation performance is degraded.
ここで中空糸膜の外径は、10本の中空糸膜の外径の短径と長径を測定し、数平均して求める。 Here, the outer diameter of the hollow fiber membrane is obtained by measuring the short diameter and long diameter of the ten hollow fiber membranes and averaging the numbers.
本発明の製造方法により得られる中空糸膜は、水処理用途に好適な高純水透過性能、高強伸度性能、および高耐圧性能を併せ持たせるという観点から、外径に応じて次の特性を具備することが望ましい。即ち、外径が1100μm以上2000μm以下の場合、50kPa、25℃における純水透過性能が0.5m3/m2・hr以上であり、破断強度が8MPa以上であり、破断伸度が80%以上であり、かつ耐圧が200kPa以上であることが望ましい。さらに、50kPa、25℃における純水透過性能が0.5m3/m2・hr以上10m3/m2・hr以下であり、破断強度が8MPa以上30MPa以下であり、破断伸度が80%以上1000%以下であり、かつ耐圧性能が200kPa以上1000kPa以下であることが好ましい。 The hollow fiber membrane obtained by the production method of the present invention has the following characteristics according to the outer diameter from the viewpoint of having high pure water permeability performance, high strength elongation performance, and high pressure resistance performance suitable for water treatment applications. It is desirable to do. That is, when the outer diameter is 1100 μm or more and 2000 μm or less, the pure water permeability at 50 kPa and 25 ° C. is 0.5 m 3 / m 2 · hr or more, the breaking strength is 8 MPa or more, and the breaking elongation is 80% or more. It is desirable that the withstand voltage is 200 kPa or more. Furthermore, the pure water permeation performance at 50 kPa and 25 ° C. is 0.5 m 3 / m 2 · hr or more and 10 m 3 / m 2 · hr or less, the breaking strength is 8 MPa or more and 30 MPa or less, and the breaking elongation is 80% or more. It is preferably 1000% or less and the pressure resistance is 200 kPa or more and 1000 kPa or less.
また、外径が500μm以上1100μm未満の場合、50kPa、25℃における純水透過性能が0.2m3/m2・hr以上であり、破断強度が10MPa以上であり、破断伸度が20%以上であり、かつ耐圧性能が100kPa以上であることが好ましく、より好ましくは、50kPa、25℃における純水透過性能が0.2m3/m2・hr以上5m3/m2・hr以下であり、破断強度が10MPa以上30MPa以下であり、破断伸度が20%以上400%以下であり、かつ耐圧性能が100kPa以上500kPa以下である。 Further, when the outer diameter is 500 μm or more and less than 1100 μm, the pure water permeation performance at 50 kPa and 25 ° C. is 0.2 m 3 / m 2 · hr or more, the breaking strength is 10 MPa or more, and the breaking elongation is 20% or more. And the pressure resistance is preferably 100 kPa or more, and more preferably 50 kPa, pure water permeability at 25 ° C. is 0.2 m 3 / m 2 · hr to 5 m 3 / m 2 · hr, The breaking strength is from 10 MPa to 30 MPa, the breaking elongation is from 20% to 400%, and the pressure resistance is from 100 kPa to 500 kPa.
以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。ここで本発明に関連する物性値は以下の方法で測定した。 Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. Here, physical properties related to the present invention were measured by the following methods.
(1)熱可塑性樹脂溶液の結晶化温度Tc
セイコー電子製DSC−6200を用いて、熱可塑性樹脂と溶媒など製膜樹脂溶液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした。
(1) Crystallization temperature Tc of thermoplastic resin solution
Using a DSC-6200 made by Seiko Electronics, a mixture of the same composition as the film-forming resin solution composition such as a thermoplastic resin and a solvent was sealed in a sealed DSC container, and the temperature was raised to the dissolution temperature at a heating rate of 10 ° C./min. The temperature at which the crystallization peak was observed in the process of lowering the temperature at a rate of temperature decrease of 10 ° C./min after maintaining for a minute and uniformly dissolving was defined as the crystallization temperature Tc.
(2)中空糸膜の外径
10本の中空糸膜の外径の短径と長径を測定し、数平均して求めた。
(2) Outer Diameter of Hollow Fiber Membrane The short diameter and long diameter of the outer diameters of 10 hollow fiber membranes were measured and obtained by number averaging.
(3)層の平均厚さTh1およびTh2
層の平均厚さは、中空糸膜の断面を走査型電子顕微鏡を用いて写真を撮り、20箇所の任意の層の厚さを測定し、数平均して求めた。
(3) Average layer thickness Th1 and Th2
The average thickness of the layer was determined by taking a photograph of the cross section of the hollow fiber membrane using a scanning electron microscope, measuring the thickness of any 20 layers, and averaging the number.
(4)中空糸膜の純水透過性能
純水透過性能の測定方法は、中空糸膜1〜10本程度からなる長さ約20cmの小型モジュールを作製し、温度25℃、ろ過差圧16kPaの条件で逆浸透膜処理水を送液し、一定時間の透過水量(m3)を測定して得た値を、単位時間(hr)、単位有効膜面積(m2)、50kPa当たりに換算して算出した。
(4) Pure water permeation performance of hollow fiber membrane The pure water permeation performance was measured by preparing a small module having a length of about 20 cm consisting of about 1 to 10 hollow fiber membranes at a temperature of 25 ° C and a filtration differential pressure of 16 kPa. The value obtained by feeding the reverse osmosis membrane treated water under the conditions and measuring the permeated water amount (m 3 ) for a certain time was converted to unit time (hr), unit effective membrane area (m 2 ), per 50 kPa. Calculated.
(5)中空糸膜の破断強度、破断伸度
引張試験機((株)東洋ボールドウィン製TENSILON/RTM―100)を用いて、逆浸透膜処理水で湿潤させた中空糸膜を試験長50mm、フルスケール5kgの加重でクロスヘッドスピード50mm/分にて測定し求めた。
(5) Breaking strength and breaking elongation of hollow fiber membrane Using a tensile tester (TENSILON / RTM-100 manufactured by Toyo Baldwin Co., Ltd.), a hollow fiber membrane wetted with reverse osmosis membrane treated water was tested with a test length of 50 mm. Measurement was made at a crosshead speed of 50 mm / min with a full scale load of 5 kg.
(6)中空糸膜の耐圧性能(ろ過差圧150kPaでの耐圧性能)
長さ200mmの中空糸膜1本からなる、内径10mmの金属管ミニチュアモジュールを作成し、所定水準のろ過差圧にて逆浸透膜処理水の外圧全ろ過を5分間行ない、その後の中空糸膜について、50mm間隔で外径の短径と長径を測定し、それぞれの(短径)/(長径)を算出し数平均し真円率を求めた。これを10回繰り返して得られた真円率を数平均し平均真円率を求めた。
(6) Pressure resistance of hollow fiber membrane (pressure resistance at filtration differential pressure of 150 kPa)
A metal tube miniature module having an inner diameter of 10 mm made of a single hollow fiber membrane having a length of 200 mm is prepared, and external pressure total filtration of reverse osmosis membrane treated water is performed for 5 minutes at a predetermined level of filtration differential pressure. The outer diameter of the outer diameter was measured at intervals of 50 mm, the respective (minor axis) / (major axis) were calculated, number averaged, and the roundness was determined. The roundness obtained by repeating this 10 times was number averaged to obtain the average roundness.
ここで、外径が1100μm以上2000μm以下の中空糸膜を用いた場合には、ろ過差圧を200kPaとした。そして、得られた平均真円率が0.5以上であった場合を、200kPa以上の耐圧性能を有する(○)と判定し、その平均真円率が0.5未満であった場合は、耐圧性能が200kPa未満(×)と判定した。 Here, when a hollow fiber membrane having an outer diameter of 1100 μm or more and 2000 μm or less was used, the filtration differential pressure was set to 200 kPa. And when the obtained average roundness is 0.5 or more, it is determined that the pressure resistance performance is 200 kPa or more (◯), and when the average roundness is less than 0.5, The pressure resistance was determined to be less than 200 kPa (x).
また、外径が500μm以上1100μm未満の中空糸膜を用いた場合には、ろ過差圧を100kPaとした。そして、得られた平均真円率が0.5以上であった場合を、100kPa以上の耐圧性能を有する(○)と判定し、その平均真円率が0.5未満であった場合は、耐圧性能が100kPa未満(×)と判定した。 Moreover, when the hollow fiber membrane whose outer diameter is 500 micrometers or more and less than 1100 micrometers is used, the filtration differential pressure was 100 kPa. And when the obtained average roundness is 0.5 or more, it is determined that the pressure resistance performance is 100 kPa or more (◯), and when the average roundness is less than 0.5, The pressure resistance was determined to be less than 100 kPa (x).
(実施例1)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー13重量%、重量平均分子量2万のポリエチレングリコール5重量%、ジメチルホルムアミド79重量%、および水3重量%を混合して溶解し溶液1とした。また重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解し溶液2とした。溶液2のTcは51℃であった。
Example 1
Solution 1 was prepared by mixing and dissolving 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of polyethylene glycol having a weight average molecular weight of 20,000, 79% by weight of dimethylformamide, and 3% by weight of water. . Also, 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 51 ° C.
104℃(=Ts)で三重管構造の口金の外側の環状口から溶液1を3.5g(=W1)、内側の環状口から溶液2(=W2)を15.5g、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に、13℃(=T)のγ−ブチロラクトン30重量%水溶液中に吐出して固化させた。その後、85℃の水中で1.5倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 At 104 ° C. (= Ts), 3.5 g (= W1) of the solution 1 from the outer annular port of the triple tube structure die, 15.5 g of the solution 2 (= W2) from the inner annular port, and γ from the central tube -A 85% by weight aqueous solution of butyrolactone was simultaneously discharged and solidified in a 30% by weight aqueous solution of γ-butyrolactone at 13 ° C (= T). Then, it extended | stretched 1.5 time in 85 degreeC water. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例2)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー13重量%、重量平均分子量2万のポリエチレングリコール5重量%、ジメチルホルムアミド79重量%、および水3重量%を混合して溶解し溶液1とした。また重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解し溶液2とした。溶液2のTcは51℃であった。
(Example 2)
Solution 1 was prepared by mixing and dissolving 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of polyethylene glycol having a weight average molecular weight of 20,000, 79% by weight of dimethylformamide, and 3% by weight of water. . Also, 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 51 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を5g(=W1)、内側の環状口から溶液2を14g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に12℃(=T)のγ−ブチロラクトン32重量%水溶液中に吐出して固化させた。その後80℃の水中で1.5倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 5 g (= W1) of the solution 1 from the outer annular port of the triple tube structure die at 104 ° C. (= Ts), 14 g (= W2) of the solution 2 from the inner annular port, and 85 weight of γ-butyrolactone from the central tube % Aqueous solution was simultaneously discharged into a 32 wt% aqueous solution of γ-butyrolactone at 12 ° C. (= T) and solidified. Thereafter, the film was stretched 1.5 times in water at 80 ° C. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例3)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー14重量%、セルロースアセテート(イーストマンケミカル社製、CA435−75S:三酢酸セルロース)1重量%、N−メチル−2−ピロリドン77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)5重量%、および水3重量%を混合して溶解し溶液1とした。また、重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とγ−ブチロラクトン64重量%を150℃で溶解し溶液2とした。溶液2のTcは48℃であった。
(Example 3)
14% by weight vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), 77% by weight N-methyl-2-pyrrolidone, poly A solution 1 was prepared by mixing and dissolving 5% by weight of oxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name: IONET T-20C) and 3% by weight of water. Also, 36% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 64% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 48 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を4g(=W1)、内側の環状口から溶液2を15g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に7℃(=T)のγ−ブチロラクトン30重量%水溶液中に吐出して固化させた。その後80℃の水中で1.5倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 4 g (= W1) of solution 1 from the outer annular port of the triple tube structure die at 104 ° C. (= Ts), 15 g (= W2) of solution 2 from the inner annular port, and 85 weight of γ-butyrolactone from the central tube % Aqueous solution was simultaneously discharged into a 30% by weight aqueous solution of γ-butyrolactone at 7 ° C. (= T) and solidified. Thereafter, the film was stretched 1.5 times in water at 80 ° C. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例4)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー13重量%、重量平均分子量2万のポリエチレングリコール5重量%、およびジメチルホルムアミド82重量%を混合して溶解し溶液1とした。また重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解し溶液2とした。溶液2のTcは51℃であった。
Example 4
Solution 1 was prepared by mixing and dissolving 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of polyethylene glycol having a weight average molecular weight of 20,000, and 82% by weight of dimethylformamide. Also, 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 51 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を3.5g(=W1)、内側の環状口から溶液2を15.5g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に6℃(=T)のγ−ブチロラクトン30重量%水溶液中に吐出して固化させた。その後80℃の水中で1.6倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 3.5 g (= W1) of the solution 1 from the outer annular port of the triple tube structure die at 104 ° C. (= Ts), 15.5 g (= W2) of the solution 2 from the inner annular port, and γ from the central tube -A 85% by weight aqueous solution of butyrolactone was simultaneously discharged and solidified in a 30% by weight aqueous solution of γ-butyrolactone at 6 ° C (= T). Thereafter, the film was stretched 1.6 times in water at 80 ° C. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例5)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー14重量%、セルロースアセテート(イーストマンケミカル社製、CA435−75S:三酢酸セルロース)1重量%、N−メチル−2−ピロリドン77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)5重量%、および水3重量%を混合して溶解し溶液1とした。また、重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とγ−ブチロラクトン64重量%を150℃で溶解し溶液2とした。溶液2のTcは48℃であった。
(Example 5)
14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), 77% by weight of N-methyl-2-pyrrolidone, poly A solution 1 was prepared by mixing and dissolving 5% by weight of oxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name: IONET T-20C) and 3% by weight of water. Also, 36% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 64% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 48 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を4.0g(=W1)、内側の環状口から溶液2を5.5g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に10℃(=T)のγ−ブチロラクトン26重量%水溶液中に吐出して固化させた。その後80℃の水中で1.5倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 4.0 g (= W1) of solution 1 from the outer annular port of the triple tube structure die at 104 ° C. (= Ts), 5.5 g (= W2) of solution 2 from the inner annular port, and γ from the central tube -A 85% by weight aqueous solution of butyrolactone was simultaneously discharged and solidified in a 26% by weight aqueous solution of γ-butyrolactone at 10 ° C (= T). Thereafter, the film was stretched 1.5 times in water at 80 ° C. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例6)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー12重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)5重量%、N−メチル−2−ピロリドン83重量%を混合して溶解し溶液1とした。また重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とγ−ブチロラクトン64重量%を150℃で溶解し溶液2とした。溶液2のTcは48℃であった。
(Example 6)
12% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), and 83% by weight of N-methyl-2-pyrrolidone were mixed. Solution 1 was dissolved. A solution 2 was prepared by dissolving 36% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 64% by weight of γ-butyrolactone at 150 ° C. Solution 2 had a Tc of 48 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を3.5g(=W1)、内側の環状口から溶液2を5.0g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に10℃(=T)のγ−ブチロラクトン28重量%水溶液中に吐出して固化させた。その後80℃の水中で1.4倍に延伸した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 3.5 g (= W1) of the solution 1 from the outer annular port of the triple tube structure die at 104 ° C. (= Ts), 5.0 g (= W2) of the solution 2 from the inner annular port, and γ from the central tube -A 85% by weight aqueous solution of butyrolactone was simultaneously discharged into a 28% by weight aqueous solution of γ-butyrolactone at 10 ° C (= T) and solidified. Thereafter, the film was stretched 1.4 times in water at 80 ° C. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(実施例7)
重量平均分子量28.4万のフッ化ビニリデンホモポリマー13.5重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)9重量%、N−メチル−2−ピロリドン76.5重量%を混合して溶解し溶液1とした。また重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解し溶液2とした。溶液2のTcは51℃であった。
(Example 7)
13.5% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 9% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), 76.5% by weight of N-methyl-2-pyrrolidone % Were mixed and dissolved to make Solution 1. Also, 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone was dissolved at 150 ° C. to obtain a solution 2. Solution 2 had a Tc of 51 ° C.
104℃(=Ts)の三重管構造の口金の外側の環状口から溶液1を2.5g(=W1)、内側の環状口から溶液2を4.0g(=W2)、中心の管からγ−ブチロラクトン85重量%水溶液を、同時に8℃(=T)のγ−ブチロラクトン25重量%水溶液中に吐出して固化させた。固化させて得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。 104 g (= Ts) of the triple tube structure mouthpiece, the outer ring mouth of the solution 1 is 2.5 g (= W1), the inner ring mouth is 4.0 g (= W2), the center pipe is γ -A 85% by weight aqueous solution of butyrolactone was simultaneously discharged into a 25% by weight aqueous solution of γ-butyrolactone at 8 ° C (= T) and solidified. The hollow fiber membrane obtained by solidification has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(比較例1)
Tsを65℃にした以外は実施例1と同様の条件にして中空糸膜製造を試みたが、口金からの吐出が困難で、中空糸膜は得られなかった。
(Comparative Example 1)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that Ts was set to 65 ° C. However, it was difficult to discharge from the die, and a hollow fiber membrane could not be obtained.
(比較例2)
Tsを125℃にした以外は実施例1と同様の条件にして中空糸膜製造を試みたが、吐出された溶液の凝固が遅く、中空糸膜は得られなかった。
(Comparative Example 2)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that Ts was 125 ° C., but the solidification of the discharged solution was slow and a hollow fiber membrane could not be obtained.
(比較例3)
T=50℃にした以外は実施例1と同様の条件にして中空糸膜製造を試みたが、吐出された溶液の凝固が遅く、中空糸膜は得られなかった。
(Comparative Example 3)
A hollow fiber membrane production was attempted under the same conditions as in Example 1 except that T = 50 ° C., but the solidification of the discharged solution was slow and a hollow fiber membrane could not be obtained.
(比較例4)
外部凝固液をγ−ブチロラクトン60重量%水溶液にした以外は実施例1と同様の条件にして中空糸膜を製造したところ、溶液1が外部凝固液中に拡散し、得られた中空糸膜は外層をほとんど有していなかった。
(Comparative Example 4)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that the external coagulation liquid was changed to a 60% by weight aqueous solution of γ-butyrolactone. The solution 1 diffused into the external coagulation liquid, and the resulting hollow fiber membrane was There was little outer layer.
(比較例5)
外部凝固液を水にした以外は実施例1と同様の条件にして中空糸膜を製造した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。
(Comparative Example 5)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that the external coagulation liquid was changed to water. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(比較例6)
W1=1.0、W2=15.5gにした以外は実施例1と同様の条件にして中空糸膜を製造した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。
(Comparative Example 6)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that W1 = 1.0 and W2 = 15.5 g. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(比較例7)
W1=12、W2=5gにした以外は実施例1と同様の条件にして中空糸膜を製造した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。
(Comparative Example 7)
A hollow fiber membrane was produced under the same conditions as in Example 1 except that W1 = 12, W2 = 5 g. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
(比較例8)
W1=12、W2=6gにした以外は実施例4と同様の条件にして中空糸膜を製造した。得られた中空糸膜は外層が三次元網目構造で内層が球状構造からなり、表1にその性能を示す。
(Comparative Example 8)
A hollow fiber membrane was produced under the same conditions as in Example 4 except that W1 = 12, and W2 = 6 g. The obtained hollow fiber membrane has a three-dimensional network structure in the outer layer and a spherical structure in the inner layer. Table 1 shows the performance.
本発明による中空糸膜は、耐薬品性が高く、高強伸度性能、高純水透過性能、高阻止性能、高耐圧性能を併せ有することから、水処理用等の分野において有効に利用できる。 The hollow fiber membrane according to the present invention has high chemical resistance and has high strength elongation performance, high pure water permeation performance, high blocking performance, and high pressure resistance performance, so that it can be effectively used in fields such as water treatment.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315157A JP5050499B2 (en) | 2005-12-09 | 2006-11-22 | Method for producing hollow fiber membrane and hollow fiber membrane |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005355966 | 2005-12-09 | ||
JP2005355966 | 2005-12-09 | ||
JP2006315157A JP5050499B2 (en) | 2005-12-09 | 2006-11-22 | Method for producing hollow fiber membrane and hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007181813A JP2007181813A (en) | 2007-07-19 |
JP5050499B2 true JP5050499B2 (en) | 2012-10-17 |
Family
ID=38338315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006315157A Expired - Fee Related JP5050499B2 (en) | 2005-12-09 | 2006-11-22 | Method for producing hollow fiber membrane and hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5050499B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5277471B2 (en) * | 2007-10-19 | 2013-08-28 | 川崎重工業株式会社 | Separation membrane comprising polyethersulfone, process for producing the same, and membrane-forming stock solution |
JP5293959B2 (en) * | 2009-04-02 | 2013-09-18 | ユニチカ株式会社 | Hollow fiber membrane and method for producing the same |
JP5878288B2 (en) * | 2010-07-14 | 2016-03-08 | ユニチカ株式会社 | Highly permeable polyamide hollow fiber membrane and method for producing the same |
JP5894687B2 (en) * | 2015-02-09 | 2016-03-30 | ユニチカ株式会社 | Highly permeable polyamide hollow fiber membrane and method for producing the same |
JP6191790B1 (en) * | 2015-12-28 | 2017-09-06 | 東レ株式会社 | Hollow fiber membrane module and operating method thereof |
US11077407B2 (en) | 2016-05-31 | 2021-08-03 | Toray Industries, Inc. | Porous hollow-fiber membrane and production process therefor |
CN109195689B (en) * | 2016-05-31 | 2021-09-07 | 东丽株式会社 | Hollow fiber membrane module |
CN114130221B (en) * | 2021-12-01 | 2022-11-18 | 山东融星膜材料科技有限公司 | High-pressure-resistant polypropylene hollow fiber deoxygenation membrane and preparation method and application thereof |
CN114618322B (en) * | 2022-02-24 | 2023-04-28 | 北京赛诺膜技术有限公司 | Polyvinylidene fluoride hollow fiber membrane and preparation method and application thereof |
-
2006
- 2006-11-22 JP JP2006315157A patent/JP5050499B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007181813A (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5050499B2 (en) | Method for producing hollow fiber membrane and hollow fiber membrane | |
TW572776B (en) | Hollow fiber membrane and method for producing the same | |
JP5732719B2 (en) | Separation membrane and manufacturing method thereof | |
JP4835221B2 (en) | Hollow fiber membrane and method for producing the same | |
JP5068168B2 (en) | Vinylidene fluoride resin hollow fiber porous membrane | |
JP5619532B2 (en) | Vinylidene fluoride resin porous membrane and method for producing the same | |
JP6274642B2 (en) | Porous hollow fiber membrane and method for producing the same | |
JP5641553B2 (en) | Method for producing hollow fiber membrane | |
JP5856887B2 (en) | Method for producing porous membrane | |
JP2010094670A (en) | Polyvinylidene fluoride-based multiple membrane and method for producing the same | |
JP2012525966A (en) | Fluorine-based hollow fiber membrane and method for producing the same | |
JP6613892B2 (en) | Separation membrane and manufacturing method thereof | |
JPWO2008117740A1 (en) | Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same | |
JP5292890B2 (en) | Composite hollow fiber membrane | |
JP2009082882A (en) | Polyvinylidene fluoride based composite hollow fiber membrane, and its manufacturing method | |
WO2019066061A1 (en) | Porous hollow fiber membrane and method for producing same | |
WO2007032331A1 (en) | Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof | |
JP4987471B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
JPWO2006001528A1 (en) | Porous membrane for water treatment and method for producing the same | |
JP3724412B2 (en) | Hollow fiber membrane manufacturing method and hollow fiber membrane module | |
JP2006281202A (en) | Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane | |
JP2012187575A (en) | Composite membrane and method for manufacturing the same | |
WO2009119373A1 (en) | Hollow-fiber membrane and process for production thereof | |
JP2008062227A (en) | Membrane stock solution, porous membrane and method for producing porous membrane | |
JP2018008272A (en) | Method for producing hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5050499 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |