[go: up one dir, main page]

JP5043290B2 - Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same - Google Patents

Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5043290B2
JP5043290B2 JP2004170243A JP2004170243A JP5043290B2 JP 5043290 B2 JP5043290 B2 JP 5043290B2 JP 2004170243 A JP2004170243 A JP 2004170243A JP 2004170243 A JP2004170243 A JP 2004170243A JP 5043290 B2 JP5043290 B2 JP 5043290B2
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrolyte secondary
positive electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004170243A
Other languages
Japanese (ja)
Other versions
JP2005353320A (en
Inventor
浩司 芳澤
真二 中西
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004170243A priority Critical patent/JP5043290B2/en
Publication of JP2005353320A publication Critical patent/JP2005353320A/en
Application granted granted Critical
Publication of JP5043290B2 publication Critical patent/JP5043290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高容量型の非水電解質二次電池に関する。   The present invention relates to a high-capacity non-aqueous electrolyte secondary battery.

移動体通信機器、携帯電子機器の主電源として利用されているリチウムイオン電池は、起電力が高く、高エネルギー密度である特長を有している。ここで用いられる正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガンスピネル(LiMn24)等やこれらの混合物がある。これらの活物質はリチウムに対し4V以上の電圧を有している。 A lithium ion battery used as a main power source for mobile communication devices and portable electronic devices has a high electromotive force and a high energy density. Examples of the positive electrode active material used here include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), manganese spinel (LiMn 2 O 4 ), and mixtures thereof. These active materials have a voltage of 4 V or more with respect to lithium.

また、上記の酸化物とは別に、リン酸塩からなる活物質が提案されている。例えば特許文献1においてはLiMePO4が提案されている。また、特許文献2においてはLiMePO4Fが提案されている。さらに、特許文献3や非特許文献1においてはLi2MePO4Fが開示されている。 In addition to the above oxides, an active material made of phosphate has been proposed. For example, Patent Document 1 proposes LiMePO 4 . Patent Document 2 proposes LiMePO 4 F. Further, Patent Document 3 and Non-Patent Document 1 disclose Li 2 MePO 4 F.

チッ素原子を導入した活物質は特許文献4に記載されているが、いずれも酸化物に関するものであり、リン酸塩化合物に関しては開示も示唆もない。特許文献4には、シリコン、ゲルマニウムおよび錫の少なくとも1種の原子と酸素原子とチッ素原子とを含む化合物を負極材料として用いることが開示されている。この負極材料は、一般式:Mxyz(MはSi、GeおよびSnの少なくとも1種の原子、x、yおよびzはそれぞれ1.4<x<2.1、1.4<y<2.1および0.9<z<1.6)で表される。 Although the active material which introduce | transduced the nitrogen atom is described in patent document 4, all are related to an oxide, and it does not disclose or suggest about a phosphate compound. Patent Document 4 discloses that a compound containing at least one atom of silicon, germanium, and tin, an oxygen atom, and a nitrogen atom is used as a negative electrode material. This negative electrode material has a general formula: M x N y O z (M is at least one atom of Si, Ge and Sn, and x, y and z are 1.4 <x <2.1 and 1.4 <, respectively. y <2.1 and 0.9 <z <1.6).

この発明の目的は、高容量の負極材料を作成することにある。特許文献4記載の負極材料においては、シリコンとチッ素とからなるチェア型6員環で構成される擬似平面がマトリックス状に広がり、その平面間(層間)にシリコン−酸素−シリコン結合が架橋するように存在して1次元のトンネル状部分を形成している。そして、このトンネル状部分がリチウムのドープ・脱ドープサイトとなり、得られる負極材料は大きな容量を発揮する。   An object of the present invention is to produce a high-capacity negative electrode material. In the negative electrode material described in Patent Document 4, a pseudo-plane composed of a chair-type six-membered ring made of silicon and nitrogen spreads in a matrix, and a silicon-oxygen-silicon bond is bridged between the planes (interlayers). Exist to form a one-dimensional tunnel-like portion. This tunnel-like portion becomes a lithium doping / undoping site, and the obtained negative electrode material exhibits a large capacity.

したがって、特許文献4の実施例に示されている負極材料は、Nを有する酸素窒化物であるSi22O、Ge22OまたはSn22Oからなるマトリックスとしての結晶構造が重要である。なお、特許文献4には、上記負極材料の電子導電性に関する開示や示唆は無く、実施例においては導電助剤として炭素材料が単純に混合されている。 Therefore, the negative electrode material shown in the example of Patent Document 4 has a crystal structure as a matrix made of Si 2 N 2 O, Ge 2 N 2 O, or Sn 2 N 2 O, which is an oxygen nitride containing N. is important. In Patent Document 4, there is no disclosure or suggestion regarding the electronic conductivity of the negative electrode material, and in the examples, a carbon material is simply mixed as a conductive additive.

米国特許第6,514,640号公報US Pat. No. 6,514,640 米国特許第6,387,568号公報US Pat. No. 6,387,568 特開2003−229126号公報JP 2003-229126 A 特開平11−102705号公報JP-A-11-102705 J.Solid State Chem.142,1(1999)J. et al. Solid State Chem. 142, 1 (1999)

ところが、LiFePO4に代表されるリチウムイオン電池用正極活物質のリン酸塩化合物は、酸化物系の従来の材料に比べ高温加熱時などの酸素の発生が少なく、安全性や信頼性が高いといった特徴を有する一方、組成からも明らかなように単純な無機塩であり電池活物質として求められる材料の電子伝導性はきわめて低い。そのため、LiCoO2などの酸化物を電池に用いる場合のように、導電助剤としてアセチレンブラックや黒鉛などの導電性の高い材料を混合して電極を得ることも考えられるが、リン酸塩系の化合物の電子伝導性は極めて低いため、導電助剤を単純に混合するだけでは不十分であり、粒子を微細化して比表面積を増大させたり、活物質表面を黒鉛質材料で被覆したりといった工夫がなされる。 However, the phosphate compound, which is a positive electrode active material for lithium ion batteries represented by LiFePO 4 , produces less oxygen during high-temperature heating and has higher safety and reliability than conventional oxide-based materials. While having the characteristics, as is apparent from the composition, it is a simple inorganic salt, and the material required as a battery active material has extremely low electronic conductivity. Therefore, as in the case of using an oxide such as LiCoO 2 in a battery, it is conceivable to obtain an electrode by mixing a highly conductive material such as acetylene black or graphite as a conductive auxiliary agent. Since the compound's electronic conductivity is extremely low, it is not sufficient to simply mix the conductive aid, and it is possible to refine the particles to increase the specific surface area or to cover the active material surface with a graphite material. Is made.

しかし、これらの工夫の結果として、活物質の充填量の低下による容量の低下や、工程数の増加(粉砕や表面被覆)によるコストアップという新たな問題が生じる。
そこで、本発明は、このような問題を解決すべく、導電性の高い活物質材料を提案し、容量の高い非水電解質二次電池を提供することを目的とする。
However, as a result of these contrivances, new problems such as a decrease in capacity due to a decrease in the filling amount of the active material and an increase in cost due to an increase in the number of processes (pulverization and surface coating) occur.
Accordingly, an object of the present invention is to propose a highly conductive active material and to provide a high capacity non-aqueous electrolyte secondary battery in order to solve such problems.

上記の課題を解決するため、本発明は、組成式:LixMePO4zy(0≦x≦2、0<y≦1.2、0<z≦1、MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表される非水電解質二次電池用正極活物質を提案する。リン酸塩にチッ素を導入することにより、リン酸塩表面の酸素配列が変化し、電導に関与するキャリアーが発生して正極活物質の抵抗率が低下する。そのため、LiCoO2などの酸化物を活用する場合と同様の簡便な工程で導電剤を添加することができる。 In order to solve the above problems, the present invention provides a composition formula: Li x MePO 4 F z N y (0 ≦ x ≦ 2, 0 <y ≦ 1.2, 0 <z ≦ 1, Me represents Fe, Co, propose at least one atom) the positive electrode active material for a nonaqueous electrolyte secondary battery represented by is selected from the group consisting of Ni and Mn. By introducing nitrogen to phosphate, oxygen arrangement phosphate surface is changed, carrier occurs resistivity of the positive electrode active material involved in conducting decreases. For this reason, the conductive agent can be added by the same simple process as in the case of utilizing an oxide such as LiCoO 2 .

また、本発明は、上記非水電解質二次電池用正極活物質の製造方法にも関する。この製造方法は、リン酸塩化合物を還元性雰囲気下で加熱した後、アンモニアガスと反応させることにより、チッ素原子を含むリン酸塩からなる非水電解質二次電池用正極活物質を合成する工程を含み、前記非水電解質二次電池用正極活物質が、組成式:LixMePO4zy(0≦x≦2、0<y≦1.2、0<z≦1、MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表される。
前記還元性雰囲気はアルゴン、チッ素、一酸化炭素および水素よりなる群から選択される少なくとも1種のガスを含み、前記加熱温度は300〜1500℃であるのが有効である。
The present invention also relates to a method for producing the positive electrode active material for a nonaqueous electrolyte secondary battery. This manufacturing method, after heating the phosphate compound in a reducing atmosphere, by reacting with ammonia gas, to synthesize a non-aqueous electrolyte cathode active material for a secondary battery comprising a phosphate containing a nitrogen atom includes the step, the non-aqueous electrolyte cathode active material for a secondary battery, the composition formula: Li x MePO 4 F z N y (0 ≦ x ≦ 2,0 <y ≦ 1.2,0 <z ≦ 1, Me Is represented by at least one atom selected from the group consisting of Fe, Co, Ni and Mn.
It is effective that the reducing atmosphere contains at least one gas selected from the group consisting of argon, nitrogen, carbon monoxide and hydrogen, and the heating temperature is 300 to 1500 ° C.

さらに本発明は、上記非水電解質二次電池用正極活物質を正極に含む非水電解質二次電池を提供する。 The present invention further provides a non-aqueous electrolyte secondary battery including a positive electrode active material for a nonaqueous electrolyte secondary battery positive electrode.

本発明に係る非水電解質二次電池用活物質によれば、従来のリン酸塩活物質が抱えていた課題、すなわち独自の導電性向上策によって引起される容量低下やコストアップを回避することができる。   According to the active material for a non-aqueous electrolyte secondary battery according to the present invention, it is possible to avoid a problem that the conventional phosphate active material has, that is, a decrease in capacity and an increase in cost caused by an original measure for improving conductivity. Can do.

参考試験電池1で用いたLiFePO4-zyの充放電カーブを示す図である。 2 is a diagram showing a charge / discharge curve of LiFePO 4 -z N y used in the reference test battery 1. FIG. 本発明の試験電池1で用いたLiCoPO4zyの充放電カーブを示す図である。Is a diagram showing charge-discharge curves of LiCoPO 4 F z N y used in the test cells 1 of the present invention. 参考例1において作製した円筒型電池の概略縦断面図である。 4 is a schematic longitudinal sectional view of a cylindrical battery produced in Reference Example 1. FIG.

以下、本発明を実施するための最良の形態について説明する。
本発明に係る非水電解質二次電池用活物質はチッ素原子含有リン酸塩からなり、これを得るためには、リン酸塩にチッ素原子を導入する必要がある。上述したように、リン酸塩表面の酸素配列を変化させ、リン酸塩特有の問題(高抵抗)を回避するために、チッ素原子の導入が不可欠だからである。
Hereinafter, the best mode for carrying out the present invention will be described.
The active material for a non-aqueous electrolyte secondary battery according to the present invention comprises a nitrogen atom-containing phosphate, and in order to obtain this, it is necessary to introduce nitrogen atoms into the phosphate. This is because, as described above, introduction of nitrogen atoms is indispensable in order to change the oxygen arrangement on the phosphate surface and avoid problems (high resistance) peculiar to phosphate.

本発明におけるチッ素原子含有リン酸塩の組成は、組式:LixMePO4zy(0≦x≦2、0<y≦1.2、0<z≦1、MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表されることが好ましい。
もちろん、本発明の効果を損なわない範囲で、不可避不純物などの上記以外の元素を含んでいてもよい。
The composition of the nitrogen atom-containing phosphate in the present invention, the set formed formula: Li x MePO 4 F z N y (0 ≦ x ≦ 2,0 <y ≦ 1.2,0 <z ≦ 1, Me is Fe And at least one atom selected from the group consisting of Co, Ni and Mn.
Of course, elements other than those described above, such as inevitable impurities, may be included as long as the effects of the present invention are not impaired.

ここで、本発明におけるチッ素原子含有リン酸塩の合成に使用するリン酸塩化合物(酸化物やリチウム含有酸化物)の種類、反応条件を種々変化させ、MeとF、Nの比率を分析した結果、0<y≦1.2および0<z≦1が好ましいことがわかった。また、リチウム原子に関しては、原材料に含まれる量に依存するが、従来知られてLiMePO4やLi2MePO4F等から、0≦x<2が適当と考えられる。
ここで、Nの原子比であるyの上限を1.2としたのは、1.2を超えると、得られる活物質の持つ放電容量が低下する傾向にあるからである。
Here, various kinds of phosphate compounds (oxides and lithium-containing oxides) used in the synthesis of the nitrogen atom-containing phosphate in the present invention and the reaction conditions are changed, and the ratio of Me, F, and N is analyzed. As a result, it was found that 0 <y ≦ 1.2 and 0 <z ≦ 1 are preferable. Further, regarding lithium atoms, although depending on the amount contained in the raw material, it is considered conventionally that 0 ≦ x <2 is appropriate from LiMePO 4 , Li 2 MePO 4 F and the like.
Here, the reason why the upper limit of y, which is the atomic ratio of N, is set to 1.2 is that when it exceeds 1.2, the discharge capacity of the obtained active material tends to decrease.

また、上記のチッ素原子含有リン酸塩化合物の製造方法としては、リン酸塩化合物を還元性の雰囲気下で加熱した後、アンモニアガスと反応させる必要がある。なお、このときの還元性雰囲気のガスとしてはアルゴン、チッ素、一酸化炭素および水素から選ばれる1種以上を含むことが好ましく、加熱温度は300〜1500℃であることが好ましい。300℃未満では反応時間が長く、一方、1500℃を超えると必要以上の高温となり、いずれの場合もコストアップになる。コストおよび導入するチッ素の量などから、350〜1000℃であるのが好ましい。
また、リチウム原子を含有するリン酸塩化合物を、その表面酸化物を水素ガス雰囲気下で還元した後、アンモニアガスと反応させてもよい
Moreover, as a manufacturing method of said nitrogen atom containing phosphate compound, after heating a phosphate compound in a reducing atmosphere, it is necessary to make it react with ammonia gas. In addition, as gas of the reducing atmosphere at this time, it is preferable to contain 1 or more types chosen from argon, nitrogen, carbon monoxide, and hydrogen, and it is preferable that heating temperature is 300-1500 degreeC. If it is less than 300 ° C., the reaction time is long. On the other hand, if it exceeds 1500 ° C., the temperature becomes higher than necessary, and in either case, the cost increases. From the cost and the amount of nitrogen to be introduced, it is preferably 350 to 1000 ° C.
Further, a phosphate compound containing a lithium atom may be reacted with ammonia gas after the surface oxide is reduced in a hydrogen gas atmosphere.

ただし、得られた導電性の材料が上述の加熱によって焼結している場合、その焼結体をそのまま活物質として二次電池に利用することは困難な場合がある。
この場合、例えば、前記焼結体を溶剤など存在化で機械的に粉砕して乾燥すれば、活物質として利用し易い。
However, when the obtained conductive material is sintered by the above-described heating, it may be difficult to use the sintered body as an active material as it is for a secondary battery.
In this case, for example, if the sintered body is mechanically pulverized and dried in the presence of a solvent or the like, it can be easily used as an active material.

さらに、本発明に係る活物質を、メタノールやブタノールなどのアルコール類の有機還元剤共存下、またはアンモニアガスなどの雰囲気下、400℃以下で加熱処理し、その粒子表面にある余剰の酸素、アンモニアガスに由来するチッ素やアンモニアなどの吸着種を除去することができる。これにより、得られる粉末状の活物質の抵抗率が低下する。この場合の有機還元剤としては、アルコール類のほかに、ケトン類、エステル類、アミン類などでもよい。   Furthermore, the active material according to the present invention is heat-treated at 400 ° C. or lower in the presence of an organic reducing agent such as alcohol such as methanol or butanol, or in an atmosphere such as ammonia gas, and surplus oxygen and ammonia on the particle surface. Adsorbed species such as nitrogen and ammonia derived from gas can be removed. Thereby, the resistivity of the obtained powdery active material falls. In this case, as the organic reducing agent, in addition to alcohols, ketones, esters, amines and the like may be used.

以上のような方法によってチッ素原子をリン酸塩化合物の表面から導入することで、当該リン酸塩化合物の表面の酸素配列に変化を与え、電導に関与するキャリアーを発生させることで抵抗率を低下させることができるものと考えられる。また、チッ素原子の導入量の多い場合は全体のマトリックスを変化させ結晶構造を変化させたことによることも考えられる。   By introducing nitrogen atoms from the surface of the phosphate compound by the method as described above, the oxygen sequence on the surface of the phosphate compound is changed, and the resistivity is increased by generating carriers involved in conduction. It is thought that it can be reduced. In addition, when the amount of introduced nitrogen atoms is large, it is also considered that the entire matrix is changed to change the crystal structure.

上記活物質を正極あるいは負極の少なくともいずれかに含むことにより、高い安全性・電池特性を保ちつつ高容量な非水電解質二次電池を実現化できる。その際の、正極における正極合剤、導電剤、結着剤および集電体、負極における負極合剤、導電剤、結着剤および集電体、セパレータ、ならびに非水電解液としては、従来公知のものを適宜使用することができる。また、電池の形状や、各構成要素の製造方法も特に限定はされない。   By including the active material in at least one of the positive electrode and the negative electrode, a high-capacity non-aqueous electrolyte secondary battery can be realized while maintaining high safety and battery characteristics. At that time, a positive electrode mixture, a conductive agent, a binder and a current collector in the positive electrode, a negative electrode mixture, a conductive agent, a binder and a current collector in the negative electrode, a separator, and a non-aqueous electrolyte are conventionally known. Can be used as appropriate. Further, the shape of the battery and the manufacturing method of each component are not particularly limited.

図3に、円筒型電池の概略縦断面図を示す。
正極板および負極板がセパレータを介して複数回渦巻状に巻回された極板群4が電池ケース1内に収納されている。そして、正極板からは正極リード5が引き出されて封口板2に接続され、負極板からは負極リード6が引き出されて電池ケース1の底部に接続されている。電池ケースやリード板は、耐有機電解液性の電子伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属またはそれらの合金が用いられる。特に、電池ケースはステンレス鋼板、Al−Mn合金板を加工したもの、正極リードはアルミニウム、負極リードはニッケルが最も好ましい。また、電池ケースには、軽量化を図るため各種エンジニアリングプラスチックスおよびこれと金属の併用したものを用いることも可能である。
FIG. 3 shows a schematic longitudinal sectional view of the cylindrical battery.
An electrode plate group 4 in which a positive electrode plate and a negative electrode plate are wound in a spiral shape a plurality of times via a separator is housed in the battery case 1. A positive electrode lead 5 is drawn from the positive electrode plate and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode plate and connected to the bottom of the battery case 1. For the battery case and the lead plate, a metal or alloy having an organic electrolyte resistance and an electron conductivity can be used. For example, a metal such as iron, nickel, titanium, chromium, molybdenum, copper, aluminum, or an alloy thereof is used. In particular, the battery case is most preferably a stainless steel plate or an Al—Mn alloy plate processed, the positive electrode lead is aluminum, and the negative electrode lead is most preferably nickel. In addition, various engineering plastics and a combination of these and a metal can be used for the battery case in order to reduce the weight.

極板群4の上下部にはそれぞれ絶縁リング7が設けられている。そして、電解液を注入し、封口板を用いて電池ケースを密封する。このとき、安全弁を封口板に設けることができる。安全弁の他、従来から知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが用いられる。また、安全弁のほかに電池ケースの内圧上昇の対策として、電池ケースに切込を入れる方法、ガスケット亀裂方法、封口板亀裂方法またはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは、独立に接続させてもよい。   Insulating rings 7 are respectively provided on the upper and lower portions of the electrode plate group 4. And electrolyte solution is inject | poured and a battery case is sealed using a sealing board. At this time, a safety valve can be provided on the sealing plate. In addition to the safety valve, various conventionally known safety elements may be provided. For example, a fuse, bimetal, PTC element, or the like is used as the overcurrent prevention element. In addition to the safety valve, as a countermeasure against an increase in the internal pressure of the battery case, a method of cutting the battery case, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used. Further, the charger may be provided with a protection circuit incorporating a countermeasure against overcharge or overdischarge, or may be connected independently.

また、過充電対策として、電池内圧の上昇により電流を遮断する方式を具備することができる。このとき、内圧を上げる化合物を合剤の中あるいは電解質の中に含ませることができる。内圧を上げる化合物としてはLi2CO3、LiHCO3、Na2CO3、NaHCO3、CaCO3およびMgCO3などの炭酸塩などがあげられる。キャップ、電池ケース、シート、リード板の溶接法は、公知の方法(例、直流もしくは交流の電気溶接、レーザー溶接または超音波溶接など)を用いることができる。また、封口用シール剤は、アスファルトなどの従来から知られている化合物や混合物を用いることができる。
これらの要素を組み合わせることにより、本発明の非水電解質二次電池を構成することができる。
以下に本発明の実施例を示す。
In addition, as a measure against overcharging, a method of cutting off current by increasing the battery internal pressure can be provided. At this time, a compound for increasing the internal pressure can be contained in the mixture or the electrolyte. Examples of the compound raising the internal pressure and carbonates such as Li 2 CO 3, LiHCO 3, Na 2 CO 3, NaHCO 3, CaCO 3 and MgCO 3 and the like. As a method for welding the cap, the battery case, the sheet, and the lead plate, a known method (eg, direct current or alternating current electric welding, laser welding, ultrasonic welding, or the like) can be used. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.
By combining these elements, the nonaqueous electrolyte secondary battery of the present invention can be configured.
Examples of the present invention are shown below.

《実験例1》
(1)LiFePO4-zy
原材料として、リン酸塩化合物であるLiFePO4を用いた。特開2000−294238号公報記載の技術に基づき、粉砕したリン酸二水素アンモニウム(NH42PO4)とシュウ酸鉄二水和物(FeC22・H2O)と炭酸リチウム(Li2CO3)とを、モル比2:2:1で混合し、チッ素雰囲気下、600℃で24時間焼成することによって、粉末状のLiFePO4を得た。
<< Experiment 1 >>
(1) LiFePO 4-z N y
LiFePO 4 which is a phosphate compound was used as a raw material. Based on the technology described in Japanese Patent Application Laid-Open No. 2000-294238, pulverized ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), iron oxalate dihydrate (FeC 2 O 2 .H 2 O), and lithium carbonate (Li 2 CO 3 ) were mixed at a molar ratio of 2: 2: 1 and baked at 600 ° C. for 24 hours in a nitrogen atmosphere to obtain powdered LiFePO 4 .

つぎに、LiFePO4粉末を石英製の反応管に入れ、チッ素ガス雰囲気下で700℃に加熱した。その後、アンモニアガスを流し、10時間反応させることによって、組成式:LiFePO4-zyで表される活物質材料を得た。なお、zは分析では正確には求められなかったが、Oの一部がNで置換されており、約0.2であった。また、yは0.2程度であった。 Next, LiFePO 4 powder was put in a quartz reaction tube and heated to 700 ° C. in a nitrogen gas atmosphere. Thereafter, flow of ammonia gas, by reacting 10 hours, the composition formula: was obtained active material represented by LiFePO 4-z N y. In addition, although z was not calculated | required correctly by analysis, some O was substituted by N and was about 0.2. Moreover, y was about 0.2.

上記のようにして得た活物質60重量部に対し、導電助剤であるアセチレンブラック(AB)を30重量部、および結着剤であるPVdF(ポリフッ化ビニリデン)を10重量部を混合し、得られた混合物をNMP(N−メチル−2−ピロリドン)で希釈してアルミフォイル製の集電体上に塗布した。その後、減圧下60℃で30分乾燥し、15×20mm2に切断し、さらに減圧下110℃、14時間乾燥し、厚み190μmの参考試験電極1を得た。 30 parts by weight of acetylene black (AB) as a conductive auxiliary agent and 10 parts by weight of PVdF (polyvinylidene fluoride) as a binder are mixed with 60 parts by weight of the active material obtained as described above. The obtained mixture was diluted with NMP (N-methyl-2-pyrrolidone) and coated on an aluminum foil current collector. Thereafter, it was dried at 60 ° C. under reduced pressure for 30 minutes, cut into 15 × 20 mm 2 , and further dried at 110 ° C. under reduced pressure for 14 hours to obtain a reference test electrode 1 having a thickness of 190 μm.

これに対し、PVdFの混合量は10重量部の一定とし、ABを10重量部、5重量部または2重量部、活物質を80重量部、85重量部または88重量部とした以外は、参考試験電極1と全く同様の条件で参考試験電極2〜4を得た。
また、実験例1で作製した活物質にメタノールを加えてチッ素ガス雰囲気下300℃で10分間反応させた以外は、参考試験電極1と全く同様の条件で参考試験電極5を得た。
In contrast, the mixing amount of PVdF was constant of 10 parts by weight, 10 parts by weight of AB, 5 parts by weight or parts by weight, 80 parts by weight of active material, except for using 85 parts by weight or 88 parts by weight, Reference Reference test electrodes 2 to 4 were obtained under exactly the same conditions as test electrode 1.
In addition, Reference Test Electrode 5 was obtained under exactly the same conditions as Reference Test Electrode 1 except that methanol was added to the active material prepared in Experimental Example 1 and reacted at 300 ° C. for 10 minutes in a nitrogen gas atmosphere.

(2)LiCoPO4zy
また、特開2003−229126号公報記載の技術に基づき、Co34とP25とLiFとを、モル比2:3:6で混合し、得られた混合物を真空中850℃で48時間焼成することによって、LiCoPO4Fを得た。
このLiCoPO4Fを原材料として上記と同様の方法でLiCoPO4zyを得、これを活物質として用いた以外は、参考試験電極1と全く同様の条件で試験電極を得た。なお、zは分析では正確には求められなかったが、yは0.2程度であった。
(2) LiCoPO 4 F z N y
Further, based on the technology described in JP 2003-229126, Co 3 O 4 and P 2 O 5 and a LiF, molar ratio 2: 3: mixed with 6, the resultant mixture at 850 ° C. in vacuo LiCoPO 4 F was obtained by baking for 48 hours.
Using this LiCoPO 4 F as a raw material, LiCoPO 4 F z N y was obtained by the same method as described above, and a test electrode 1 was obtained under exactly the same conditions as the reference test electrode 1 except that this was used as an active material. In addition, although z was not calculated | required correctly by analysis, y was about 0.2.

(3)Li2CoPO4
さらに、また、特開2003−229126号公報記載の技術に基づき、Li2Co3とCoOとP25とをモル比1:2:1で混合し、大気中500℃で12時間仮焼成した後、780℃で48時間本焼成し、LiCoPO4を作成した。
その後、LiCoPO4と化学量論比のLiFとを混合し、得られた混合物を真空中780℃で72時間焼成することによって、Li2CoPO4Fを得た。
このLi2CoPO4Fを原材料として上記と同様の方法でLi2CoPO4zyを得、これを活物質として用いた以外は、参考試験電極1と全く同様の条件で試験電極を得た。なお、zは分析では正確には求められなかったが、yは0.2程度であった。
(4)その他の活物質
また、比較例として、LiFePO4、原材料であるLiCoPO4FまたはLi2CoPO4Fを活物質として用い、参考試験電極1と同様にして、比較試験電極1〜3を得た。
(3) Li 2 CoPO 4 F
Furthermore, based on the technique described in Japanese Patent Application Laid-Open No. 2003-229126, Li 2 Co 3 , CoO, and P 2 O 5 are mixed at a molar ratio of 1: 2: 1 and pre-baked at 500 ° C. in the atmosphere for 12 hours. Then, this was baked at 780 ° C. for 48 hours to prepare LiCoPO 4 .
Thereafter, LiCoPO 4 and a stoichiometric ratio of LiF were mixed, and the resulting mixture was baked at 780 ° C. in vacuum for 72 hours to obtain Li 2 CoPO 4 F.
The Li give Li 2 CoPO 4 F z N y a 2 CoPO 4 F in the same manner as described above as a raw material, except for using this as an active material, a test electrode 2 in exactly the same conditions as in Reference test electrode 1 Obtained. In addition, although z was not calculated | required correctly by analysis, y was about 0.2.
(4) Other active materials Further, as comparative examples, LiFePO 4 and LiCoPO 4 F or Li 2 CoPO 4 F as raw materials were used as active materials, and Comparative Test Electrodes 1 to 3 were prepared in the same manner as Reference Test Electrode 1. Obtained.

[評価]
これら参考試験電極1〜5、試験電極1および2、ならびに比較試験電極1〜3に対し、対極にはステンレススチール上に圧着したリチウム金属を用いた。セパレータはポリエチレン製のポーラスフィルム、電解液としてはEC(エチレンカーボネート)とDMC(ジメチルカーボネート)を3対7の比率で混合した溶媒に1.0MのLiPF6を溶解したものを用いた。
以上の手順で組み立てた参考試験電池1〜5、試験電極1および2、ならびに比較試験電池1〜3を用い、充放電試験を行った。
充放電は0.17mA/cm2の電流密度で所定の電圧領域の間で充放電を繰り返した。ここで、図1に、参考試験電池1で得られた活物質の電気化学特性を示した。電気化学測定は前述した方法で行い、対極としてリチウムメタルを使用した。図1より、この活物質はチッ素原子を導入する前のLiFePO4の挙動とほぼ同じ電位で充放電が可能であることがわかった。また、参考試験電池2〜5で用いた活物質に関しても図1に示した結果とほぼ同様であった。
[Evaluation]
For these reference test electrodes 1 to 5, test electrodes 1 and 2, and comparative test electrodes 1 to 3, lithium metal crimped on stainless steel was used as the counter electrode. The separator was a polyethylene porous film, and the electrolyte was a solution prepared by dissolving 1.0 M LiPF 6 in a solvent in which EC (ethylene carbonate) and DMC (dimethyl carbonate) were mixed at a ratio of 3 to 7.
A charge / discharge test was performed using the reference test batteries 1 to 5, the test electrodes 1 and 2, and the comparative test batteries 1 to 3 assembled in the above procedure.
Charging / discharging was repeated between predetermined voltage areas at a current density of 0.17 mA / cm 2 . Here, FIG. 1 shows the electrochemical characteristics of the active material obtained in the reference test battery 1. Electrochemical measurement was performed by the method described above, and lithium metal was used as the counter electrode. From FIG. 1, it was found that this active material can be charged / discharged at substantially the same potential as the behavior of LiFePO 4 before introducing nitrogen atoms. Further, the active materials used in the reference test batteries 2 to 5 were almost the same as the results shown in FIG.

また、図2に試験電池で得られた活物質の電気化学特性を示した。電気化学測定は前述した方法で行い、対極としてリチウムメタルを使用した。図2より、この活物質はチッ素原子を導入する前のLiCoPO4Fの挙動とほぼ同じ電位、すなわち4.8V付近で平坦部を持つ充放電が可能であることがわかった。また、試験電池で用いた活物質に関しても図2に示した結果とほぼ同様であった。
比較試験電池1では、3.4V、比較試験電池2および3は4.8V付近に放電電圧の平坦部がある(チッ素化によって平坦電位は大きな変化はなかった。)。容量に関しては、比較試験電池1が比較試験電池2および3に比べて大きく、比較試験電池2と3とを比較するとほぼ同等であった。
FIG. 2 shows the electrochemical characteristics of the active material obtained in the test battery 1 . Electrochemical measurement was performed by the method described above, and lithium metal was used as the counter electrode. From FIG. 2, the active material was found to be capable of substantially the same potential, that lifting one charging and discharging the flat portion in the vicinity of 4.8V and behavior of previous LiCoPO 4 F for introducing the nitrogen atoms. The active material used in the test battery 2 was almost the same as the result shown in FIG.
The comparative test battery 1 has a discharge voltage flat portion around 3.4 V, and the comparative test batteries 2 and 3 have a flat discharge voltage around 4.8 V (the flat potential did not change significantly due to nitriding). With respect to volume, larger comparative test cell 1 as compared with Comparative Test Cells 2 and 3, was almost the same when compared with the comparative test cell 2 and 3.

《実験例2》
つぎに、本発明に係る活物質を用いれば、導電性が向上することによって導電助剤の必要量の削減が期待できるが、これを評価するために、上記で得られた活物質を用い(表1参照)、導電助剤であるアセチレンブラック(AB)の量を変化させた以外は上記参考試験電極1と同様の方法で参考試験電極6〜10、試験電極3および4、ならびに比較試験電極4〜9と、参考試験電池6〜10、試験電池3および4、ならびに比較試験電池4〜9を作製し、導電助剤の減量に伴う容量の比較を行った。
なお、参考試験電池6〜10は上記参考試験電池1〜5と同じであり、比較試験電池4は比較試験電池1と同じである。
<< Experiment 2 >>
Next, when the active material according to the present invention is used, the required amount of the conductive auxiliary agent can be expected by improving the conductivity, but in order to evaluate this, the active material obtained above is used ( Reference test electrodes 6 to 10, test electrodes 3 and 4, and comparative test electrode in the same manner as the reference test electrode 1 except that the amount of acetylene black (AB), which is a conductive auxiliary agent, was changed. 4 to 9 , reference test batteries 6 to 10, test batteries 3 and 4, and comparative test batteries 4 to 9 were produced, and the capacities of the conductive auxiliary agents were compared.
The reference test batteries 6 to 10 are the same as the reference test batteries 1 to 5, and the comparative test battery 4 is the same as the comparative test battery 1.

表1に結果を示した。上記した電気化学特性の評価方法を用い、加える導電助剤であるアセチレンブラックの量を減量して評価を行った。放電容量は導電助剤を10%添加した場合の容量を100としたときの比較値で示した。   Table 1 shows the results. Using the above-described method for evaluating electrochemical characteristics, the amount of acetylene black, which is a conductive auxiliary agent to be added, was reduced and evaluated. The discharge capacity was shown as a comparative value when the capacity when 10% of the conductive additive was added was taken as 100.

Figure 0005043290
Figure 0005043290

表1より、本発明に係る活物質は、飛躍的に導電助剤を減量しても容量を維持できることがわかった。結果として、この活物質を非水電解質二次電池に適用した場合、体積あたりの容量が導電助剤の減量によって増加することができる。   From Table 1, it was found that the active material according to the present invention can maintain the capacity even when the amount of the conductive aid is drastically reduced. As a result, when this active material is applied to a non-aqueous electrolyte secondary battery, the capacity per volume can be increased by reducing the conductive additive.

参考例1
ここでは、図3に示す構造を有する円筒型電池を作製した。
正極板は、以下のように作製した。正極活物質粉末(LiFePO4-zy、y=0.2)100重量部に対し、導電剤の炭素粉末2重量部と結着剤のポリフッ化ビニリデン樹脂3重量部を混合した。これらを脱水N−メチルピロリジノンに分散させてスラリーを得、アルミニウム箔からなる正極集電体上に塗布し、乾燥・圧延した後、所定の大きさに切断した。
<< Reference Example 1 >>
Here, a cylindrical battery having the structure shown in FIG. 3 was produced.
The positive electrode plate was produced as follows . The positive electrode active material powder (LiFePO 4-z N y, y = 0.2) to 100 parts by weight, were mixed polyvinylidene fluoride resin 3 parts by weight of carbon powder 2 parts by weight of a binder of the conductive agent. These were dispersed in dehydrated N-methylpyrrolidinone to obtain a slurry, which was applied onto a positive electrode current collector made of aluminum foil, dried and rolled, and then cut into a predetermined size.

負極の活物質に黒鉛を用いた。黒鉛とスチレンブタジエンゴム系結着剤とを重量比で100:5の割合で混合したものを銅箔の両面に塗着、乾燥、圧延した後所定の大きさに切断して得た。セパレータとしてはポリプロピレン製の不織布を用いた。また、有機電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比1:3の混合溶媒に、LiPF6を1.0モル/リットル溶解したものを使用した。作製した円筒型電池は直径14.1mm、高さ50.0mmであった。 Graphite was used as the negative electrode active material. A graphite / styrene butadiene rubber-based binder mixed at a weight ratio of 100: 5 was applied to both sides of a copper foil, dried, rolled, and then cut into a predetermined size. As the separator, a polypropylene nonwoven fabric was used. As the organic electrolyte, a solution obtained by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 3 was used. The produced cylindrical battery had a diameter of 14.1 mm and a height of 50.0 mm.

このようにして作製した円筒型電池(参考試験電池11)について4.0Vの定電圧充電を行い、放電は100mAの定電流で2.5Vまで放電した。このとき得られた放電容量は400mAhであった。
また、正極活物質としてLiFePO4を用いた以外は参考試験電池11と同様にして作製した比較試験電池10の場合には、放電容量が120mAhと低かった。
The cylindrical battery thus produced ( reference test battery 11 ) was charged at a constant voltage of 4.0V and discharged at a constant current of 100 mA up to 2.5V. The discharge capacity obtained at this time was 400 mAh.
Further, in the case of the comparative test battery 10 produced in the same manner as the reference test battery 11 except that LiFePO 4 was used as the positive electrode active material, the discharge capacity was as low as 120 mAh.

《実験例
本実験例においては、本発明に係るチッ素原子を含有するリン酸塩におけるチッ素原子の量について検討した。
表2に示す原材料を用い、種々の合成条件でチッ素原子を導入し、本発明に係る活物質を合成した。なお、表2中にて原材料にLiFePO 4 を用いた場合は、参考例である。合成条件およびチッ素原子の導入量(y値)を表2に示した。なお、活物質の導電性を示す抵抗率の絶対値は、粉体の物性によって大きな誤差を生じる傾向にあった。そのため、各実験例および参考例において、未処理の原材料の抵抗率を100として、相対値で抵抗率を求めた。
<< Experiment 3 >>
In this experimental example, the amount of nitrogen atoms in the phosphate containing nitrogen atoms according to the present invention was examined.
Using the raw materials shown in Table 2, nitrogen atoms were introduced under various synthesis conditions to synthesize active materials according to the present invention. In Table 2, the case where LiFePO 4 is used as a raw material is a reference example. Table 2 shows the synthesis conditions and the introduction amount (y value) of nitrogen atoms. The absolute value of resistivity indicating the conductivity of the active material tended to cause a large error depending on the physical properties of the powder. Therefore, in each experimental example and reference example , the resistivity of untreated raw materials was set to 100, and the resistivity was obtained as a relative value.

Figure 0005043290
Figure 0005043290

表2から、本発明に係る活物質の抵抗率は約2桁低下していることがわかる。特に、yが0.11〜1.1が好ましいことがわかる。   From Table 2, it can be seen that the resistivity of the active material according to the present invention is reduced by about two orders of magnitude. In particular, it can be seen that y is preferably 0.11 to 1.1.

さらに、ESCAを用いて上記実験および参考例における活物質の表面元素分析を行った。その結果、以下のように組成が、層状に異なって徐々に変化していることが確認された。
すなわち、表面層は主としてチッ化物であり、当該表面層から内部にかけてチッ素含有量が次第に減少する一方、酸素含有量が増加する酸チッ化物が見受けられた。さらに、表面も内部も酸チッ化物で構成されているもの、また、チッ素がほとんど観測されず、未処理の原材料から酸素の含有量が減少しているものなども見受けられた。実験および参考例における活物質は、これらの単独物または混合物であった。
Furthermore, the surface elemental analysis of the active material in the said experiment example and reference example was performed using ESCA. As a result, it was confirmed that the composition varied gradually in the following manner.
That is, the surface layer was mainly nitride, and while the nitrogen content gradually decreased from the surface layer to the inside, an acid nitride in which the oxygen content increased was observed. In addition, some of the surface and the inside were composed of acid nitride, and some of the nitrogen was not observed and the oxygen content was reduced from untreated raw materials. The active materials in the experimental examples and the reference examples were these alone or a mixture thereof.

本発明に係る非水電解質二次電池は、移動体通信機器や携帯電子機器の主電源などに好適である。   The nonaqueous electrolyte secondary battery according to the present invention is suitable for a main power source of a mobile communication device or a portable electronic device.

1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極リード
6 負極リード
7 絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (5)

組成式:LixMePO4zy(0≦x≦2、0<y≦1.2、0<z≦1、MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表される非水電解質二次電池用正極活物質。 Composition formula: Li x MePO 4 F z N y (0 ≦ x ≦ 2, 0 <y ≦ 1.2, 0 <z ≦ 1, Me is at least 1 selected from the group consisting of Fe, Co, Ni and Mn for a non-aqueous electrolyte secondary battery positive electrode active material represented by the species of atoms). リン酸塩化合物を還元性雰囲気下で加熱した後、アンモニアガスと反応させることにより、チッ素原子を含むリン酸塩からなる非水電解質二次電池用正極活物質を合成する工程を含み、
前記非水電解質二次電池用正極活物質が、組成式:LixMePO4zy(0≦x≦2、0<y≦1.2、0<z≦1、MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表されることを特徴とする非水電解質二次電池用正極活物質の製造方法。
After heating the phosphate compound in a reducing atmosphere, by reacting with ammonia gas, comprising the step of combining the non-aqueous electrolyte cathode active material for a secondary battery comprising a phosphate containing nitrogen atom,
The non-aqueous electrolyte cathode active material for a secondary battery, the composition formula: Li x MePO 4 F z N y (0 ≦ x ≦ 2,0 <y ≦ 1.2,0 <z ≦ 1, Me is Fe, Co the method of the positive electrode active material for a non-aqueous electrolyte secondary battery characterized by being represented by at least one atom) selected from the group consisting of Ni and Mn.
前記還元性雰囲気が、アルゴン、チッ素、一酸化炭素および水素よりなる群から選択される少なくとも1種のガスを含む請求項2記載の非水電解質二次電池用正極活物質の製造方法。 The reducing atmosphere, argon, nitrogen, a manufacturing method of at least one non-aqueous electrolyte secondary battery positive electrode active material according to claim 2, further comprising a gas selected from the group consisting of carbon monoxide and hydrogen. 前記加熱温度が300〜1500℃である請求項2記載の非水電解質二次電池用正極活物質の製造方法。 Method of manufacturing a nonaqueous electrolyte secondary battery positive electrode active material according to claim 2, wherein said heating temperature is 300 to 1,500 ° C.. 請求項1記載の非水電解質二次電池用正極活物質を、正極に含む非水電解質二次電池。 Non-aqueous electrolyte for a secondary battery positive electrode active material, a non-aqueous electrolyte secondary battery comprising the positive electrode according to claim 1, wherein.
JP2004170243A 2004-06-08 2004-06-08 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same Expired - Fee Related JP5043290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170243A JP5043290B2 (en) 2004-06-08 2004-06-08 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170243A JP5043290B2 (en) 2004-06-08 2004-06-08 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005353320A JP2005353320A (en) 2005-12-22
JP5043290B2 true JP5043290B2 (en) 2012-10-10

Family

ID=35587624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170243A Expired - Fee Related JP5043290B2 (en) 2004-06-08 2004-06-08 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5043290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111565A (en) * 2008-10-07 2010-05-20 Toyota Motor Corp Method for producing lithium phosphorus oxynitride compound
JP5515665B2 (en) * 2009-11-18 2014-06-11 ソニー株式会社 Solid electrolyte battery, positive electrode active material and battery
US8932481B2 (en) * 2010-08-31 2015-01-13 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078698B2 (en) * 1997-12-03 2008-04-23 宇部興産株式会社 Negative electrode material for non-aqueous secondary battery, method for producing the same, and battery
CA2270771A1 (en) * 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
JP4686859B2 (en) * 2000-12-27 2011-05-25 株式会社デンソー Positive electrode active material and non-aqueous electrolyte secondary battery
CA2471455C (en) * 2001-12-21 2014-08-05 Massachusetts Institute Of Technology Conductive lithium storage electrode
US20030190527A1 (en) * 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
CA2776362A1 (en) * 2002-12-19 2004-06-19 Valence Technology, Inc. Batteries with alkali metal phosphate electrodes
US7326494B2 (en) * 2003-01-30 2008-02-05 T/J Technologies, Inc. Composite material and electrodes made therefrom
FR2865576B1 (en) * 2004-01-28 2006-04-28 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF COMPOSITE MATERIALS COMPRISING AN ELECTRODE ACTIVE COMPOUND AND AN ELECTRONIC CONDUCTING COMPOUND SUCH AS CARBON PARTICULARLY FOR LITHIUM ACCUMULATORS

Also Published As

Publication number Publication date
JP2005353320A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR102543109B1 (en) Lithium secondary battery and method of manufacturing the same
KR100677029B1 (en) Active material, preparation method thereof, and nonaqueous electrolyte secondary battery comprising the same
KR20180114061A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
KR20180014710A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery and method for manufacturing negative active material particle
CN111226332B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery and method for producing same
KR20160110380A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP6305112B2 (en) Nonaqueous electrolyte battery and battery pack
KR20160125895A (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for making the same, and non-aqueous electrolyte secondary battery using the negative electrode active material and method for making negative electrode material for non-aqueous electrolyte secondary battery
JP2010009799A (en) Nonaqueous electrolyte secondary battery
EP2840639A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP2006032321A (en) Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP6448510B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
EP3641026B1 (en) Secondary battery
KR20190088217A (en) Lithium secondary battery
JP2014053217A (en) Negative electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5043290B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP2012094395A (en) Secondary battery
JP2006172991A (en) Negative electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2003077478A (en) Lithium ion secondary battery
EP4254559A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery including the same
KR20190044019A (en) Method for preparing negative electrode active material
JP2011108594A (en) Positive electrode active material for new lithium secondary battery and lithium secondary battery using the same
WO2024127668A1 (en) Non-aqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees