JP5045258B2 - Continuous casting method and continuous casting machine - Google Patents
Continuous casting method and continuous casting machine Download PDFInfo
- Publication number
- JP5045258B2 JP5045258B2 JP2007160653A JP2007160653A JP5045258B2 JP 5045258 B2 JP5045258 B2 JP 5045258B2 JP 2007160653 A JP2007160653 A JP 2007160653A JP 2007160653 A JP2007160653 A JP 2007160653A JP 5045258 B2 JP5045258 B2 JP 5045258B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- strain
- continuous casting
- casting machine
- strain rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、スラブ、ブルーム、ビレットなどの鋳片を鋳型から連続的に引き抜く連続鋳造方法及び連続鋳造機に関し、特に鋳片の表面の割れを減少させることができる連続鋳造方法及び連続鋳造機に関する。 The present invention relates to a continuous casting method and a continuous casting machine that continuously draw slabs such as slabs, blooms, and billets from a mold, and more particularly to a continuous casting method and a continuous casting machine that can reduce cracks on the surface of the slab. .
連続鋳造機には、鋳型から垂直方向に鋳片を引き抜く垂直型のものと、鋳型を垂直方向に引き抜いた後、途中で湾曲させて水平方向に引き抜く湾曲型又は垂直曲げ型のものがある。鋳型を垂直方向に引き抜いたのでは、建屋が高くなってしまうので、鋳型を湾曲させる湾曲型又は垂直曲げ型の連続鋳造機が主流になってきている。 The continuous casting machine includes a vertical type in which a slab is pulled out from a mold in a vertical direction and a curved type or a vertical bending type in which a mold is bent in the vertical direction and then bent in the middle and pulled out in a horizontal direction. If the mold is pulled out in the vertical direction, the building becomes taller, so a curved type or vertical bending type continuous casting machine that curves the mold has become mainstream.
図11は、垂直曲げ型連続鋳造機の模式図を示す。鋳片1は上部矯正帯1aにおいて曲げられ、湾曲帯1bにおいて湾曲した状態を保った後、下部矯正帯1cにおいて平板状に曲げ戻される。上部矯正帯1a及び下部矯正帯1cにおいて、鋳片1には曲げ応力がかかる。この曲げ応力によって、上部矯正帯1aにおいては鋳片1の下面側に引張りの歪2がかかり、下部矯正帯1cにおいては鋳片1の上面側に引張りの歪3がかかる。この鋳片1の上面側又は下面側の引張りの歪2,3が原因で、図12に示されるように鋳片1(スラブ)の上面側又は下面側(主にコーナ部)には、横割れ4が発生することがある。横割れ4は最終的な製品の欠陥につながるので、横割れ4を減らしたり、鋳片1の表面を手入れしたりする加工が必要になる。
FIG. 11 is a schematic diagram of a vertical bending type continuous casting machine. The
現在、薄板/厚板ハイテン材(高張力鋼板)やNb,V添加鋼、B,N添加ブリキなど割れ感受性の高い鋼種では、連続鋳造機での横割れの発生を回避するため、鋳造速度の制限を設けたり、生産する連続鋳造機に規制を設けたりなどの対応を余儀なくされている。こういった鋼種の生産性は一般の鋼種に比べて生産性が低い上に、横割れ対策が工程上、運用上の大きな負荷になっている。 Currently, in steel types with high cracking sensitivity such as thin / thick high tensile steel (high-tensile steel plate), Nb, V-added steel, B, N-added tin, The company has been forced to take measures such as setting restrictions and setting restrictions on the continuous casting machines it produces. The productivity of these steel types is lower than that of general steel types, and countermeasures against transverse cracking are a great burden on operations and operations.
鋳片の横割れを防止する対策として、鋳片の二次冷却を制御する方法が知られている。この二次冷却の制御方法においては、例えば高温引張試験などによって材料の高温での延性を調査し、温度と断面収縮率(Reduction of area、以下RAという)との関係から高温脆化温度域を求める。そして、上部矯正帯及び下部矯正帯における鋳片の表面の温度が高温脆化温度域に入らないように二次冷却を制御し、高温脆化温度域での矯正を避ける。鋳片の二次冷却を制御する方法の一例として、特許文献1には、鋳型出口の下方で鋳片を強く冷却し、鋳片の表面温度を一旦Ar3変態点以下にし、その後、高温脆化温度域よりも高温側に復熱させて鋳片を矯正することにより、鋳片の横割れの発生を防止する連続鋳造方法が提案されている。
As a measure for preventing lateral cracking of the slab, a method of controlling secondary cooling of the slab is known. In this secondary cooling control method, for example, the high temperature ductility of a material is investigated by a high temperature tensile test or the like, and the high temperature embrittlement temperature region is determined from the relationship between the temperature and the reduction of area (hereinafter referred to as RA). Ask. And secondary cooling is controlled so that the temperature of the surface of the slab in the upper straightening zone and the lower straightening zone does not enter the high temperature embrittlement temperature range, and correction in the high temperature embrittlement temperature range is avoided. As an example of a method for controlling the secondary cooling of the slab,
鋳片の横割れを防止する技術として、鋳片の二次冷却を制御する方法以外に、鋳片に歪を付与する方法についても数多くの研究がなされている。例えば特許文献2には、連続鋳造時の鋳片の表層部深さ2mm以上に5%以上の加工歪を付与し、かくして連続鋳造時の鋳片の熱間割れ、さらには直送圧延、ホットチャージ圧延における鋳片の熱間割れを防止する技術が開示されている。非特許文献1には、鋳片に20%以上の歪を付与することによって、動的再結晶によるオーステナイト粒径の微細化を図る技術が開示されている。
しかし、二次冷却の制御によって横割れを防止できるのは、一部の鋼種だけである。しかも鋳造速度を下げざるを得ない(高速鋳造であると、二次冷却の不足で鋳片の表面が充分に冷却されない)から、生産性を阻害する場合がある。 However, only some steel types can prevent transverse cracking by controlling secondary cooling. In addition, the casting speed has to be reduced (in the case of high speed casting, the surface of the slab is not sufficiently cooled due to insufficient secondary cooling), which may hinder productivity.
鋳片に歪を付与する方法においては、効果を発現させるための必要歪量は、これまでの報告事例のなかでは比較的大きい値となっている。例えば特許文献2には、連続鋳造時の鋳片の熱間割れを防止するためには、5%以上の加工歪を付与する必要があることが記載されている。非特許文献1には、動的再結晶に必要な歪量は概ね15〜40%であると記載されている。
In the method of imparting strain to the slab, the amount of strain required to exhibit the effect is a relatively large value in the cases reported so far. For example,
連続鋳造機内で鋳片に5%以上の大きな歪を与えるのは困難を伴う(例えばダイ圧下プレスなどの大型設備が必要になる)ので、現状では実機に応用できていないのが実情である。しかも連続鋳造機の下部矯正帯の前で鋳片に5%以上の歪をかけると、その歪によって鋳片が割れるという弊害も出る。 Since it is difficult to give a large strain of 5% or more to a slab in a continuous casting machine (for example, a large facility such as a die-pressing press is required), the present situation is that it cannot be applied to an actual machine. In addition, if the slab is subjected to a strain of 5% or more in front of the lower straightening zone of the continuous casting machine, the slab breaks due to the strain.
そこで本発明は、連続鋳造機内での鋳片の横割れを防止することができる新たな連続鋳造方法及び連続鋳造機を提供することを目的とする。 Then, an object of this invention is to provide the new continuous casting method and continuous casting machine which can prevent the lateral crack of the slab in a continuous casting machine.
上記課題を解決するために、請求項1に記載の発明は、鋳型から引き抜いた鋳片を下部矯正帯において曲げ戻す連続鋳造方法において、鋳型から引き抜いた鋳片が前記下部矯正帯に到達するまでの間に、鋳片表面温度域が700〜900℃の当該鋳片に歪量が5%以内の複数回の歪を与え、当該鋳片の歪の歪速度を前記下部矯正帯の鋳片の歪速度よりも大きくすることを特徴とする。
In order to solve the above problems, the invention according to
請求項2に記載の発明は、請求項1に記載の連続鋳造方法において、複数の圧延ロールが鋳片を複数回圧延することによって、鋳片に複数回の歪を与えることを特徴とする。
The invention according to
請求項3に記載の発明は、請求項1に記載の連続鋳造方法において、前記下部矯正帯に鋳片が到達するまでの間に当該鋳片を曲げたり、曲げ戻したりすることによって、前記鋳片に複数回の歪を与えることを特徴とする。
According to a third aspect of the invention, in a continuous casting method according to
請求項4に記載の発明は、鋳型から引き抜いた鋳片を下部矯正帯において曲げ戻すことができるように、鋳片の両側面に対向して配列される多数のロールと、鋳型から引き抜いた鋳片が前記下部矯正帯に到達するまでの間に、鋳片表面温度域が700〜900℃の当該鋳片に歪量が5%以内の複数回の歪を与える歪付与手段と、を備え、当該鋳片の歪の歪速度を前記下部矯正帯の鋳片の歪速度よりも大きくする連続鋳造機である。
In the invention according to
歪を付与することによって連続鋳造時の鋳片の横割れを防止するためには、鋳片に5%以上の歪を付与することが常識であった。裏を返せば、5%以内の歪量では効果がないといわれていた。しかし実験の結果、5%以内の歪を複数回付与することで、鋳片の結晶粒が微細化し、延性が向上する効果があることがわかった。連続鋳造機内で鋳片に5%以下の歪をかけるのは現実的にも可能である。下部矯正帯の前で鋳片に予備的に5%以下の複数回の歪を付与することによって、延性が向上するので、下部矯正帯での鋳片の横割れを防止することができる。 In order to prevent lateral cracking of the slab during continuous casting by imparting strain, it has been common knowledge to impart a strain of 5% or more to the slab. In other words, it was said that there was no effect at a strain of 5% or less. However, as a result of the experiment, it was found that by giving a strain of 5% or less multiple times, the crystal grains of the slab are refined and the ductility is improved. It is practically possible to apply a strain of 5% or less to the slab in the continuous casting machine. Since ductility is improved by preliminarily applying a strain of 5% or less to the slab in front of the lower straightening zone, it is possible to prevent lateral cracking of the slab in the lower straightening zone.
以下添付図面に基づいて本発明の連続鋳造方法の一実施形態を説明する。図1は連続鋳造機の一例であるツーストランドタイプの垂直曲げ型連続鋳造機の概略図を示す。溶鋼はタンディッシュ6を介して鋳型7に注湯される。鋳型7から引き抜かれる鋳片9には、スプレーノズル8から冷却水が吹き付けられる。鋳型7から引き抜かれる鋳片9を垂直方向から水平方向に案内するために、円弧、放物線などの曲線に沿って多数のロール10が配列される。多数のロール10の下流側には、引抜き装置が連続して設けられる。引抜き装置の下流側には、固化した鋳片を切断するガストーチ、油圧切断などの切断装置11が設けられる。切断装置11によって切断された鋳片9は、連続鋳造機から排出され、圧延装置に搬送される。図中12は電磁撹拌装置である。
An embodiment of a continuous casting method of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a schematic view of a two-strand type vertical bending type continuous casting machine which is an example of a continuous casting machine. Molten steel is poured into the
本実施形態では、薄板/厚板ハイテン材や、Nb,V添加鋼、B,N添加ブリキなど割れ感受性の高い鋼種の連続鋳造機内の割れ防止対策として、図2に示されるように、下部矯正帯9c前の湾曲帯9bの鋳片9に予備的に歪みを付与する歪付与手段14を設けている。連続鋳造機内において、鋳片9に一度に大きな歪を付与するのには限界がある。しかしながら、連続鋳造機内で鋳片9(スラブ)は、複数のロール10によってサポートされている。この複数のロール10を用いて鋳片9の表層に小さな歪を複数回与える。歪付与手段14は湾曲帯9bにおいて歪量が5%以内の複数回の歪を鋳片に付与する。この位置で歪を付与することで、結晶粒を微細化し、延性の向上を発現させる。
In this embodiment, as shown in FIG. 2, the lower straightening is used as a crack prevention measure in a continuous casting machine of steel types having high cracking sensitivity such as thin plate / thick plate high-tensile steel, Nb, V-added steel, B, N-added tin, A
図3は、歪付与手段14の具体例を示す。この例は、ロール圧下方式の歪付与手段である。連続鋳造機内には鋳片9の搬送方向に複数の、例えば三つの圧延ロール10a〜10cが設けられる。複数の圧延ロール10a〜10cで鋳片9を複数回圧延することによって、鋳片9に複数回の、例えば三回の歪を与えることができる。鋳片9の両側面に設けられる一対の圧延ロール10a〜10cが一回分の歪を付与する。一回の歪量は5%以内である。歪を付与するとき、圧延ロール10a〜10cにはロール反力がかかるので、圧延ロール10a〜10cの背面側にはバックアップロール16が設けられる。
FIG. 3 shows a specific example of the strain applying means 14. This example is a roll reduction type strain applying means. In the continuous casting machine, a plurality of, for example, three
図4は、歪付与手段の他の例を示す。この例においては、鋳片を曲げられるように鋳片9のパスラインをずらして複数のパスライン変更ロール10d〜10fを配列する。湾曲帯9bにおいて湾曲した状態の鋳片9をさらに曲げたり、曲げ戻したりすることによって、鋳片9に複数回の歪を与える。鋳片9を曲げる度に、鋳片9の両側面のうちの一方の表面には引張りの歪が付与され、他方の表面には圧縮の歪が付与される。鋳片9に付与される最大の圧縮又は引張りの歪は5%以内に設定される。図4では、歪の付与方法がわかりやすいように、スラブを直線的に示しているが、湾曲帯でも同様の形態で歪を付与する。
FIG. 4 shows another example of the strain applying means. In this example, a plurality of pass
歪付与手段14によって鋳片9に予備的に与えられる歪(以下予歪という)の歪速度は、連続鋳造機の矯正曲げの歪速度よりも大きく設定される。これにより、予歪によって割れが発生するのを防止する。歪速度については後述する。 The strain rate of the strain that is preliminarily applied to the slab 9 by the strain applying means 14 (hereinafter referred to as pre-strain) is set to be larger than the strain rate of straight bending of the continuous casting machine. This prevents cracking due to pre-strain. The strain rate will be described later.
以下に、鋼の脆化のメカニズムに関して、1.脆化挙動と歪速度との関係、2.脆化の予測式による検討の項目に分けて説明する。 In the following, regarding the mechanism of embrittlement of steel: 1. Relationship between embrittlement behavior and strain rate The explanation will be divided into items to be examined by the prediction formula of embrittlement.
1.脆化挙動と歪速度との関係
図5は、各温度域の鋼の脆化挙動を示すグラフである((出典)鈴木ら,鉄と鋼,65,2038(1979))。
1200℃〜固相線での脆化はI領域の脆化と呼ばれ、原因としてはデンドライト樹間の残溶鋼による液膜脆化、粒界溶融による液膜脆化と言われており、延性は歪速度に依存しない。
900℃〜1200℃での脆化はII領域の脆化と呼ばれ、原因としては酸化物、硫化物、燐化物などの粒界析出と言われており、歪速度が大きいほど脆化する。
600℃〜900℃での脆化はIII領域の脆化と呼ばれ、原因としては酸化物、硫化物、炭・窒化物などの粒界析出、オーステナイト粒界に沿って生成する初析フェライトと言われており、歪速度が小さいほど脆化する。
1. Relationship between embrittlement behavior and strain rate FIG. 5 is a graph showing the embrittlement behavior of steel in each temperature range ((Source) Suzuki et al., Iron and Steel, 65, 2038 (1979)).
The embrittlement between 1200 ° C. and solidus is called I region embrittlement, and it is said that the cause is liquid film embrittlement due to residual molten steel between dendrites, and liquid film embrittlement due to grain boundary melting. Is independent of strain rate.
The embrittlement at 900 ° C. to 1200 ° C. is called II region embrittlement, which is said to be due to grain boundary precipitation of oxides, sulfides, phosphides, etc., and becomes brittle as the strain rate increases.
Embrittlement at 600 ° C to 900 ° C is called III region embrittlement, which is caused by grain boundary precipitation of oxides, sulfides, charcoal / nitrides, etc., and proeutectoid ferrite formed along austenite grain boundaries. It is said that the smaller the strain rate, the more brittle.
表1に各温度域の鋼の脆化挙動の特徴を示す。 Table 1 shows the characteristics of the embrittlement behavior of the steel in each temperature range.
図5のメカニズムに従い、連続鋳造機内の矯正割れを分類した結果を表2に示す。連続鋳造機内での矯正割れは、鋳片(スラブ)の表面温度が概ね700℃〜900℃で発生している。この温度域は脆化のIII領域であり、歪速度が小さいほど脆化する領域である。連続鋳造機内の矯正歪の歪速度は約10-4〜10-3と小さいためにより割れを助長し易いといえる。 Table 2 shows the results of classifying the correction cracks in the continuous casting machine according to the mechanism of FIG. Straightening cracks in the continuous casting machine occur when the surface temperature of the slab (slab) is approximately 700 ° C to 900 ° C. This temperature region is a region III of embrittlement, and is a region that becomes embrittled as the strain rate decreases. Since the strain rate of the straightening strain in the continuous casting machine is as small as about 10 −4 to 10 −3 , it can be said that it is easier to promote cracking.
2.脆化の予測式による検討
ここではMintzらの研究を参照して、RAに及ぼす歪速度の影響、結晶粒径の影響について考察する。Mintzらは数種の鋼の延性を調査し、また他の研究者のデータも参照した結果、下記に示すRAの推定式を導出している。
2. Examination by embrittlement prediction formula Here, the effects of strain rate and crystal grain size on RA are discussed with reference to the study of Mintz et al. Mintz et al. Investigated the ductility of several types of steels and also looked at data from other researchers, and as a result, derived the RA estimation formula shown below.
なお、(1)式が適応できる範囲は、結晶粒径dが500μm以下、歪速度ε′が10-4以上10-1以下、成分が1.0%<Mn<1.4%、0.005%<Sであり、この範囲内では±12%の誤差で予測できるとしている(信頼区間95%)。予測可能温度は700℃から1000℃としており、表1におけるIII領域の脆化に対応することになる。 The range in which the formula (1) can be applied is that the crystal grain size d is 500 μm or less, the strain rate ε ′ is 10 −4 or more and 10 −1 or less, the component is 1.0% <Mn <1.4%, 005% <S, and within this range, it can be predicted with an error of ± 12% (confidence interval 95%). The predictable temperature is 700 ° C. to 1000 ° C., which corresponds to the embrittlement of the III region in Table 1.
この予測式から計算したMinimum RA(%)と歪速度の関係を図6に示す。ここでは便宜的にs=1000nmとして算出を行った。図6より歪速度が大きくなるとRAが増加しており、歪速度が大きい変形に対しては割れにくくなるといえる。この温度域で鋳片に予歪加工を与える際には、歪速度を大きくすることで、RAが低い状態での加工を避けることができる。例えば結晶粒径を500μmとすると連続鋳造機内の矯正曲げに相当する歪速度10-3/sではMinimum RAが約17%であるが、歪速度を10-1/sまで大きくするとMinimum RAは約57%まで上昇する。 FIG. 6 shows the relationship between Minimum RA (%) calculated from this prediction formula and strain rate. Here, for convenience, the calculation was performed with s = 1000 nm. From FIG. 6, it can be said that when the strain rate increases, RA increases, and it becomes difficult to break against deformation with a large strain rate. When prestraining the slab in this temperature range, it is possible to avoid processing with a low RA by increasing the strain rate. For example, when the crystal grain size is 500 μm, the minimum RA is about 17% at a strain rate of 10 −3 / s corresponding to straightening bending in a continuous casting machine, but when the strain rate is increased to 10 −1 / s, the minimum RA is about Increase to 57%.
上記検討より、700℃〜900℃程度の鋳片表面温度域で予歪加工を行う場合には、歪速度を大きくすることで、予歪加工そのものによって割れが発生することを回避できることがわかる。連続鋳造機内の矯正曲げに相当する歪速度が約10-3/sであるので、湾曲帯において予歪加工を行う場合の歪速度は、10-3/s〜1/sに設定される。歪速度が1/sを越えると、式の予測範囲を超えて割れが発生するおそれがあるからである。さらにこの予歪加工で鋳片表層の結晶粒径を500μmから100μmまで微細化できたとすると、微細化効果によりRAは50%まで向上するため、10-3/sの歪速度である連続鋳造機内の矯正歪に対しても、割れに関してある程度の耐性を持つことができる。 From the above examination, it is understood that when prestraining is performed in the slab surface temperature range of about 700 ° C. to 900 ° C., it is possible to avoid the occurrence of cracking due to the prestraining itself by increasing the strain rate. Since the strain rate corresponding to the straightening bending in the continuous casting machine is about 10 −3 / s, the strain rate when performing pre-straining in the curved band is set to 10 −3 / s to 1 / s. This is because if the strain rate exceeds 1 / s, cracks may occur beyond the predicted range of the equation. Furthermore, if the crystal grain size of the slab surface layer can be refined from 500 μm to 100 μm by this pre-straining process, RA is improved to 50% due to the refinement effect, and therefore the continuous casting machine having a strain rate of 10 −3 / s. It is possible to have a certain level of resistance to cracking even against straightening distortion.
図7は、予測式から計算したMinimum RA(%)と結晶粒径の関係を示す。図6と同様に結晶粒径が小さくなると、すなわち結晶粒径が微細化すると、Minimum RA(%)が向上することがわかる。例えば歪速度を連続鋳造機内の矯正曲げに相当する歪速度10-3/sとすると、結晶粒径が500μmの場合にはMinimum RAが約17%であるが、結晶粒径を100μmまで微細化できるとMinimum RAは約50%まで上昇することがわかる。これにより、結晶粒を微細化することによる延性回復の効果を概ね算出することができる。 FIG. 7 shows the relationship between the Minimum RA (%) calculated from the prediction formula and the crystal grain size. As in FIG. 6, it can be seen that the minimum RA (%) is improved when the crystal grain size is reduced, that is, when the crystal grain size is refined. For example, if the strain rate is 10 -3 / s, which corresponds to straightening bending in a continuous casting machine, the minimum RA is about 17% when the crystal grain size is 500 μm, but the crystal grain size is reduced to 100 μm. It can be seen that Minimum RA rises to about 50% if possible. Thereby, the effect of the ductility recovery by making the crystal grains fine can be roughly calculated.
なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々に変更できる。例えば、上記実施形態では、本発明を垂直曲げ型連続鋳造機に適用した例を説明したが、本発明は、図9に示される湾曲型連続鋳造機にも適用できる。垂直曲げ型連続鋳造機では垂直に鋳片を送るために平板鋳型であるが、湾曲型連続鋳造機の場合、円弧状に鋳片を送るために湾曲鋳型21になっている。鋳型内面が湾曲しているため、湾曲した鋳片が送り出され、下部矯正帯22で曲げ戻し矯正を行い鋳片とする。垂直曲げ型連続鋳造機とは上部矯正帯での曲げ工程がない点で相違する。
In addition, this invention is not restricted to the said embodiment, In the range which does not change the summary of this invention, it can change variously. For example, in the above-described embodiment, an example in which the present invention is applied to a vertical bending type continuous casting machine has been described. However, the present invention can also be applied to a curved type continuous casting machine shown in FIG. In the vertical bending type continuous casting machine, a flat plate mold is used to feed the slab vertically, but in the case of a curved type continuous casting machine, the
予歪の付与による脆化の回復効果を確かめる実験を行った。実験は、加工フォーマスタを用いる。サンプルに予歪加工を加えてから引張試験を行い、断面収縮率RAを測定する。図8は繰返し歪付与実験温度の履歴を示す。予歪の歪速度は0.01/sである。破断のときの歪速度は連続鋳造機の下部矯正帯の歪速度を想定して2×10-3/sとする。 An experiment was conducted to confirm the recovery effect of embrittlement by applying pre-strain. The experiment uses a machining formaster. The sample is pre-strained and then subjected to a tensile test to measure the cross-sectional shrinkage ratio RA. FIG. 8 shows the history of the cyclic straining experimental temperature. The strain rate of pre-strain is 0.01 / s. The strain rate at the time of fracture is 2 × 10 −3 / s assuming the strain rate of the lower straightening zone of the continuous casting machine.
表3は繰返し歪付与実験−実験水準一覧を示す。 Table 3 shows a list of repeated strain imparting experiments-experimental levels.
表4はサンプル成分を示す。 Table 4 shows the sample components.
比較例として予歪加工を行わないもの、一回歪付与を行ったもの、二回歪付与を行ったものを最終的に試験温度850℃で破断させた。 As a comparative example, a sample that was not subjected to pre-strain processing, a sample that was given strain once, and a sample that was given strain twice was finally broken at a test temperature of 850 ° C.
図10はRAの測定結果を示す。予歪加工を行わなかった比較例のRA=45.6%に対して、一回歪付与を行ったサンプルは歪量に応じてRAが上昇し、脆化が回復していることがわかる。また、二回歪付与を行ったサンプルについてもトータル歪量に併せてRAが上昇している。一回歪付与でも二回歪付与でも、概ねトータル歪量に併せてRAが増加している。言い換えると、歪を分割して少量ずつ与えても一回歪付与と同様の効果があることがわかる。連続鋳造機内においても、一度に大きな歪を付与するのではなく、複数回付与することで脆化回復に必要な一回あたりの歪量が低減可能であることが示唆される結果となった。 FIG. 10 shows the measurement result of RA. Compared to RA = 45.6% in the comparative example in which the pre-strain processing was not performed, it can be seen that in the sample to which the strain was applied once, the RA increased according to the strain amount and the embrittlement was recovered. In addition, the RA is increased in accordance with the total strain amount for the sample to which the strain is applied twice. RA is increased in accordance with the total strain amount in both the case where the strain is applied once and the case where the strain is applied twice. In other words, it can be seen that even if the strain is divided and applied in small amounts, the same effect as the one-time strain application is obtained. Even in the continuous casting machine, it was suggested that the amount of strain per one time required for embrittlement recovery can be reduced by applying a plurality of times instead of applying a large strain at once.
なお、この実験では3%の歪を二回付与した場合が最もRAが高くなることがわかった。また、予歪加工の歪速度は10-2/sと小さいもののここでは予歪加工することによるRAの低下(予歪そのものによるクラック、微小割れの発生などが想定される)は生じなかった。 In this experiment, it was found that RA was highest when 3% strain was applied twice. In addition, although the strain rate of the pre-straining process is as small as 10 −2 / s, here, there was no reduction in RA due to the pre-straining process (the occurrence of cracks and micro-cracks due to the pre-strain itself) was not caused.
9…鋳片
9b…湾曲帯
9c…下部矯正帯
10…ロール
10a〜10c…圧延ロール
10d〜10f…パスライン変更ロール
14…歪付与手段
DESCRIPTION OF SYMBOLS 9 ...
Claims (4)
鋳型から引き抜いた鋳片が前記下部矯正帯に到達するまでの間に、鋳片表面温度域が700〜900℃の当該鋳片に歪量が5%以内の複数回の歪を与え、当該鋳片の歪の歪速度を前記下部矯正帯の鋳片の歪速度よりも大きくすることを特徴とする連続鋳造方法。 In a continuous casting method in which the slab drawn from the mold is bent back at the lower straightening band,
Until the slab is pulled out from the mold reaches arrives to the lower straightening zone, the billet surface temperature range gives a multiple of strain of the slab to the strain amount is within the 5% 700 to 900 ° C., the cast A continuous casting method , wherein the strain rate of the strain of the piece is made larger than the strain rate of the cast piece of the lower straightening band .
鋳型から引き抜いた鋳片が前記下部矯正帯に到達するまでの間に、鋳片表面温度域が700〜900℃の当該鋳片に歪量が5%以内の複数回の歪を与える歪付与手段と、を備え、
当該鋳片の歪の歪速度を前記下部矯正帯の鋳片の歪速度よりも大きくする連続鋳造機。 A large number of rolls arranged facing both side surfaces of the slab so that the slab drawn from the mold can be bent back in the lower correction band;
Until the slab is pulled out from the mold reaches arrives to the lower straightening band, the distortion imparting means billet surface temperature range to provide a plurality of distortion of the strain amount in the cast piece within the 5% 700 to 900 ° C. and, with a,
A continuous casting machine in which the strain rate of the slab is larger than the strain rate of the slab of the lower straightening strip .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007160653A JP5045258B2 (en) | 2007-06-18 | 2007-06-18 | Continuous casting method and continuous casting machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007160653A JP5045258B2 (en) | 2007-06-18 | 2007-06-18 | Continuous casting method and continuous casting machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008307599A JP2008307599A (en) | 2008-12-25 |
JP5045258B2 true JP5045258B2 (en) | 2012-10-10 |
Family
ID=40235684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007160653A Active JP5045258B2 (en) | 2007-06-18 | 2007-06-18 | Continuous casting method and continuous casting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5045258B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102098023B1 (en) * | 2018-10-24 | 2020-04-07 | 주식회사 포스코 | Apparatus for setting temperature of continuous casting device |
KR102143118B1 (en) * | 2019-06-13 | 2020-08-10 | 주식회사 포스코 | Temperature control apparatus and method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117346A (en) * | 1984-07-04 | 1986-01-25 | Nippon Steel Corp | Multi-point straightening method for slabs |
JPH0649217B2 (en) * | 1988-12-13 | 1994-06-29 | 新日本製鐵株式会社 | Forming method of cast slab in continuous casting machine |
JPH0763827B2 (en) * | 1989-02-27 | 1995-07-12 | 住友金属工業株式会社 | Continuous casting method for steel |
JPH0890182A (en) * | 1994-09-22 | 1996-04-09 | Sumitomo Metal Ind Ltd | Continuous casting method for wide and thin slabs |
JP3239808B2 (en) * | 1997-07-18 | 2001-12-17 | 住友金属工業株式会社 | Steel continuous casting method |
JP2004330216A (en) * | 2003-05-01 | 2004-11-25 | Nippon Steel Corp | Curved multi-point straightening continuous casting equipment |
-
2007
- 2007-06-18 JP JP2007160653A patent/JP5045258B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008307599A (en) | 2008-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6421900B2 (en) | Rolled H-section steel and its manufacturing method | |
EP2865779B1 (en) | H-Section steel and process for producing same | |
US9834931B2 (en) | H-section steel and method of producing the same | |
KR20130100215A (en) | Method for producing a hot-rolled flat steel product | |
KR101759915B1 (en) | Method for producing a metal strip | |
US11225697B2 (en) | Hot rolled light-gauge martensitic steel sheet and method for making the same | |
JP4296985B2 (en) | Ultra-thick steel plate with excellent internal quality and its manufacturing method | |
JP5999294B2 (en) | Steel continuous casting method | |
JP2007302908A (en) | High-tensile steel plate and manufacturing method thereof | |
JP6790641B2 (en) | Rolled H-section steel and its manufacturing method | |
JP6131833B2 (en) | Method for continuous casting of Ti deoxidized steel | |
JP5045258B2 (en) | Continuous casting method and continuous casting machine | |
JP2007160341A (en) | Machine and method for continuously casting steel | |
JP2007245232A (en) | Method for preventing surface cracks in continuous cast slabs | |
JP5093463B2 (en) | Continuous casting method and continuous casting machine | |
JP5234511B2 (en) | Continuous casting method and continuous casting machine | |
KR101949351B1 (en) | Method of producing continuous-cast steel product using continuous casting machine | |
JP6149789B2 (en) | Steel continuous casting method | |
JP4112785B2 (en) | Method for preventing surface cracking of continuous cast slabs under large hot width reduction | |
WO2020153407A1 (en) | High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel | |
US20160186287A1 (en) | Method for producing strips made of steel, in particular for producing cutting and machining tools having improved service life | |
JP2007245178A (en) | Steel continuous casting method | |
JP2728999B2 (en) | Continuous casting method | |
JP7644344B2 (en) | Continuous casting method for slabs | |
JP6349832B2 (en) | Continuous cast slab for thick steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5045258 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |