[go: up one dir, main page]

JP5048637B2 - Membrane separator - Google Patents

Membrane separator Download PDF

Info

Publication number
JP5048637B2
JP5048637B2 JP2008300413A JP2008300413A JP5048637B2 JP 5048637 B2 JP5048637 B2 JP 5048637B2 JP 2008300413 A JP2008300413 A JP 2008300413A JP 2008300413 A JP2008300413 A JP 2008300413A JP 5048637 B2 JP5048637 B2 JP 5048637B2
Authority
JP
Japan
Prior art keywords
membrane
sludge liquid
separation tank
tank
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008300413A
Other languages
Japanese (ja)
Other versions
JP2010125360A (en
Inventor
圭介 舩石
芳男 奥野
竜郎 照井
昌宏 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2008300413A priority Critical patent/JP5048637B2/en
Publication of JP2010125360A publication Critical patent/JP2010125360A/en
Application granted granted Critical
Publication of JP5048637B2 publication Critical patent/JP5048637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、活性汚泥処理法により下水や産業廃水等の処理を行う水処理装置において、ろ過膜による膜モジュールを用いて固液分離を行う膜分離装置に関する。   The present invention relates to a membrane separation apparatus that performs solid-liquid separation using a membrane module using a filtration membrane in a water treatment apparatus that treats sewage, industrial wastewater, and the like by an activated sludge treatment method.

近年、水処理装置において、活性汚泥液を収容した生物反応槽による生物反応処理後の汚泥液を固液分離する際に、活性汚泥液の沈降性に左右されず、清澄で高度な水質の処理水が得られ、処理施設のコンパクト化が図れる水処理方法として膜分離技術を用いた膜分離方法が注目されている。これは活性汚泥と処理水の固液分離を、微細な孔径を有するろ過膜を生物反応槽に浸漬させて行う方法が主に研究され、実用化がなされてきた。   In recent years, in water treatment equipment, when sludge liquid after biological reaction treatment in a biological reaction tank containing activated sludge liquid is solid-liquid separated, it is not affected by the sedimentation property of activated sludge liquid, and it is a clear and advanced treatment of water quality. Membrane separation methods using membrane separation technology are attracting attention as water treatment methods that can obtain water and make the treatment facility compact. In this method, solid-liquid separation of activated sludge and treated water has been mainly studied and put into practical use by immersing a filtration membrane having a fine pore size in a biological reaction tank.

上記のような生物反応槽に浸漬された膜モジュール(膜分離ユニット)は、下部から膜面洗浄用の空気を供給する散気装置、膜面を処理水や清澄な水により逆洗するための機構、次亜塩素酸などの洗浄用薬剤を注入するための機構を有し、これらにより膜面の閉塞を防止して処理を継続するのが一般的である。そして、長期的に使用すると有機物などの付着により膜面が閉塞してしまうため、定期的に生物反応槽から膜モジュールを取り出し、所定の濃度に調整した次亜塩素酸などの洗浄用薬液を満たした浸漬洗浄槽にて浸漬洗浄を行う必要があった。   The membrane module (membrane separation unit) immersed in the biological reaction tank as described above is an air diffuser that supplies air for cleaning the membrane surface from the bottom, for backwashing the membrane surface with treated water or clear water In general, it has a mechanism and a mechanism for injecting a cleaning agent such as hypochlorous acid, and these prevent the clogging of the film surface and continue processing. And since the membrane surface will be clogged due to the adhesion of organic substances etc. when used for a long time, the membrane module is periodically taken out from the biological reaction tank and filled with cleaning chemicals such as hypochlorous acid adjusted to a predetermined concentration. It was necessary to perform immersion cleaning in the immersion cleaning tank.

下水処理施設などの大水量を処理する施設においては、使用する膜モジュールが大きく、生物反応槽から取り出すためにはクレーンなどを用いなければならず、容易ではない。そこで、浸漬洗浄の手間を簡素化するため、汚水の生物処理を行う生物反応槽と、固液分離を行うための膜分離槽を別個に設置する水処理装置が考案されている(非特許文献1参照)。   In a facility that treats a large amount of water, such as a sewage treatment facility, a membrane module to be used is large, and a crane or the like must be used to take it out of a biological reaction tank, which is not easy. Therefore, in order to simplify the labor of immersion cleaning, a water treatment apparatus has been devised in which a biological reaction tank for biological treatment of sewage and a membrane separation tank for solid-liquid separation are separately installed (non-patent document). 1).

非特許文献1には、膜分離活性汚泥法(MBR)として、従来の活性汚泥法では最終沈殿池などで重力沈降により行っていた活性汚泥と処理水との分離操作を膜により行う点、および生物反応槽とは別個に膜分離槽を設けることが好適な点が記載されている。つまり、膜分離槽を設けることは、膜分離槽と生物反応槽との間に汚泥液の循環ラインやポンプを設ける必要もあり付加設備が増加するが、膜分離槽を複数の系列に区切り処理水量に応じて稼動系列数を変えるなど運転操作上の融通性に優れ、浸漬洗浄の際に膜モジュールを移動する必要がないなどの利点を有するものである。   Non-Patent Document 1 discloses that, as a membrane separation activated sludge method (MBR), a separation operation between activated sludge and treated water, which is performed by gravity sedimentation in a final sedimentation basin or the like in the conventional activated sludge method, is performed using a membrane, and It is described that a membrane separation tank is preferably provided separately from the biological reaction tank. In other words, the provision of a membrane separation tank necessitates the provision of a sludge liquid circulation line or pump between the membrane separation tank and the biological reaction tank. It has excellent flexibility in operation such as changing the number of operating series according to the amount of water, and has the advantage that it is not necessary to move the membrane module during immersion cleaning.

そして、膜分離槽を別個に設置する場合、生物反応槽での汚泥液流量の維持や、膜分離槽で汚泥濃度が高くなりすぎることを防止するため、生物反応槽と膜分離槽間で汚泥液を循環させることが必要となる。   And when installing a membrane separation tank separately, in order to maintain the sludge liquid flow rate in the biological reaction tank and prevent the sludge concentration from becoming too high in the membrane separation tank, the sludge between the biological reaction tank and the membrane separation tank It is necessary to circulate the liquid.

また、膜への汚泥付着を防止する目的で、膜分離槽における膜モジュールの下部から膜面洗浄用の空気を供給し、膜への汚泥付着を阻止する手法が実施されている。この膜モジュールへの空気供給は、膜分離槽内の汚泥液に旋回流を起こし、膜分離槽内の汚泥濃度を均一にする働きをも有している。
下水道協会誌Vol.43、No.528、p87〜98、ヨーロッパの下水処理施設における膜分離活性汚泥法の実態調査、2006
In order to prevent sludge from adhering to the membrane, a method of supplying air for cleaning the membrane surface from the lower part of the membrane module in the membrane separation tank and preventing sludge from adhering to the membrane has been implemented. The air supply to the membrane module also has a function of causing a swirl flow in the sludge liquid in the membrane separation tank and making the sludge concentration in the membrane separation tank uniform.
Journal of Sewerage Association Vol.43, No.528, p87-98, Survey on membrane separation activated sludge process in European sewage treatment facilities, 2006

ところで、原水の生物処理を行う生物反応槽と、固液分離を行うための膜分離槽を別個にした場合、上記のように生物反応槽と膜分離槽との間で汚泥液の循環を行わなければならず、ポンプの設置により汚泥液の循環を行うのが一般的であり、その場合、膜モジュールの浸漬洗浄を実施するための手間は、生物反応槽にて膜分離を行う方法に比べて簡単ではあるものの、汚泥液循環のためのポンプなどの動力が余分に必要となり、処理費用が増大する問題点があった。   By the way, when the biological reaction tank for biological treatment of raw water and the membrane separation tank for solid-liquid separation are separated, the sludge liquid is circulated between the biological reaction tank and the membrane separation tank as described above. In general, it is necessary to circulate the sludge liquid by installing a pump. In this case, the labor required to carry out the immersion cleaning of the membrane module is compared to the method of performing membrane separation in a biological reaction tank. Although it is simple, extra power such as a pump for circulating the sludge liquid is required, which increases the processing cost.

本発明は上記点に鑑みなされたもので、生物反応槽と膜分離槽の接続方法を工夫することにより、生物反応槽と膜分離槽間の汚泥液循環に要する動力を削減し、より効率的に膜分離処理を行うことができる膜分離装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and by devising a connection method between the biological reaction tank and the membrane separation tank, the power required for the sludge liquid circulation between the biological reaction tank and the membrane separation tank can be reduced and more efficiently. An object of the present invention is to provide a membrane separation apparatus capable of performing a membrane separation treatment.

本発明の膜分離装置は、活性汚泥液を収容した生物反応槽における生物反応処理後の汚泥液を固液分離するための膜分離装置であって、
前記生物反応槽とは別途に設置された膜分離槽と、
該膜分離槽内に縦向きに複数配置された膜モジュールと、
前記生物反応槽と前記膜分離槽とで汚泥液を循環させるために、前記膜分離槽と前記生物反応槽とを下部で接続する汚泥液供給管と、
前記生物反応槽と前記膜分離槽とで汚泥液を循環させるために、前記膜分離槽と前記生物反応槽とを上部で接続する汚泥液返送管と、
前記膜分離槽内に空気を噴出する空気供給手段とを備え、
前記汚泥液供給管は、下流端部分が前記膜分離槽の内部まで貫入し、前記膜モジュールの各々の下部に延びて、各膜モジュールの底部位置に対応して上向きに開放した分離槽側開口部と、
該分離槽側開口部に設置され、前記膜モジュールに向けて空気を噴出する前記空気供給手段の空気供給口とを有し、
前記空気供給口から噴出する空気により、前記汚泥液供給管の前記分離槽側開口部から汚泥液を前記膜分離槽内に送給するとともに、前記膜モジュールの膜洗浄を行うことを特徴とするものである。
The membrane separation apparatus of the present invention is a membrane separation apparatus for solid-liquid separation of sludge liquid after biological reaction treatment in a biological reaction tank containing activated sludge liquid,
A membrane separation tank installed separately from the biological reaction tank;
A plurality of membrane modules arranged vertically in the membrane separation tank;
In order to circulate sludge liquid in the biological reaction tank and the membrane separation tank, a sludge liquid supply pipe connecting the membrane separation tank and the biological reaction tank at the lower part,
In order to circulate sludge liquid in the biological reaction tank and the membrane separation tank, a sludge liquid return pipe connecting the membrane separation tank and the biological reaction tank at the upper part,
Air supply means for ejecting air into the membrane separation tank,
The sludge liquid supply pipe has a downstream end portion that penetrates to the inside of the membrane separation tank, extends to the lower part of each of the membrane modules, and opens upward corresponding to the bottom position of each membrane module. And
An air supply port of the air supply means which is installed in the separation tank side opening and jets air toward the membrane module;
The sludge liquid is fed into the membrane separation tank from the separation tank side opening of the sludge liquid supply pipe by the air ejected from the air supply port, and the membrane cleaning of the membrane module is performed. Is.

その際、前記汚泥液供給管の分離槽側開口部内に、前記膜モジュールの下部を固定し、該膜モジュールの下部外周を囲んで前記分離槽側開口部の延長筒部を形成するのが好適である。   At that time, it is preferable that the lower part of the membrane module is fixed in the separation tank side opening of the sludge liquid supply pipe, and the extension cylinder part of the separation tank side opening is formed surrounding the lower outer periphery of the membrane module. It is.

また、前記生物反応槽内に設置する前記汚泥液供給管の上流端部分は、該生物反応槽内の汚泥液の循環流における下降流部に、下向きに開放して設置するように構成してもよい。   Further, the upstream end portion of the sludge liquid supply pipe installed in the biological reaction tank is configured to be opened downward and installed in a downward flow portion in the circulating flow of sludge liquid in the biological reaction tank. Also good.

また、前記空気供給手段により前記空気供給口から前記膜分離槽に供給する空気流量を、該空気流量をQa[Nm3/h]、膜分離槽へ供給される汚泥液流量をQw[m3/h]としたとき、揚水係数k=1−[1÷(Qa÷Qw+1)]が0.2〜0.8となるような範囲に規定することが好ましい。 Further, the air flow rate supplied from the air supply port to the membrane separation tank by the air supply means is Qa [Nm 3 / h], the air flow rate is Qw [m 3]. / h], it is preferable that the pumping coefficient k = 1− [1 ÷ (Qa ÷ Qw + 1)] is defined in a range of 0.2 to 0.8.

本発明の膜分離装置によれば、活性汚泥液を収容した生物反応槽とは別途に設置した膜分離槽に、膜モジュールを縦向きに複数配置するとともに、前記生物反応槽と前記膜分離槽とで汚泥液を循環させるために、膜分離槽と生物反応槽とを下部の汚泥液供給管および上部の汚泥液返送管でそれぞれ接続し、前記汚泥液供給管は、下流端部分が膜分離槽の内部まで貫入し、膜モジュールの各々の下部に延びて、各膜モジュールの底部位置に対応して上向きに開放した分離槽側開口部を有する一方、膜分離槽内に空気を噴出する空気供給手段は、膜モジュールに向けて空気を噴出する空気供給口を上記分離槽側開口部に設置しているため、この空気供給口から噴出する空気により、汚泥液供給管の分離槽側開口部を通して生物反応槽からの汚泥液を膜分離槽内に送給するとともに、膜モジュールの膜洗浄を行うことができることにより、膜分離槽と生物反応槽との汚泥液循環に必要な動力が削減でき、さらに、膜分離槽内の汚泥液濃度を一定に保ち、膜モジュールによる生物反応処理後の汚泥液の固液分離を安定的に継続処理することができる。   According to the membrane separation apparatus of the present invention, a plurality of membrane modules are arranged vertically in a membrane separation tank installed separately from a biological reaction tank containing activated sludge, and the biological reaction tank and the membrane separation tank are arranged. In order to circulate the sludge liquid, the membrane separation tank and the biological reaction tank are connected by the lower sludge liquid supply pipe and the upper sludge liquid return pipe, respectively, and the downstream end portion of the sludge liquid supply pipe is membrane-separated. Air that penetrates to the inside of the tank, extends to the bottom of each of the membrane modules, and has a separation tank side opening that opens upward corresponding to the position of the bottom of each membrane module, while jetting air into the membrane separation tank Since the supply means has an air supply port for ejecting air toward the membrane module in the separation tank side opening, the air ejected from the air supply port causes the separation tank side opening of the sludge liquid supply pipe Sludge liquid from biological reaction tank through Since it can be fed into the membrane separation tank and the membrane module can be washed, the power required for sludge liquid circulation between the membrane separation tank and the biological reaction tank can be reduced, and the sludge in the membrane separation tank can be reduced. The liquid concentration can be kept constant, and the solid-liquid separation of the sludge liquid after the biological reaction treatment by the membrane module can be stably continued.

特に、上記生物反応槽から膜分離槽への下部の汚泥液供給管が膜分離槽内まで貫入しており、この汚泥液供給管は分離槽側開口部が上方向のみであり、分離槽側開口部の上部に各膜モジュールが設置され、膜洗浄のための空気を噴出することに応じて、この噴出空気の混入によって膜分離槽内での汚泥液供給管内の汚泥液の比重が、生物反応槽と汚泥液供給管の接続部分の比重よりも軽くなると同時に、供給された空気が上昇移動するのに伴い、汚泥液供給管の分離槽側開口部から汚泥液が膜分離槽へ順次押し出されて、上昇移動するように送給される。そのため、生物反応槽の汚泥液は、汚泥液供給管に吸い込まれて流入し膜分離槽へ送給され、膜分離槽内に増量した汚泥液は、上部の汚泥液返送管によって生物反応槽に戻されるように、生物反応槽と膜分離槽間にて汚泥液の循環が生じることとなる。   In particular, the lower sludge liquid supply pipe from the biological reaction tank to the membrane separation tank penetrates into the membrane separation tank, and this sludge liquid supply pipe has an opening on the separation tank side only, and the separation tank side Each membrane module is installed at the upper part of the opening, and the specific gravity of the sludge liquid in the sludge liquid supply pipe in the membrane separation tank due to the mixing of the blown air is caused by the ejection of air for membrane cleaning. At the same time as the specific gravity of the connecting part between the reaction tank and the sludge liquid supply pipe becomes lighter, the sludge liquid is sequentially pushed out from the opening on the separation tank side of the sludge liquid supply pipe to the membrane separation tank. And is sent to move up. Therefore, the sludge liquid in the biological reaction tank is sucked into the sludge liquid supply pipe, flows into the membrane separation tank, and the increased amount of sludge liquid in the membrane separation tank is transferred to the biological reaction tank by the upper sludge liquid return pipe. As returned, the sludge is circulated between the biological reaction tank and the membrane separation tank.

なお、膜分離槽内の汚泥液供給管に上向き方向以外に分離槽側開口部が開口していると、この分離槽側開口部から汚泥液供給管内に膜分離槽内の汚泥液を吸い込むこととなり、生物反応槽から汚泥液供給管内に汚泥液を吸い込まなくなって、上記のような空気噴出に伴う汚泥液の循環作用を得ることができない。   In addition, if the separation tank side opening is open to the sludge liquid supply pipe in the membrane separation tank other than the upward direction, the sludge liquid in the membrane separation tank is sucked into the sludge liquid supply pipe from this separation tank side opening. Thus, the sludge liquid is not sucked into the sludge liquid supply pipe from the biological reaction tank, and the above-described sludge liquid circulation action due to the air ejection cannot be obtained.

その際、上記汚泥液供給管の分離槽側開口部内に、前記膜モジュールの下部を固定し、該膜モジュールの下部外周を囲んで前記分離槽側開口部の延長筒部を形成すると、汚泥液供給管内の汚泥液の送給特性と、供給空気による膜閉塞の阻止特性とが効率よく良好に確保できる。   At that time, when the lower part of the membrane module is fixed in the separation tank side opening of the sludge liquid supply pipe and the extension cylinder part of the separation tank side opening is formed surrounding the lower outer periphery of the membrane module, The feeding characteristic of the sludge liquid in the supply pipe and the blocking characteristic of the membrane clogging with the supply air can be secured efficiently and satisfactorily.

また、上記生物反応槽内に設置する汚泥液供給管の上流端部分は、この生物反応槽内の汚泥液の循環流における下降流部に、下向きに開放して設置する構成とすると、生物反応槽における良好な生物処理特性を確保しつつ、汚泥液供給管への空気の流入を抑制して、所望の汚泥液の循環量を維持することができる。   Further, when the upstream end portion of the sludge liquid supply pipe installed in the biological reaction tank is configured to be opened downward and installed in the downward flow portion in the circulating flow of sludge liquid in the biological reaction tank, the biological reaction While ensuring good biological treatment characteristics in the tank, it is possible to suppress the inflow of air into the sludge liquid supply pipe and maintain a desired amount of sludge liquid circulation.

上記生物反応槽においては、様々な汚水の生物処理方法があるが、膜分離槽に供給される汚泥液は、好気的に生物処理を行う生物反応槽である場合が多い。そして、生物反応槽が好気槽である場合、この生物反応槽には空気が供給される。本発明においては、汚泥液供給管の分離槽側開口部に空気を供給して、空気による押上げ力で分離槽側開口部付近の汚泥液を押し出し、汚泥液供給管内における比重差と分離槽側開口部からの汚泥液の流出に伴う負圧とにより生物反応槽から汚泥液を吸い込み、液面差などの圧力差で汚泥液返送管により膜分離槽から生物反応槽へ余剰の汚泥液を戻すように汚泥液の循環を行わせる装置であるため、気泡が生物反応槽より汚泥液供給管内に混入してしまうと比重差が小さくなるとともに吸引力が低下し、汚泥液の循環量が減ってしまう。   In the biological reaction tank, there are various biological treatment methods for sewage, but the sludge liquid supplied to the membrane separation tank is often a biological reaction tank that performs aerobic biological treatment. And when a biological reaction tank is an aerobic tank, air is supplied to this biological reaction tank. In the present invention, air is supplied to the separation tank side opening of the sludge liquid supply pipe, the sludge liquid in the vicinity of the separation tank side opening is pushed out by the lifting force by the air, the specific gravity difference in the sludge liquid supply pipe and the separation tank The sludge liquid is sucked from the biological reaction tank due to the negative pressure accompanying the outflow of the sludge liquid from the side opening, and excess sludge liquid is transferred from the membrane separation tank to the biological reaction tank by the sludge liquid return pipe due to the pressure difference such as the liquid level difference. Since it is a device that circulates sludge liquid so as to return, if bubbles are mixed into the sludge liquid supply pipe from the biological reaction tank, the specific gravity difference is reduced and the suction force is reduced, and the amount of sludge liquid circulated is reduced. End up.

このために生物反応槽における汚泥液供給管の上流端部分の反応槽側開口部を、好気処理用の空気供給に伴う生物反応槽内の汚泥液の循環流における下降流部に、下向きに開放して設置した場合には、気泡の吸い込みを低減でき、汚泥液循環量の低下を抑制することができる。特に、生物反応槽として好気槽での空気(酸素)供給手段が、微細気泡による散気装置である場合、酸素溶解効率が高いため、吹き込む空気流量は少なくてすむし、気泡自体が小さいため、汚泥液供給管内への生物反応槽側からの気泡流入量を少なくすることができる。   For this purpose, the reaction tank side opening at the upstream end portion of the sludge liquid supply pipe in the biological reaction tank is directed downward to the downward flow section in the circulation flow of the sludge liquid in the biological reaction tank accompanying the air supply for aerobic treatment. When installed open, it is possible to reduce the inhalation of bubbles and suppress the decrease in the amount of sludge liquid circulation. In particular, when the air (oxygen) supply means in the aerobic tank as the biological reaction tank is an air diffuser using fine bubbles, the oxygen dissolution efficiency is high, so the flow rate of air to be blown is small and the bubbles themselves are small. In addition, the amount of air bubbles flowing into the sludge liquid supply pipe from the biological reaction tank side can be reduced.

また、前記空気供給手段により空気供給口から膜分離槽に供給する空気流量を、この空気流量をQa[Nm3/h]、膜分離槽へ供給される汚泥液流量をQw[m3/h]としたとき、揚水係数k=1−[1÷(Qa÷Qw+1)]が0.2〜0.8となるような範囲に規定すると、膜モジュールの膜閉塞を防止して良好な分離処理を継続することができる。 The air flow rate supplied from the air supply port to the membrane separation tank by the air supply means is Qa [Nm 3 / h], and the sludge flow rate supplied to the membrane separation tank is Qw [m 3 / h. ], If the pumping coefficient k = 1− [1 ÷ (Qa ÷ Qw + 1)] is specified in the range of 0.2 to 0.8, membrane separation of the membrane module is prevented and good separation processing is continued. Can do.

つまり、膜モジュールの閉塞阻止用の空気流量を確保するとともに、それに伴う汚泥液流量すなわち生物反応槽からの汚泥液の循環供給を確保することで、膜分離槽内MLSS濃度が過大とならないようにして、膜分離性能が維持できる。汚泥液流量が膜モジュールの処理能力を超えて大きくなると、その汚泥液流量を得るための空気流量が膨大となり、不適切である。   In other words, the air flow rate for blocking the membrane module is secured, and the flow rate of the sludge liquid associated therewith, that is, the circulation supply of the sludge liquid from the biological reaction tank, is secured so that the MLSS concentration in the membrane separation tank does not become excessive. Thus, the membrane separation performance can be maintained. When the sludge liquid flow rate increases beyond the processing capacity of the membrane module, the air flow rate for obtaining the sludge liquid flow rate becomes enormous and inappropriate.

以下、図面を参照して本発明の第1〜第4の実施形態に係る膜分離装置について詳細に説明する。図1〜図3は、それぞれ本発明の第1〜第3の実施形態に係る膜分離装置の概略構成を示す立面図、図4は本発明の第4の実施形態にかかる膜分離装置の概略構成を示す平面図である。   Hereinafter, membrane separation apparatuses according to first to fourth embodiments of the present invention will be described in detail with reference to the drawings. 1 to 3 are elevation views showing schematic configurations of membrane separation apparatuses according to first to third embodiments of the present invention, respectively, and FIG. 4 is a diagram of a membrane separation apparatus according to the fourth embodiment of the present invention. It is a top view which shows schematic structure.

<第1の実施形態>
図1に示すように、本実施形態の膜分離装置10は、活性汚泥と原水を混合した汚泥液を収容する生物反応槽20とは別途に設置された膜分離槽30を備える。膜分離装置10は、生物反応槽20における生物反応処理後の汚泥液を活性汚泥と処理水とに固液分離するためのものであって、前記膜分離槽30の槽内には、縦向きに複数の膜モジュール40が配置され、各膜モジュール40には不図示の吸引ポンプを備えた排水管50が接続され、ろ過膜41を透過した処理水を排出して膜分離を行う。
<First Embodiment>
As shown in FIG. 1, a membrane separation apparatus 10 of this embodiment includes a membrane separation tank 30 installed separately from a biological reaction tank 20 that contains a sludge liquid obtained by mixing activated sludge and raw water. The membrane separation apparatus 10 is for solid-liquid separation of the sludge liquid after biological reaction treatment in the biological reaction tank 20 into activated sludge and treated water. A plurality of membrane modules 40 are arranged, and each membrane module 40 is connected to a drain pipe 50 having a suction pump (not shown), and the treated water that has permeated through the filtration membrane 41 is discharged to perform membrane separation.

上記膜モジュール40は、チューブ状または膜状に形成された中空糸膜などの微多孔性膜により形成されたろ過膜41と、該ろ過膜41を複数並べて下端部を保持する下支持体42と、上端部を保持する上支持体43とで構成されている。上支持体43は上記ろ過膜41を透過した処理水が集まる集水部(図示せず)を内蔵し、前記排水管50が接続される排水口43aを備えている。この排水管50は、膜分離槽30の外部に導出され、図示しない吸引ポンプに接続される。   The membrane module 40 includes a filtration membrane 41 formed of a microporous membrane such as a hollow fiber membrane formed in a tube shape or a membrane shape, and a lower support 42 holding a lower end by arranging a plurality of the filtration membranes 41 The upper support 43 holds the upper end. The upper support 43 incorporates a water collection part (not shown) in which treated water that has passed through the filtration membrane 41 is collected, and includes a drain port 43a to which the drain pipe 50 is connected. The drain pipe 50 is led out of the membrane separation tank 30 and connected to a suction pump (not shown).

1つの膜分離槽30の槽内には、処理流量に対応した複数の膜モジュール40が設置されるものであり、膜分離槽30の槽内を下方より上方に汚泥液が流動できるように所定の間隔を保って、列状(図4参照)、円弧状などに配置される。   A plurality of membrane modules 40 corresponding to the treatment flow rate are installed in one membrane separation tank 30 and predetermined so that sludge liquid can flow in the tank of the membrane separation tank 30 from below to above. Are arranged in rows (see FIG. 4), arcs, etc.

前記生物反応槽20と前記膜分離槽30とで汚泥液を循環させるために、この生物反応槽20と膜分離槽30とは、下部の汚泥液供給管60で接続されるとともに、上部の汚泥液返送管70で接続されている。そして、上記汚泥液供給管60には、膜分離槽30の槽内に空気を噴出する空気供給手段80が接続され、加圧空気が供給される。   In order to circulate the sludge liquid in the biological reaction tank 20 and the membrane separation tank 30, the biological reaction tank 20 and the membrane separation tank 30 are connected by a lower sludge liquid supply pipe 60 and an upper sludge. The liquid return pipe 70 is connected. The sludge liquid supply pipe 60 is connected to air supply means 80 for blowing air into the tank of the membrane separation tank 30 and supplied with pressurized air.

そして、前記汚泥液供給管60の上流端部は、前記生物反応槽20の下部の壁面に接続され、液面より下方位置の壁面に開口して、該生物反応槽20に収容した中間部近傍の汚泥液が流入する反応槽側開口部61となる。   The upstream end portion of the sludge liquid supply pipe 60 is connected to the lower wall surface of the biological reaction tank 20, opens to the wall surface below the liquid surface, and in the vicinity of the intermediate portion accommodated in the biological reaction tank 20 The reaction tank side opening 61 into which the sludge liquid flows.

また、前記汚泥液供給管60の下流端部は、前記膜分離槽30の底部近傍の壁面に接続され、該壁面を貫通して先端部分が膜分離槽30の内部まで貫入し、必要に応じて分岐し、前記膜モジュール40の各々の下部に延びて、各膜モジュール40の底部位置に対応してそれぞれ分離槽側開口部62が上向きに開放している。   Further, the downstream end portion of the sludge liquid supply pipe 60 is connected to the wall surface near the bottom of the membrane separation tank 30 and penetrates through the wall surface to penetrate the inside of the membrane separation tank 30. The separation tank side opening 62 is opened upward corresponding to the position of the bottom of each membrane module 40.

上記汚泥液供給管60の分離槽側開口部62には、前記膜モジュール40の下部の下支持体42が固定保持されるものであり、この分離槽側開口部62の周囲には延長筒部63が膜モジュール40の下部の外周に沿って囲むように、上方に延びて形成されている。この延長筒部63の高さは、膜モジュール40の下部から少なくとも汚泥液供給管60の管径の3倍以上の高さまで囲むように形成するのが好ましい。   The lower support 42 at the lower part of the membrane module 40 is fixedly held in the separation tank side opening 62 of the sludge liquid supply pipe 60, and an extension cylinder is provided around the separation tank side opening 62. 63 extends upward so as to surround the outer periphery of the lower part of the membrane module 40. It is preferable that the extension cylinder portion 63 is formed so as to surround from the lower part of the membrane module 40 to at least three times the pipe diameter of the sludge liquid supply pipe 60.

また、上記汚泥液供給管60の分離槽側開口部62には、前記空気供給手段80の空気供給口81が各膜モジュール40に向けて空気を噴出するように設置されている。この空気供給手段80は、各膜モジュール40に対応する空気供給口81に接続されたエアパイプ82を備え、エアポンプ83に接続されて加圧空気を供給する。上記空気供給口81は、前記汚泥液供給管60の分離槽側開口部62の近傍に存在する汚泥液を、分離槽側開口部62から延長筒部63に押し上げて、膜分離槽30の内部に吐出するように作用させる。そのために、該空気供給口81は、噴出した空気が汚泥液供給管60の内部の汚泥液に混ざって分離槽側開口部62の方向に移動するように、この分離槽側開口部62より下方位置に設置された単数または複数の空気噴出口によって構成される。なお、上記延長筒部63が設置されている場合には、空気供給口81の開口位置は、この延長筒部63内に配置してもよい。   In addition, the air supply port 81 of the air supply means 80 is installed in the separation tank side opening 62 of the sludge liquid supply pipe 60 so as to eject air toward the membrane modules 40. This air supply means 80 includes an air pipe 82 connected to an air supply port 81 corresponding to each membrane module 40, and is connected to an air pump 83 to supply pressurized air. The air supply port 81 pushes up the sludge liquid existing in the vicinity of the separation tank side opening 62 of the sludge liquid supply pipe 60 from the separation tank side opening 62 to the extension cylinder part 63, and the inside of the membrane separation tank 30 It acts to discharge. For this purpose, the air supply port 81 is disposed below the separation tank side opening 62 so that the jetted air is mixed with the sludge liquid inside the sludge liquid supply pipe 60 and moves in the direction of the separation tank side opening 62. Consists of one or more air outlets installed at a position. In the case where the extension cylinder part 63 is installed, the opening position of the air supply port 81 may be arranged in the extension cylinder part 63.

一方、前記汚泥液返送管70は、その上流端部は前記膜分離槽30の上部の壁面に接続され、液面近傍位置の壁面に開口して、該膜分離槽30に貯留した余剰の返送汚泥液が流入する上流開口部71となる。また、前記汚泥液返送管70の下流端部は、前記生物反応槽20の上部の壁面に接続され、通常水位の液面より上方の壁面に開口して、該生物反応槽20への返送汚泥液が流出する下流開口部72となる。   On the other hand, the upstream end of the sludge liquid return pipe 70 is connected to the upper wall surface of the membrane separation tank 30 and opens to the wall surface in the vicinity of the liquid level, so that the excess return stored in the membrane separation tank 30 is obtained. It becomes the upstream opening 71 into which the sludge liquid flows. Further, the downstream end of the sludge liquid return pipe 70 is connected to the upper wall surface of the biological reaction tank 20, and opens to the wall surface above the liquid level at the normal water level to return the sludge to the biological reaction tank 20. It becomes the downstream opening 72 through which the liquid flows out.

上記汚泥液返送管70は、汚泥の逆流を防止するために膜分離槽30から生物反応槽20に向けた下り方向のゆるやかな傾斜を有するように設置することが望ましい。   The sludge liquid return pipe 70 is desirably installed so as to have a gentle downward slope from the membrane separation tank 30 to the biological reaction tank 20 in order to prevent the backflow of sludge.

なお、生物反応槽20での処理に応じて発生した余剰汚泥は、別途引き抜かれて外部に排出される。   In addition, the excess sludge generated according to the treatment in the biological reaction tank 20 is drawn out separately and discharged to the outside.

上記のような第1の実施形態の作用を説明すれば、空気供給手段80の空気供給口81から空気を噴出すると、その気泡が汚泥液供給管60の内部に存在する汚泥液に混入することによって、気泡の浮力による押上げ力が作用するとともに、空気の混入によって汚泥液供給管60の分離槽側開口部62における汚泥液の比重が軽くなることで、汚泥液供給管60の分離槽側開口部62より汚泥液が上方に押し上げられる。この分離槽側開口部62より順に汚泥液が上昇して吐出されるのに伴って、汚泥液供給管60の内部より分離槽側開口部62に向けて汚泥液が吸引移動され、生物反応槽20内の汚泥液が反応槽側開口部61より汚泥液供給管60内に流入する流動が生起する。   Explaining the operation of the first embodiment as described above, when air is ejected from the air supply port 81 of the air supply means 80, the bubbles are mixed into the sludge liquid existing inside the sludge liquid supply pipe 60. As a result, the lifting force due to the buoyancy of the bubbles acts, and the specific gravity of the sludge liquid in the separation tank side opening 62 of the sludge liquid supply pipe 60 is reduced by mixing air, so that the sludge liquid supply pipe 60 has a separation tank side. The sludge liquid is pushed upward from the opening 62. As the sludge liquid rises and is discharged sequentially from the separation tank side opening 62, the sludge liquid is sucked and moved from the inside of the sludge liquid supply pipe 60 toward the separation tank side opening 62, and the biological reaction tank. A flow in which the sludge liquid in 20 flows into the sludge liquid supply pipe 60 from the reaction tank side opening 61 occurs.

前記分離槽側開口部62より延長筒部63および膜モジュール40の下部外周に沿って上昇移動した汚泥液は、膜モジュール40のろ過膜41と接触することにより水分がろ過膜41を透過し、この透過した処理水が上支持体43の排水口43aから排水管50を経て排出される。これと同時に、膜モジュール40のろ過膜41の表面に噴出空気が接触してその表面に付着する汚泥を洗浄剥離し、膜閉塞を阻止することで、安定したろ過処理特性を維持することができる。   The sludge liquid that has moved upward along the outer periphery of the extension cylinder 63 and the lower part of the membrane module 40 from the separation tank side opening 62, the moisture permeates the filtration membrane 41 by contacting with the filtration membrane 41 of the membrane module 40, The permeated treated water is discharged from the drain port 43a of the upper support 43 through the drain pipe 50. At the same time, it is possible to maintain stable filtration characteristics by preventing sludge adhering to the surface of the filtration membrane 41 of the membrane module 40 from coming into contact with the surface by washing and removing the sludge. .

上記延長筒部63の上端より膜分離槽30へ順次押し出され、上昇移動する汚泥液によって、膜分離槽30内の汚泥液量が増加し、その液面が上昇して汚泥液返送管70の上流開口部71の高さに達すると、この膜分離槽30内の上部汚泥液が汚泥液返送管70を通って生物反応槽20へ送給される。   The sludge liquid in the membrane separation tank 30 is increased by the sludge liquid that is sequentially pushed out from the upper end of the extension cylinder portion 63 to the membrane separation tank 30 and moves upward, and the liquid level rises to increase the sludge liquid return pipe 70. When the height of the upstream opening 71 is reached, the upper sludge liquid in the membrane separation tank 30 is fed to the biological reaction tank 20 through the sludge liquid return pipe 70.

なお、後述の第3の実施形態のように、汚泥液供給管60が接続される生物反応槽20が好気槽20Cで好気処理用の空気供給に伴う汚泥液の旋回流Rがある場合には、前記汚泥液供給管60の上流側の部分は、先端部60aが生物反応槽20に貫入し、上流端部分を下向きに屈曲させて、その反応槽側開口部61が上記旋回流Rにおける下降流部に下向きに開放するように設置する。旋回する汚泥液が直接に汚泥液供給管60の開口部分に流入しないようにすることにより、気泡の吸い込みによる汚泥循環量の低下を抑制するように設けるものである。後述の第2の実施形態においても同様である。   In addition, when the biological reaction tank 20 to which the sludge liquid supply pipe 60 is connected is an aerobic tank 20C and there is a swirl flow R of sludge liquid accompanying air supply for aerobic treatment as in a third embodiment described later. In the upstream portion of the sludge liquid supply pipe 60, the tip end portion 60a penetrates into the biological reaction tank 20, the upstream end portion is bent downward, and the reaction tank side opening 61 has the swirl flow R. It is installed so as to open downward in the downward flow part. By preventing the swirling sludge liquid from directly flowing into the opening of the sludge liquid supply pipe 60, the sludge liquid is provided so as to suppress a decrease in the amount of sludge circulation due to the suction of bubbles. The same applies to a second embodiment described later.

上記のように本実施形態においては、膜分離槽30における上向きに開口する分離槽側開口部62からの空気の噴出のみによって、生物反応槽20において処理された汚泥液が膜分離槽30に循環するように送給するものである。その汚泥液の循環流量は、前記空気供給手段80による噴出空気流量に応じて増大する。   As described above, in the present embodiment, the sludge liquid treated in the biological reaction tank 20 is circulated to the membrane separation tank 30 only by the ejection of air from the separation tank side opening 62 that opens upward in the membrane separation tank 30. To be sent. The circulation flow rate of the sludge liquid increases in accordance with the flow rate of air blown by the air supply means 80.

そして、上記汚泥液供給管60の分離槽側開口部62に設けた空気供給口81から膜分離槽30に供給する空気流量を、この空気流量をQa[Nm3/h]、膜分離槽30へ供給される汚泥液流量をQw[m3/h]としたとき、揚水係数k=1−[1÷(Qa÷Qw+1)]が0.2〜0.8となるような範囲に規定する。 Then, the air flow rate supplied to the membrane separation tank 30 from the air supply port 81 provided in the separation tank side opening 62 of the sludge liquid supply pipe 60 is defined as Qa [Nm 3 / h]. When the sludge flow rate supplied to is Qw [m 3 / h], the pumping coefficient k = 1− [1 ÷ (Qa ÷ Qw + 1)] is defined in a range of 0.2 to 0.8.

特に、本実施形態のように、循環汚泥液の全量を噴出空気によって送給するための空気流量Qaは、比較的大きな量となるもので、上記揚水係数kも大きな値となる傾向にある。この空気流量Qaと汚泥液流量Qwとの適性関係については、後述の実施例に示す。   In particular, as in this embodiment, the air flow rate Qa for supplying the entire amount of the circulating sludge liquid by the jet air becomes a relatively large amount, and the pumping coefficient k tends to be a large value. Appropriate relationship between the air flow rate Qa and the sludge liquid flow rate Qw will be described in the examples described later.

そして、上記空気流量Qaの供給により、膜モジュール40の膜閉塞を阻止して良好な分離性能を継続することができる。つまり、膜モジュール40の閉塞阻止用の空気流を確保するとともに、それに伴う汚泥液流量すなわち生物反応槽20からの汚泥液の供給を確保することで、膜分離槽内MLSS濃度(1リットル中の活性汚泥浮遊物質mg)が過大とならないようにして、膜分離性能が維持できる。汚泥液流量が膜モジュール40の処理能力を超えて大きくなると、その汚泥液流量を得るための空気流量が膨大となり、不適切である。   Then, by supplying the air flow rate Qa, it is possible to prevent the membrane module 40 from being blocked and to maintain good separation performance. In other words, the air flow for blocking the membrane module 40 is secured, and the flow rate of the sludge liquid, that is, the supply of the sludge liquid from the biological reaction tank 20 is secured, so that the MLSS concentration in the membrane separation tank (in 1 liter) Membrane separation performance can be maintained by preventing activated sludge suspended solids mg) from becoming excessive. If the sludge liquid flow rate exceeds the processing capacity of the membrane module 40, the air flow rate for obtaining the sludge liquid flow rate becomes enormous and inappropriate.

<第2の実施形態>
図2に示すように、本実施形態の膜分離装置11は、第1の実施形態と同様に、汚泥液を収容する生物反応槽20とは別途に設置された膜分離槽30を備え、膜分離槽30には複数の膜モジュール40が配置され、各膜モジュール40には排水管50が接続され、さらに、生物反応槽20と膜分離槽30とは汚泥液の循環のために、下部の汚泥液供給管60および上部の汚泥液返送管70で接続されている。反応槽側開口部61が生物反応槽20に接続された汚泥液供給管60は、各膜モジュール40の底部位置に対応してそれぞれ上向きに開放した分離槽側開口部62に、膜分離槽30の槽内に空気を噴出する空気供給手段80が接続され、空気供給口81より加圧空気が噴出される。
<Second Embodiment>
As shown in FIG. 2, the membrane separation apparatus 11 of this embodiment includes a membrane separation tank 30 installed separately from the biological reaction tank 20 containing sludge liquid, as in the first embodiment. A plurality of membrane modules 40 are arranged in the separation tank 30, and a drain pipe 50 is connected to each membrane module 40. Further, the biological reaction tank 20 and the membrane separation tank 30 are provided at the bottom for circulation of sludge liquid. The sludge liquid supply pipe 60 and the upper sludge liquid return pipe 70 are connected. The sludge liquid supply pipe 60 in which the reaction tank side opening 61 is connected to the biological reaction tank 20 is connected to the separation tank side opening 62 corresponding to the bottom position of each membrane module 40. The air supply means 80 for jetting air is connected to the tank, and pressurized air is jetted from the air supply port 81.

前記汚泥液供給管60の下流端部は、膜分離槽30の壁面を貫通して先端部分が膜分離槽30の内部まで貫入し、必要に応じて分岐し、前記膜モジュール40の各々の下部に延びて、各膜モジュール40の底部位置に対応してそれぞれ分離槽側開口部62が上向きに開放している。また、汚泥液供給管60の分離槽側開口部62には、前記膜モジュール40の下部の下支持体42が固定保持され、分離槽側開口部62の周囲には延長筒部63が膜モジュール40の下部の外周を囲んで上方に延設されている。そして、汚泥液供給管60の分離槽側開口部62には、前記空気供給手段80の空気供給口81が各膜モジュール40に向けて空気を噴出するように設置されている。一方、前記汚泥液返送管70は、上流開口部71が膜分離槽30の液面近傍位置の壁面に開口し、下流開口部72が生物反応槽20の液面より上方の壁面に開口して、膜分離槽30の余剰の汚泥液を生物反応槽20へ返送する。その他、第1の実施形態と同様の構成部分には同一符号を付してその説明を省略する。   The downstream end portion of the sludge liquid supply pipe 60 penetrates the wall surface of the membrane separation tank 30 and the tip portion penetrates to the inside of the membrane separation tank 30 and branches as necessary. The separation tank side openings 62 are opened upward corresponding to the bottom positions of the membrane modules 40, respectively. Further, the lower support 42 in the lower part of the membrane module 40 is fixedly held in the separation tank side opening 62 of the sludge liquid supply pipe 60, and an extension cylinder 63 is formed around the separation tank side opening 62. The lower part of 40 is surrounded and extended upward. An air supply port 81 of the air supply means 80 is installed in the separation tank side opening 62 of the sludge liquid supply pipe 60 so as to eject air toward the membrane modules 40. On the other hand, in the sludge liquid return pipe 70, the upstream opening 71 opens on the wall surface near the liquid surface of the membrane separation tank 30, and the downstream opening 72 opens on the wall surface above the liquid surface of the biological reaction tank 20. Then, the excess sludge liquid in the membrane separation tank 30 is returned to the biological reaction tank 20. In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment, and the description is abbreviate | omitted.

本実施形態において、前述の第1の実施形態と異なる構成は、生物反応槽20の底部より膜分離槽30の底部に対し、汚泥液を動力によって送給する汚泥液送給手段90が別途設置されている点である。この汚泥液送給手段90は、一端が生物反応槽20に接続され、他端が分岐して膜分離槽30の複数位置に接続開口された汚泥液送給管91と、その途中に配設された送給ポンプ92とを備えてなる。   In the present embodiment, a configuration different from that of the first embodiment described above is that a sludge liquid feeding means 90 that feeds sludge liquid by power from the bottom of the biological reaction tank 20 to the bottom of the membrane separation tank 30 is installed separately. It is a point that has been. This sludge liquid feeding means 90 has one end connected to the biological reaction tank 20 and the other end branched and connected to a plurality of positions of the membrane separation tank 30 and opened in the middle of the sludge liquid feeding pipe 91. A feed pump 92 that has been provided.

つまり、本実施形態の空気供給手段80による膜分離槽30に対する空気供給口81からの空気噴出に伴う汚泥液の循環供給は、補助的なものとして使用され、膜モジュール40の膜洗浄に必要な空気流量の供給を優先し、汚泥液循環に必要とされる空気流量より少ない噴出流量に設定されている。   That is, the circulating supply of sludge liquid accompanying the air ejection from the air supply port 81 to the membrane separation tank 30 by the air supply means 80 of the present embodiment is used as an auxiliary, and is necessary for the membrane cleaning of the membrane module 40. Priority is given to the supply of the air flow rate, and the ejection flow rate is set lower than the air flow rate required for the sludge liquid circulation.

上記のような第2の実施形態の作用を説明する。本実施形態においても、上記空気供給手段80の空気供給口81から空気を噴出することにより、第1の実施形態とほぼ同様の汚泥液の供給作用と膜モジュール40の膜洗浄作用とを有する。しかし、汚泥液の供給能力つまり生物反応槽20から膜分離槽30に送給する汚泥液流量は、必要量の全量ではなく、動力を用いた汚泥液送給手段90による供給量との合計量が必要量となるように設定されている。そして、汚泥液送給手段90により、全量を供給する場合より送給ポンプ92の駆動に必要な動力が削減でき、空気噴出に伴う膜洗浄および濃度の均等化の作用が得られる。   The operation of the second embodiment as described above will be described. Also in the present embodiment, by ejecting air from the air supply port 81 of the air supply means 80, the sludge liquid supply action and the membrane cleaning action of the membrane module 40 are substantially the same as in the first embodiment. However, the sludge liquid supply capacity, that is, the sludge liquid flow rate sent from the biological reaction tank 20 to the membrane separation tank 30 is not the total amount of the required amount, but the total amount with the supply amount by the sludge liquid feeding means 90 using power. Is set to be the required amount. Then, the sludge liquid feed means 90 can reduce the power required for driving the feed pump 92 compared with the case where the entire amount is supplied, and the action of membrane cleaning and concentration equalization accompanying the air ejection can be obtained.

上記のように本実施形態においては、生物反応槽20からの膜分離槽30への汚泥液の供給は、空気噴出によるものが補助的に利用される。この場合においても、膜分離槽30に供給する空気流量を、この空気流量をQa[Nm3/h]、膜分離槽30へ供給される汚泥液流量をQw[m3/h]としたとき、揚水係数k=1−[1÷(Qa÷Qw+1)]が0.2〜0.8となるような範囲に規定するものであるが、上記揚水係数kは小さな値となる傾向にある(後述の実施例参照)。 As described above, in the present embodiment, the supply of sludge liquid from the biological reaction tank 20 to the membrane separation tank 30 is supplementarily utilized by air ejection. Even in this case, when the air flow rate supplied to the membrane separation tank 30 is Qa [Nm 3 / h] and the sludge liquid flow rate supplied to the membrane separation tank 30 is Qw [m 3 / h] The pumping coefficient k = 1- [1 ÷ (Qa ÷ Qw + 1)] is defined in a range of 0.2 to 0.8, but the pumping coefficient k tends to be a small value (Examples described later) reference).

<第3の実施形態>
図3に示すように、本実施形態の膜分離装置12は、3つの槽で構成された生物反応槽20を備えるとともに、この生物反応槽20とは別途に設置された膜分離槽30を備える。生物反応槽20は、嫌気槽20Aと、無酸素槽20Bと、好気槽20Cとで構成され、第1槽の嫌気槽20Aに原水パイプ25が接続され、原水がポンプ26によって供給され、順に第2槽の無酸素槽20Bから第3槽の好気槽20Cに送給され、好気槽20Cに汚泥液供給管60の上流端部が挿入され、汚泥液を吸引するように設置されている。
<Third Embodiment>
As shown in FIG. 3, the membrane separation apparatus 12 of the present embodiment includes a biological reaction tank 20 constituted by three tanks, and a membrane separation tank 30 installed separately from the biological reaction tank 20. . The biological reaction tank 20 includes an anaerobic tank 20A, an anaerobic tank 20B, and an aerobic tank 20C. A raw water pipe 25 is connected to the first anaerobic tank 20A, and raw water is supplied by a pump 26. The second tank is fed from the anaerobic tank 20B to the third aerobic tank 20C, and the upstream end of the sludge liquid supply pipe 60 is inserted into the aerobic tank 20C so as to suck the sludge liquid. Yes.

前記膜分離槽30の槽内には、前述の第1および第2の実施形態と同様に、縦向きに複数の膜モジュール40が配置され、各膜モジュール40には排水管50が接続され、ろ過膜41を透過した処理水を排出して膜分離を行う。膜モジュール40の構造も同様で、ろ過膜41と下支持体42と上支持体43とで構成され、上支持体43に排水管50が接続される。   In the tank of the membrane separation tank 30, as in the first and second embodiments described above, a plurality of membrane modules 40 are arranged vertically, and a drain pipe 50 is connected to each membrane module 40. The treated water that has passed through the filtration membrane 41 is discharged to perform membrane separation. The structure of the membrane module 40 is the same, and includes a filtration membrane 41, a lower support 42, and an upper support 43, and a drain pipe 50 is connected to the upper support 43.

上記生物反応槽20の第3槽の好気槽20Cと、前記膜分離槽30とで汚泥液を循環させるために、好気槽20Cと膜分離槽30とは、下部の汚泥液供給管60で接続されるとともに、上部の汚泥液返送管70で接続されている。   In order to circulate the sludge liquid between the aerobic tank 20C of the third tank of the biological reaction tank 20 and the membrane separation tank 30, the aerobic tank 20C and the membrane separation tank 30 are provided with a sludge liquid supply pipe 60 at the bottom. And at the upper sludge liquid return pipe 70.

そして、前述の第1および第2の実施形態と同様に、膜分離槽30における前記汚泥液供給管60には、膜分離槽30の槽内に空気を噴出する空気供給手段80が接続され、加圧空気が供給される。つまり、汚泥液供給管60の下流端部は、前記膜分離槽30の底部近傍の壁面に接続され、該壁面を貫通して先端部分が膜分離槽30の内部まで貫入し、必要に応じて分岐し、前記膜モジュール40の各々の下部に延びて、各膜モジュール40の底部位置に対応してそれぞれ分離槽側開口部62が上向きに開放している。この分離槽側開口部62には、膜モジュール40の下部の下支持体42が固定保持されるとともに、開口の周囲には延長筒部63が膜モジュール40の下部外周を囲むように、上方に延びて形成されている。さらに、上記分離槽側開口部62には、空気供給口81が各膜モジュール40に向けて空気を噴出するように設置され、エアパイプ82を経て加圧空気が供給される。   As in the first and second embodiments described above, the sludge liquid supply pipe 60 in the membrane separation tank 30 is connected to an air supply means 80 for jetting air into the tank of the membrane separation tank 30; Pressurized air is supplied. That is, the downstream end of the sludge supply pipe 60 is connected to the wall surface in the vicinity of the bottom of the membrane separation tank 30 and penetrates the wall surface to penetrate the tip part to the inside of the membrane separation tank 30. Branching, extending to the lower part of each of the membrane modules 40, the separation tank side openings 62 are opened upward corresponding to the bottom positions of the membrane modules 40, respectively. The lower support 42 at the bottom of the membrane module 40 is fixedly held in the separation tank side opening 62, and the extension cylinder 63 surrounds the lower outer periphery of the membrane module 40 around the opening. It is formed to extend. Further, an air supply port 81 is installed in the separation tank side opening 62 so as to eject air toward each membrane module 40, and pressurized air is supplied through the air pipe 82.

そして、前記汚泥液供給管60の上流側部分は、前記生物反応槽20の第3槽の好気槽20Cの液面より下方位置の壁面に接続され、この壁面を貫通して先端部60aが好気槽20Cの内部に貫入してから下向きに屈曲され、先端の反応槽側開口部61が下向きに開口する。この先端の反応槽側開口部61が開口する好気槽20Cの部分には、後述のように、好気性処理のための空気の噴出に伴う汚泥液の旋回流Rがあり、この旋回流Rにおける下降流部に下向きに開放するように設置されている。この下向きに開口した反応槽側開口部61より、旋回する汚泥液流における混入空気が多い上昇流部の汚泥液が直接に流入しないようにして、空気の流入を抑制しつつ、好気槽20Cの汚泥液を吸引するように設けられている。   The upstream portion of the sludge liquid supply pipe 60 is connected to a wall surface below the liquid level of the aerobic tank 20C of the third tank of the biological reaction tank 20, and the tip 60a passes through this wall surface. After penetrating the inside of the aerobic tank 20C, it is bent downward, and the reaction tank side opening 61 at the tip opens downward. In the portion of the aerobic tank 20C where the reaction tank side opening 61 at the front end is opened, there is a swirl flow R of sludge accompanying the ejection of air for aerobic treatment, as will be described later. It is installed so that it may open downward in the downward flow part. From the reaction tank side opening 61 that opens downward, the sludge liquid in the upward flow part with a large amount of mixed air in the swirling sludge liquid flow does not flow directly, and while suppressing the inflow of air, the aerobic tank 20C It is provided to suck the sludge liquid.

一方、前記汚泥液返送管70は、その上流開口部71は前記膜分離槽30の上部の壁面に接続され、液面近傍位置の壁面に開口し、下流側部分は前記生物反応槽20の嫌気槽20A、無酸素槽20B、好気槽20Cの上部に設置された返送分岐管73A,73B,73Cにそれぞれ接続されて、膜分離槽30の余剰汚泥液をそれぞれ返送し、さらなる余剰汚泥液は排出バルブ74を経て、外部に引き抜き排出される。   On the other hand, the sludge liquid return pipe 70 has an upstream opening 71 connected to the upper wall surface of the membrane separation tank 30, opened to a wall surface near the liquid surface, and a downstream part being anaerobic of the biological reaction tank 20. Connected to the return branch pipes 73A, 73B, 73C installed in the upper part of the tank 20A, the oxygen-free tank 20B, and the aerobic tank 20C, respectively, the excess sludge liquid in the membrane separation tank 30 is returned respectively. It is drawn out and discharged through the discharge valve 74.

上記生物反応槽20においては、投入される活性汚泥により様々な原水の浄化処理能力があり、この活性汚泥の中には細菌、原生動物などいろいろな微生物が数多く生きており、浄化する原水の種類によりその含まれる成分に対応して、反応条件を変更するものである。前記第1槽の嫌気槽20Aは、酸素が存在する状態で生存が困難な嫌気性微生物が活動して原水中の汚染物質の分解を行う嫌気性処理用のもので、例えば、メタン発酵処理がある。第2槽の無酸素槽20Bは、無酸素状態で脱窒細菌が有機物をエネルギー源として亜硝酸態窒素や硝酸態窒素を窒素ガスなどに還元する処理を行うもので、硝化作用と組み合わせることによって原水中の窒素を除去することができる。   In the biological reaction tank 20, there are various raw water purification treatment capacities depending on the activated sludge that is input, and many kinds of microorganisms such as bacteria and protozoa live in this activated sludge. The reaction conditions are changed according to the components contained therein. The first anaerobic tank 20A is for anaerobic treatment in which anaerobic microorganisms that are difficult to survive in the presence of oxygen are activated to decompose pollutants in the raw water. is there. The second oxygen-free tank 20B is an oxygen-free tank where denitrifying bacteria use organic matter as an energy source to reduce nitrite nitrogen and nitrate nitrogen to nitrogen gas, etc. Nitrogen in raw water can be removed.

そして、第3槽の好気槽20Cは、空気の存在下で生育、増殖する好気性細菌、カビ類、原虫類、藻類、プランクトンその他の好気性微生物により有機物を分解し、原水の安定化を図る好気性処理用のもので、この好気槽20Cには散気装置85が設置されて空気(酸素)が供給されるとともに、空気の供給に伴う旋回流Rによって攪拌が行われる。散気装置85は、好気槽20Cの底部中央に配設された散気口86を備え、エアポンプ88からの散気管87が接続され、気泡状の空気を噴出するように設けられている。この空気の供給に伴って好気槽20Cの内部には、中央付近の散気口86上方の空気噴出部分で上昇流が、周辺部で下降流が発生し、全体で矢印Rで示すような汚泥循環流(旋回流)が生起するものであり、この旋回流Rに対し、上記のように汚泥液供給管60の先端の反応槽側開口部61を、空気の混入が少ない下降流の部分に下向きに開口させて、空気の吸引をできるだけ少なくしている。   The third tank, the aerobic tank 20C, stabilizes raw water by decomposing organic matter with aerobic bacteria, molds, protozoa, algae, plankton and other aerobic microorganisms that grow and proliferate in the presence of air. In this aerobic tank 20C, an aeration device 85 is installed to supply air (oxygen), and stirring is performed by the swirl flow R accompanying the supply of air. The air diffuser 85 includes an air diffuser port 86 disposed in the center of the bottom of the aerobic tank 20C. The air diffuser 87 from the air pump 88 is connected to the air diffuser 85 so as to eject air bubbles. Along with the supply of air, an upward flow is generated in the aerobic tank 20C in the air ejection portion above the air diffusion port 86 near the center, and a downward flow is generated in the peripheral portion. A sludge circulation flow (swirl flow) is generated, and with respect to this swirl flow R, the reaction tank side opening 61 at the tip of the sludge liquid supply pipe 60 as described above is a part of the downward flow with less air mixing. The air is opened downward to minimize air suction.

なお、上記のように、前記好気槽20Cでの空気の供給が散気装置85によって微細気泡を汚泥液に混入するようにした場合には、酸素溶解効率が高いため、好気槽20Cへ吹き込む空気流量は少なくてすむとともに、気泡自体が小さいため、汚泥液供給管60内への好気槽20C側からの気泡流入量を少なくすることができる。   As described above, when the supply of air in the aerobic tank 20C is such that fine bubbles are mixed into the sludge liquid by the air diffuser 85, the oxygen dissolution efficiency is high, so that the aerobic tank 20C The flow rate of air to be blown is small, and the bubbles themselves are small, so that the amount of bubbles flowing into the sludge liquid supply pipe 60 from the aerobic tank 20C side can be reduced.

上記のような第3の実施形態の作用を説明すれば、膜分離槽30における空気供給手段80の空気供給口81から空気を噴出することに伴う作用は、第1の実施形態とほぼ同様の汚泥液循環作用と膜洗浄作用とを有する。つまり、膜分離槽30の内部における汚泥液供給管60の分離槽側開口部62に空気を供給して、空気による押上げ力で開口部付近の汚泥液を押し出し、汚泥液供給管60内における比重差と負圧により好気槽20Cから汚泥液を吸い込み、液面差などの圧力差で汚泥液返送管70により膜分離槽30から好気槽20Cに戻すように汚泥液の循環を行わせる。この場合に、好気槽20Cでは好気反応のために空気の混入による汚泥液に旋回流Rが発生しているのに伴って、例えば、好気槽20Cの上昇流部分では汚泥液に多量の空気が混入しているので、この部分の汚泥液を吸引すると汚泥液とともに気泡を汚泥液供給管60内に吸引することになる。この場合には、比重差が小さくなるとともに汚泥液の吸い込み力が低下し、好気槽20Cからの汚泥液の吸引量が減少し、循環液流量の低減に伴って膜分離槽30での処理量が低下することになる。   Explaining the operation of the third embodiment as described above, the operation accompanying the ejection of air from the air supply port 81 of the air supply means 80 in the membrane separation tank 30 is substantially the same as that of the first embodiment. It has a sludge liquid circulation action and a membrane cleaning action. That is, air is supplied to the separation tank side opening 62 of the sludge liquid supply pipe 60 inside the membrane separation tank 30, and the sludge liquid in the vicinity of the opening is pushed out by the lifting force by the air, and the sludge liquid supply pipe 60 The sludge liquid is sucked in from the aerobic tank 20C by the specific gravity difference and negative pressure, and the sludge liquid is circulated so that the sludge liquid return pipe 70 returns from the membrane separation tank 30 to the aerobic tank 20C by the pressure difference such as the liquid level difference. . In this case, for example, in the aerobic tank 20C, the swirl flow R is generated in the sludge liquid due to air mixing due to the aerobic reaction. Therefore, when the sludge liquid in this portion is sucked, bubbles are sucked into the sludge liquid supply pipe 60 together with the sludge liquid. In this case, the difference in specific gravity is reduced, the sludge liquid suction force is reduced, the amount of sludge liquid sucked from the aerobic tank 20C is reduced, and the treatment in the membrane separation tank 30 is accompanied by the reduction of the circulating liquid flow rate. The amount will decrease.

これに対し、本実施形態では、好気槽20Cにおける汚泥液供給管60の上流端部分の反応槽側開口部61を、汚泥液の旋回流Rの下降流部に下向きに開放したことにより、空気の混入が低減した部分の汚泥液を吸い込むために、比重差も大きく吸引負圧も維持でき、好気槽20Cからの汚泥液流量の低下を抑制することができ、膜分離槽30での処理能率を維持できる。   On the other hand, in the present embodiment, by opening the reaction tank side opening 61 at the upstream end portion of the sludge liquid supply pipe 60 in the aerobic tank 20C downward to the downward flow part of the swirl flow R of the sludge liquid, Since the sludge liquid in the part where air contamination is reduced is sucked in, the specific gravity difference is large and the suction negative pressure can be maintained, and the decrease in the sludge flow rate from the aerobic tank 20C can be suppressed. The processing efficiency can be maintained.

<第4の実施形態>
図4に示すように、本実施形態の膜分離装置13は、生物反応槽20から汚泥液が循環される膜分離槽30を複数、図示の場合は第1膜分離槽30A、第2膜分離槽30Bおよび第3膜分離槽30Cの3つの膜分離槽を備えた例である。
<Fourth Embodiment>
As shown in FIG. 4, the membrane separation apparatus 13 of the present embodiment includes a plurality of membrane separation tanks 30 in which sludge liquid is circulated from the biological reaction tank 20, in the illustrated case, the first membrane separation tank 30 </ b> A and the second membrane separation. This is an example provided with three membrane separation tanks, tank 30B and third membrane separation tank 30C.

各膜分離槽30A〜30Cには、それぞれ6個の膜モジュール40が配設され、一端の反応槽側開口部61が生物反応槽20の下部に接続された汚泥液供給管60は、途中で3つの汚泥液供給管60A,60B,60Cに分岐し(分岐しないでそれぞれ独立接続してもよい)、それぞれ開閉バルブ65A,65B,65Cが設置され、各膜分離槽30A〜30Cの下部に接続される。各汚泥液供給管60A〜60Cは、各膜分離槽30A〜30Cの内部に貫入してさらに枝管に分岐し、各先端部はそれぞれの膜モジュール40の下方位置に延びて、前記第1の実施形態と同様に、不図示の分離槽側開口部62が上向きに開口し、不図示の空気供給手段80の空気供給口81が開口して、各膜モジュール40に対して空気を噴出するように構成されている。   Each of the membrane separation tanks 30A to 30C is provided with six membrane modules 40, and the sludge supply pipe 60 in which the reaction tank side opening 61 at one end is connected to the lower part of the biological reaction tank 20 Branches to three sludge liquid supply pipes 60A, 60B, 60C (may be connected independently without branching), and open / close valves 65A, 65B, 65C are installed and connected to the lower part of each membrane separation tank 30A-30C Is done. Each sludge liquid supply pipe 60A-60C penetrates into the inside of each membrane separation tank 30A-30C and further branches into a branch pipe, and each tip extends to a position below the respective membrane module 40, and the first As in the embodiment, the separation tank side opening 62 (not shown) opens upward, the air supply port 81 of the air supply means 80 (not shown) opens, and air is ejected to each membrane module 40. It is configured.

また、詳細構造は図示していないが、各膜分離槽30A〜30Cと生物反応槽20とを上部で接続する汚泥液返送管70、各膜モジュール40のろ過膜41を透過した処理水を排出する排水管50などが、第1の実施形態と同様に設置されている。   Although the detailed structure is not shown, the sludge liquid return pipe 70 that connects each of the membrane separation tanks 30A to 30C and the biological reaction tank 20 at the top, and the treated water that has passed through the filtration membrane 41 of each membrane module 40 is discharged. A drainage pipe 50 or the like is installed in the same manner as in the first embodiment.

図4に示した状態は、第1膜分離槽30Aおよび第2膜分離槽30Bでは、それぞれの汚泥液供給管60A,60Bの開閉バルブ65A,65Bが開作動され、空気供給手段80によってそれぞれの膜分離槽30A,30Bにおける膜モジュール40に対して下方より空気が噴出されて、前述の第1の実施形態で説明したような生物反応槽20との間で汚泥液が循環し、各膜モジュール40でろ過膜41を透過した処理水が吸引され、排水管50によって排出される水処理が継続されている。   In the state shown in FIG. 4, in the first membrane separation tank 30A and the second membrane separation tank 30B, the open / close valves 65A and 65B of the sludge liquid supply pipes 60A and 60B are opened, and the air supply means 80 Air is ejected from below into the membrane modules 40 in the membrane separation tanks 30A and 30B, and sludge is circulated between the biological reaction tanks 20 as described in the first embodiment, and each membrane module is circulated. The treated water that has passed through the filtration membrane 41 is sucked at 40, and the water treatment discharged through the drain pipe 50 is continued.

一方、第3膜分離槽30Cでは膜分離処理が停止されて浸漬洗浄処理が行われている。この第3膜分離槽30Cに対する汚泥液供給管60Cの開閉バルブ65Cは閉作動され、汚泥液の循環が停止されるとともに、内部の汚泥液が排出され、槽内に次亜塩素酸などの洗浄用薬液が投入されて、膜モジュール40などの槽内洗浄が実施されている。   On the other hand, in the third membrane separation tank 30C, the membrane separation process is stopped and the immersion cleaning process is performed. The open / close valve 65C of the sludge supply pipe 60C for the third membrane separation tank 30C is closed to stop the circulation of the sludge, and the internal sludge is discharged to clean the tank with hypochlorous acid and the like. The chemical solution is charged and the membrane module 40 and the like are cleaned in the tank.

上記のような洗浄処理は、他の第1膜分離槽30Aおよび第2膜分離槽30Bに対しても、順次所定間隔で実施されるものであり、複数の膜分離槽を設置していることにより、膜分離装置13の全体としては水処理を停止させることなく、処理能力を一部低下させた状態で継続処理を行いつつ、メンテナンスを実行できる構成としている。   The cleaning treatment as described above is sequentially performed at predetermined intervals for the other first membrane separation tank 30A and the second membrane separation tank 30B, and a plurality of membrane separation tanks are installed. Thus, the entire membrane separation device 13 is configured such that maintenance can be performed while continuing the processing while partially reducing the processing capacity without stopping the water treatment.

上記のような第1〜第4の実施例形態には、次のような変形態様も含まれる。前記膜分離槽30に設置される膜モジュール40の下部は、汚泥液供給管60の延長筒部63によって囲まれ覆われているが、この延長筒部63をさらに延長して膜モジュール40の全てを覆う程の長い延長筒部を形成してもよい。上記汚泥液供給管60の延長筒部63をさらに延長形成し、この延長筒部63の先端と、前記汚泥液返送管70の先端とを接続するようにしてもよく、その際には、膜モジュール40を収容した延長筒部63の内部、つまり、汚泥液供給管60および/または汚泥液返送管70の内部に膜分離槽を構成した形態となる。   The first to fourth embodiments described above include the following modifications. The lower part of the membrane module 40 installed in the membrane separation tank 30 is surrounded and covered by the extension cylinder part 63 of the sludge liquid supply pipe 60. You may form the extension cylinder part so long that it covers. The extension cylinder part 63 of the sludge liquid supply pipe 60 may be further extended and the tip of the extension cylinder part 63 and the tip of the sludge liquid return pipe 70 may be connected. The membrane separation tank is configured in the extension cylinder portion 63 containing the module 40, that is, in the sludge liquid supply pipe 60 and / or the sludge liquid return pipe 70.

また、前記膜分離槽30内には、補助的混合方法として攪拌機や混合液の液送による攪拌混合手段を用いるようにしてもよい。   Further, in the membrane separation tank 30, an agitator or an agitation / mixing means by feeding a liquid mixture may be used as an auxiliary mixing method.

本発明の実施例として、直径16cmの円筒形膜モジュール1本と、直径20cmの汚泥液供給管および有効容量0.75m3の膜分離槽からなる試験装置を運転した。 As an example of the present invention, a test apparatus including a cylindrical membrane module having a diameter of 16 cm, a sludge liquid supply pipe having a diameter of 20 cm, and a membrane separation tank having an effective capacity of 0.75 m 3 was operated.

膜洗浄空気供給によって必要十分な循環水量(汚泥液流量)が確保できるか確認するために、模擬的な生物反応槽として水深4mの水槽に水道水を貯留させ、水道水貯槽の底部から50cm上部に膜分離槽へつながる汚泥液供給管を設けた。汚泥液供給管は膜分離槽内で上向きに立ち上がり、膜モジュールの下部100cmを覆うように立ち上げた延長筒部を設け、その立ち上げ配管底部から20cm上方に設置した洗浄用空気供給手段から空気を8Nm3/h供給したところ、汚泥液供給管によって膜分離槽に流入する循環液流量は約3m3/hであった。膜モジュール1本のろ過水量0.5m3/hで連続運転を行ったところ、膜分離槽からの汚泥液返送量は2.5m3/hとなった。 In order to confirm whether necessary and sufficient circulating water volume (sludge liquid flow rate) can be secured by supplying membrane cleaning air, tap water is stored in a 4m deep water tank as a simulated biological reaction tank, and 50cm above the bottom of the tap water storage tank. In addition, a sludge liquid supply pipe connected to the membrane separation tank was installed. The sludge supply pipe rises upward in the membrane separation tank, and is provided with an extension cylinder that rises to cover the lower 100 cm of the membrane module. Air is supplied from the cleaning air supply means 20 cm above the bottom of the startup pipe. Was supplied at 8 Nm 3 / h, and the flow rate of the circulating liquid flowing into the membrane separation tank through the sludge liquid supply pipe was about 3 m 3 / h. When continuous operation was performed with a filtration water volume of 0.5 m 3 / h for one membrane module, the sludge liquid return from the membrane separation tank was 2.5 m 3 / h.

実際に汚泥液を通液した場合、ろ過処理によって膜分離槽内は生物反応槽よりもMLSS濃度が高くなるが、この循環量では生物反応槽のMLSS濃度の約120%程度に抑えることができ、安定したろ過運転が可能となることが確認できた。   When sludge liquid is actually passed through, the MLSS concentration in the membrane separation tank is higher than that in the biological reaction tank due to filtration, but this circulation rate can be suppressed to about 120% of the MLSS concentration in the biological reaction tank. It was confirmed that stable filtration operation was possible.

次に、前述の揚水係数kを0.2〜0.8の範囲に規定するデータについて説明する。   Next, the data which prescribes | regulates the above-mentioned pumping coefficient k in the range of 0.2-0.8 is demonstrated.

前述のように、揚水係数kは、空気流量をQa[Nm3/h]、汚泥液流量をQw[m3/h]として、k=1−[1÷(Qa÷Qw+1)] により求まる。この揚水係数kは、上限の境界値より高い場合、膜分離槽への汚泥液流量Qwが低減し、膜モジュールによるろ過継続に応じて排出される処理液量に伴い、膜分離槽MLSS濃度が高くなり、膜モジュールによるろ過に支障を来す問題がある。一方、揚水係数kが、下限の境界値より低い場合、汚泥液流量Qwが過剰となり動力の過剰投入の問題、または、空気流量Qaが過小の場合は膜モジュールの洗浄不足となって、やはりろ過に支障を来す問題があり、それらを解消する適正な範囲を見出したものである。 As described above, the pumping coefficient k is obtained by k = 1− [1 ÷ (Qa ÷ Qw + 1)] where Qa [Nm 3 / h] is an air flow rate and Qw [m 3 / h] is a sludge liquid flow rate. When the pumping coefficient k is higher than the upper limit boundary value, the sludge liquid flow rate Qw to the membrane separation tank decreases, and the membrane separation tank MLSS concentration increases with the amount of processing liquid discharged as filtration continues by the membrane module. There is a problem that it becomes higher and hinders filtration by the membrane module. On the other hand, when the pumping coefficient k is lower than the lower limit boundary value, the sludge liquid flow rate Qw becomes excessive and there is a problem of excessive input of power, or when the air flow rate Qa is excessively low, the membrane module is insufficiently washed, which is also filtered. We have found a suitable range to solve these problems.

前述の実施例において、空気流量Qaを3[Nm3/h]、5[Nm3/h]、10[Nm3/h]と変化させ、それぞれの空気流量Qaにおいて、供給する汚泥液流量Qwを2〜10[m3/h]に変化させた場合の、揚水係数kの変化を求めた結果を、図5のグラフに示す。この図5に示すように、揚水係数kは、空気流量Qaが多いほど高くなり、汚泥液流量Qwが増加するほど低くなっている。なお、実施例の膜モジュールの場合、1本当たりの洗浄空気流量は5[Nm3/h]が標準値である。 In the above-described embodiment, the air flow rate Qa is changed to 3 [Nm 3 / h], 5 [Nm 3 / h], and 10 [Nm 3 / h], and the supplied sludge liquid flow rate Qw at each air flow rate Qa. The graph of FIG. 5 shows the result of determining the change in the pumping coefficient k when the value is changed from 2 to 10 [m 3 / h]. As shown in FIG. 5, the pumping coefficient k increases as the air flow rate Qa increases, and decreases as the sludge liquid flow rate Qw increases. In the case of the membrane module of the example, the cleaning air flow rate per one is 5 [Nm 3 / h] as a standard value.

前記汚泥液流量Qwは膜分離槽内のMLSS濃度と関係があり、図5のように空気流量Qaと汚泥液流量Qwを変化させた場合に、膜モジュールでのろ過水量を0.83[m3/h]に維持した際の、各空気流量Qaの変化に対する膜分離槽内MLSS濃度[mg/L]と揚水係数の変化を求めた結果を、図6のグラフに示す。 The sludge liquid flow rate Qw is related to the MLSS concentration in the membrane separation tank. When the air flow rate Qa and the sludge liquid flow rate Qw are changed as shown in FIG. 5, the amount of filtered water in the membrane module is 0.83 [m 3 / The graph of FIG. 6 shows the results of determining changes in the MLSS concentration [mg / L] in the membrane separation tank and the pumping coefficient with respect to changes in each air flow rate Qa when maintained at h].

上記実施例の中空糸膜モジュールでは、膜分離槽内MLSS濃度は12000mg/Lが上限であり、それ以上であると液体の粘性が高くなりすぎて混合できなくなるので、供給する汚泥液流量Qwは3[m3/h]以上でなければろ過が継続できない。逆に汚泥液流量Qwが高すぎると、そのための空気流量Qaが膨大となる問題がある。10[m3/h]を超える汚泥液流量Qwは必要性がなく現実的ではない。 In the hollow fiber membrane module of the above example, the upper limit of the MLSS concentration in the membrane separation tank is 12000 mg / L, and if it is more than that, the viscosity of the liquid becomes too high to be mixed, so the sludge liquid flow rate Qw to be supplied is Filtration cannot be continued unless it is 3 [m 3 / h] or more. Conversely, if the sludge liquid flow rate Qw is too high, there is a problem that the air flow rate Qa for that purpose becomes enormous. Sludge liquid flow rate Qw exceeding 10 [m 3 / h] is not necessary and impractical.

上記のような観点から図5および図6の特性を判断すると、空気流量Qaを余裕を持って多めの10Nm3/hに設定した場合、揚水係数は0.5〜0.8の範囲が最適である。また、必要とされる空気流量Qaが3Nm3/hに減少した場合、揚水係数は0.2〜0.5の範囲が最適となり、上記のような点に基づき、空気流量Qaは揚水係数が0.2〜0.8となるような範囲に規定することが好適である。 When the characteristics of FIGS. 5 and 6 are judged from the above viewpoint, when the air flow rate Qa is set to a large 10 Nm 3 / h with a margin, the pumping coefficient is optimally in the range of 0.5 to 0.8. When the required air flow rate Qa is reduced to 3Nm 3 / h, the pumping coefficient is optimally in the range of 0.2 to 0.5. Based on the above points, the air flow rate Qa is 0.2 to 0.8. It is preferable to define in such a range.

本発明の第1の実施形態にかかる膜分離装置の概略構成を断面形状で示す立面図1 is an elevational view showing a schematic configuration of the membrane separation apparatus according to the first embodiment of the present invention in a cross-sectional shape. 本発明の第2の実施形態にかかる膜分離装置の概略構成を断面形状で示す立面図The elevation view which shows schematic structure of the membrane separator concerning the 2nd Embodiment of this invention with a cross-sectional shape 本発明の第3の実施形態にかかる膜分離装置の概略構成を断面形状で示す立面図The elevation which shows schematic structure of the membrane separator concerning the 3rd Embodiment of this invention with a cross-sectional shape 本発明の第4の実施形態にかかる膜分離装置の平面図The top view of the membrane separator concerning the 4th Embodiment of this invention 実施例における膜分離装置おいて、空気流量Qaおよび汚泥液流量Qwの変化と揚水係数の関係を示すグラフThe graph which shows the relationship between the change of air flow rate Qa and sludge liquid flow rate Qw, and a pumping coefficient in the membrane separator in an Example. 図5の結果に基づき膜分離槽内MLSS濃度と揚水係数の関係を示すグラフGraph showing the relationship between MLSS concentration in the membrane separation tank and pumping coefficient based on the results of FIG.

符号の説明Explanation of symbols

10〜13 膜分離装置
20 生物反応槽
20C 好気槽
30 膜分離槽
40 膜モジュール
41 ろ過膜
50 排水管
60 汚泥液供給管
61 反応槽側開口部
62 分離槽側開口部
63 延長筒部
70 汚泥液返送管
80 空気供給手段
81 空気供給口
10-13 membrane separator
20 Bioreactor
20C aerobic tank
30 Membrane separation tank
40 Membrane module
41 Filtration membrane
50 Drain pipe
60 Sludge supply pipe
61 Reaction tank side opening
62 Separation tank side opening
63 Extension tube
70 Sludge return pipe
80 Air supply means
81 Air supply port

Claims (3)

活性汚泥液を収容した生物反応槽における生物反応処理後の汚泥液を固液分離するための膜分離装置であって、
前記生物反応槽とは別途に設置された膜分離槽と、
該膜分離槽内に縦向きに複数配置された膜モジュールと、
前記生物反応槽と前記膜分離槽とで汚泥液を循環させるために、前記膜分離槽と前記生物反応槽とを下部で接続する汚泥液供給管と、
前記生物反応槽と前記膜分離槽とで汚泥液を循環させるために、前記膜分離槽と前記生物反応槽とを上部で接続する汚泥液返送管と、
前記膜分離槽内に空気を噴出する空気供給手段とを備え、
前記汚泥液供給管は、下流端部分が前記膜分離槽の内部まで貫入し、前記膜モジュールの各々の下部に延びて、各膜モジュールの底部位置に対応して上向きに開放した分離槽側開口部と、
該分離槽側開口部に設置され、前記膜モジュールに向けて空気を噴出する前記空気供給手段の空気供給口とを有し、
前記汚泥液供給管の分離槽側開口部内に、前記膜モジュールの下部を固定し、該膜モジュールの下部外周を囲んで前記分離槽側開口部の延長筒部が形成され、
前記空気供給口から噴出する空気により、前記汚泥液供給管の前記分離槽側開口部から汚泥液を前記膜分離槽内に送給するとともに、前記膜モジュールの膜洗浄を行うことを特徴とする膜分離装置。
A membrane separation apparatus for solid-liquid separation of sludge liquid after biological reaction treatment in a biological reaction tank containing activated sludge liquid,
A membrane separation tank installed separately from the biological reaction tank;
A plurality of membrane modules arranged vertically in the membrane separation tank;
In order to circulate sludge liquid in the biological reaction tank and the membrane separation tank, a sludge liquid supply pipe connecting the membrane separation tank and the biological reaction tank at the lower part,
In order to circulate sludge liquid in the biological reaction tank and the membrane separation tank, a sludge liquid return pipe connecting the membrane separation tank and the biological reaction tank at the upper part,
Air supply means for ejecting air into the membrane separation tank,
The sludge liquid supply pipe has a downstream end portion that penetrates to the inside of the membrane separation tank, extends to the lower part of each of the membrane modules, and opens upward corresponding to the bottom position of each membrane module. And
An air supply port of the air supply means which is installed in the separation tank side opening and jets air toward the membrane module;
In the separation tank side opening of the sludge liquid supply pipe, the lower part of the membrane module is fixed, and an extended cylinder part of the separation tank side opening is formed surrounding the lower outer periphery of the membrane module,
The sludge liquid is fed into the membrane separation tank from the separation tank side opening of the sludge liquid supply pipe by the air ejected from the air supply port, and the membrane cleaning of the membrane module is performed. Membrane separator.
前記生物反応槽内に設置する前記汚泥液供給管の上流端部分が、該生物反応槽内の汚泥液の循環流における下降流部に、下向きに開放して設置されたことを特徴とする請求項1記載の膜分離装置。 The upstream end portion of the sludge liquid supply pipe installed in the bioreactor is open downward and installed in a downward flow part in the circulating flow of sludge in the bioreactor. claim 1 Symbol placement of the membrane separation apparatus. 前記空気供給手段により前記空気供給口から前記膜分離槽に供給する空気流量を、該空気流量をQa[Nm3/h]、膜分離槽へ供給される汚泥液流量をQw[m3/h]としたとき、揚水係数k=1−[1÷(Qa÷Qw+1)]が0.2〜0.8となるような範囲に規定したことを特徴とする請求項1または2記載の膜分離装置。 The air flow rate supplied from the air supply port to the membrane separation tank by the air supply means is Qa [Nm 3 / h], the air flow rate is Qw [m 3 / h]. The membrane separation apparatus according to claim 1 or 2 , wherein the pumping coefficient k = 1- [1 ÷ (Qa ÷ Qw + 1)] is defined in a range of 0.2 to 0.8.
JP2008300413A 2008-11-26 2008-11-26 Membrane separator Expired - Fee Related JP5048637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300413A JP5048637B2 (en) 2008-11-26 2008-11-26 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300413A JP5048637B2 (en) 2008-11-26 2008-11-26 Membrane separator

Publications (2)

Publication Number Publication Date
JP2010125360A JP2010125360A (en) 2010-06-10
JP5048637B2 true JP5048637B2 (en) 2012-10-17

Family

ID=42326112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300413A Expired - Fee Related JP5048637B2 (en) 2008-11-26 2008-11-26 Membrane separator

Country Status (1)

Country Link
JP (1) JP5048637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188278A (en) * 2009-02-18 2010-09-02 Kobelco Eco-Solutions Co Ltd Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method
JP5743096B2 (en) * 2011-12-12 2015-07-01 Jfeエンジニアリング株式会社 Membrane separation activated sludge equipment
CN115557607B (en) * 2022-08-31 2024-02-23 达斯玛环境科技(北京)有限公司 Integrated biological reaction tank system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480049B2 (en) * 1994-07-14 2003-12-15 栗田工業株式会社 Immersion type membrane separation device
JPH0975938A (en) * 1995-09-08 1997-03-25 Kurita Water Ind Ltd Membrane separation device
JP3562066B2 (en) * 1995-10-05 2004-09-08 栗田工業株式会社 Membrane separation device with hollow tubular membrane
JP2001170631A (en) * 1999-12-22 2001-06-26 Kubota Corp Method and device for stirring membrane type reaction vessel
JP2005254078A (en) * 2004-03-10 2005-09-22 Kubota Corp Method for treating water and its apparatus

Also Published As

Publication number Publication date
JP2010125360A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US6878282B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
US11339068B2 (en) Eductor-based membrane bioreactor
US7695624B2 (en) Method and system for treating water and utilizing a membrane filtering system
CA2374830C (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP4361432B2 (en) Water treatment equipment
EP2998278B1 (en) Water treatment device
JP4528828B2 (en) Water treatment process and apparatus by fluid flow
JP5048637B2 (en) Membrane separator
KR101579310B1 (en) External-submersed membrane separating film device
JP5648387B2 (en) Aeration device and method of operating membrane separation device
KR100882818B1 (en) Aeration tank
KR101192174B1 (en) Plants for advanced treatment of wastewater
KR19990045939A (en) Improved hollow fiber membrane module and method of treating waste water using same
JP5825807B2 (en) Waste water treatment apparatus and waste water treatment method
JP2006035138A (en) Activated sludge treatment equipment
KR102614473B1 (en) Sewage Treatment System equipped with MBR
JP5698114B2 (en) Waste water treatment apparatus and waste water treatment method
JP2004261663A (en) Organic wastewater treatment method
JP2004000945A (en) Ultra-deep aeration treatment apparatus for wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees