JP5034046B2 - Photocatalyst for water splitting and method for producing the photocatalyst - Google Patents
Photocatalyst for water splitting and method for producing the photocatalyst Download PDFInfo
- Publication number
- JP5034046B2 JP5034046B2 JP2006345205A JP2006345205A JP5034046B2 JP 5034046 B2 JP5034046 B2 JP 5034046B2 JP 2006345205 A JP2006345205 A JP 2006345205A JP 2006345205 A JP2006345205 A JP 2006345205A JP 5034046 B2 JP5034046 B2 JP 5034046B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- cerium oxide
- oxide
- strontium
- cerium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Catalysts (AREA)
Description
本発明は、水の分解に用いられる光触媒、並びに該光触媒の製造方法に関する。 The present invention relates to a photocatalyst used for water decomposition and a method for producing the photocatalyst.
光エネルギーを利用して物質変換を行う方法として、光触媒の利用が挙げられる。光触媒については、光照射によって生じる電子で反応物を還元、正孔で反応物を酸化する能力を持つことが既に知られている。この技術を応用した有害物質の分解除去、部分酸化反応、および水分解反応などの化学反応プロセスは、環境およびエネルギー問題の観点から重要な課題になっている。光触媒には、光照射によって効率良く化学反応を進行させることはもとより、環境維持の観点から光触媒自身が毒性の低い材料から構成されることが要求される。これまでに開示されている光触媒の中では酸化チタンが高い光触媒活性を持ち、毒性の低い材料として知られている。 As a method for performing substance conversion using light energy, use of a photocatalyst can be mentioned. As for the photocatalyst, it is already known that it has the ability to reduce the reactant with electrons generated by light irradiation and oxidize the reactant with holes. Chemical reaction processes such as decomposition and removal of harmful substances, partial oxidation reaction, and water decomposition reaction to which this technology is applied have become important issues from the viewpoint of environmental and energy problems. The photocatalyst is required to be composed of a material having low toxicity from the viewpoint of maintaining the environment as well as allowing a chemical reaction to proceed efficiently by light irradiation. Among the photocatalysts disclosed so far, titanium oxide has a high photocatalytic activity and is known as a material having low toxicity.
一方、酸化セリウムは高い紫外線遮断能を持ち、紫外線吸収サングラス、自動車用紫外線カットガラス、日焼け防止化粧品などに幅広く応用されている。また、酸化セリウムは希土類の一種で極めて毒性が低く、人体に対して中毒性や急性毒性がない化合物として知られている。酸化セリウムは、その電子構造から光照射によって生成した電子とホールは直ちに再結合し、微弱な熱が放出される。したがって、酸化セリウムを光触媒として応用するには、光を吸収して生成した電子とホールを再結合させることなく反応物に接触させる必要がある。 On the other hand, cerium oxide has a high UV blocking ability and is widely applied to UV absorbing sunglasses, UV cut glass for automobiles, sun protection cosmetics and the like. Further, cerium oxide is a kind of rare earth and has extremely low toxicity, and is known as a compound having no toxicity or acute toxicity to the human body. In cerium oxide, electrons and holes generated by light irradiation from the electronic structure immediately recombine, and weak heat is released. Therefore, in order to apply cerium oxide as a photocatalyst, it is necessary to contact the reactants without recombining electrons and holes generated by absorbing light.
酸化セリウムは、その高い紫外線吸収能および低毒性から光触媒への応用が試みられている。(例えば、非特許文献1、2及び特許文献1、2参照)
上記の非特許文献1において、荒川らは酸化セリウム光触媒による水からの酸素生成について言及している。この場合、光照射により酸素を発生させるには、電子受容体として働くFe3+やCe4+が光触媒懸濁液中に存在することが必要である。電子受容体であるFe3+やCe4+が存在しない場合の、酸化セリウム光触媒による水素生成については言及していない。 In the above Non-Patent Document 1, Arakawa et al. Refers to oxygen generation from water by a cerium oxide photocatalyst. In this case, in order to generate oxygen by light irradiation, it is necessary that Fe 3+ or Ce 4+ acting as an electron acceptor be present in the photocatalyst suspension. No mention is made of hydrogen generation by a cerium oxide photocatalyst in the absence of Fe 3+ or Ce 4+ as electron acceptors.
非特許文献2には、 酸化チタンと少量の酸化セリウムを複合化することにより、有機物の光分解が促進されることが開示されている。同文献には、酸化セリウム単独の光触媒機能についての記述はない。また、水分解反応に対する活性については言及していない。 Non-Patent Document 2 discloses that photodecomposition of organic substances is promoted by combining titanium oxide and a small amount of cerium oxide. This document does not describe the photocatalytic function of cerium oxide alone. Moreover, it does not mention the activity with respect to the water splitting reaction.
特許文献1には、酸化チタン、酸化ジルコニウム、酸化セリウムのいずれか、あるいは複数を含有している光触媒のNOxガスの浄化作用について開示されている。
また、特許文献2には、光触媒活性を有する粉末を酸化セリウムで被覆した複合化粉末を含む組成物が、医薬品、医薬部外品、化粧品等の外用組成物への応用に対して光毒性(光照射によって生成する電子とホールに由来する人体への悪影響)を抑制する能力を持つことが開示されている。
Patent Document 1 discloses a NOx gas purification action of a photocatalyst containing any one or more of titanium oxide, zirconium oxide, and cerium oxide.
Patent Document 2 discloses that a composition containing a composite powder obtained by coating a powder having photocatalytic activity with cerium oxide is phototoxic for application to external compositions such as pharmaceuticals, quasi drugs, and cosmetics ( It has been disclosed that it has the ability to suppress adverse effects on the human body derived from electrons and holes generated by light irradiation.
これまでに酸化セリウムの光触媒機能に関する研究は多数あるが、水を水素と酸素に完全分解できるような高い光触媒機能を発現するものは知られていない。
したがって、本発明は毒性が低く、水を水素と酸素に完全に分解することができる光触媒等として有用な酸化セリウムを活性成分として含有する光触媒を提供することを目的とする。
There have been many studies on the photocatalytic function of cerium oxide so far, but no one that exhibits such a high photocatalytic function that can completely decompose water into hydrogen and oxygen has not been known.
Accordingly, an object of the present invention is to provide a photocatalyst having low toxicity and containing cerium oxide as an active ingredient, which is useful as a photocatalyst capable of completely decomposing water into hydrogen and oxygen.
本発明では、上記課題を解決するために、次の構成1〜4を採用する。
1.(1)酸化セリウムに、(2)カルシウム、ストロンチウム、イットリウム、ランタンからなる群から選択された異種元素を添加し、さらに(3)助触媒として酸化ルテニウムを担持したことを特徴とする水分解用光触媒。
2.(2)異種元素の添加量が(1)酸化セリウムを基準として0.1〜50モル%であり、(3)助触媒の担持量が(1)酸化セリウム及び(2)異種元素からなる複合体を基準として0.1〜10重量%であることを特徴とする1に記載の水分解用光触媒。
3.(1)酸化セリウムと、(2)カルシウム、ストロンチウム、イットリウム、又はランタンを含む化合物を混合し、得られた前駆体を空気中で500〜1400℃の温度に加熱した後に、(3)助触媒として酸化ルテニウムを担持することを特徴とする1又は2に記載の水分解用光触媒の製造方法。
4.(1)硝酸セリウム又は塩化セリウムと、(2)カルシウム、ストロンチウム、イットリウム、又はランタンを含む化合物を水に溶解させ、pHを7以上に調整して得られた前駆体を空気中で500〜1400℃の温度に加熱した後に、(3)助触媒として酸化ルテニウムを担持することを特徴とする1又は2に記載の水分解用光触媒の製造方法。
In the present invention, the following configurations 1 to 4 are employed to solve the above-described problems.
1. (1) For water splitting, characterized in that (2) a different element selected from the group consisting of calcium, strontium, yttrium and lanthanum is added to cerium oxide, and (3) ruthenium oxide is supported as a promoter . photocatalyst.
2. (2) The added amount of the different element is (1) 0.1 to 50 mol% based on cerium oxide, (3) the amount of the supported catalyst is (1) cerium oxide and (2) a composite comprising different elements 2. The photocatalyst for water splitting according to 1, which is 0.1 to 10% by weight based on the body.
3. (1) After mixing cerium oxide and (2) a compound containing calcium, strontium, yttrium, or lanthanum, and heating the resulting precursor to a temperature of 500-1400 ° C. in air, (3) promoter The method for producing a photocatalyst for water splitting according to 1 or 2, wherein ruthenium oxide is supported.
4). (1) A precursor obtained by dissolving a compound containing cerium nitrate or cerium chloride and (2) calcium, strontium, yttrium, or lanthanum in water and adjusting the pH to 7 or higher is 500 to 1400 in air. (3) The method for producing a photocatalyst for water splitting according to 1 or 2, wherein ruthenium oxide is supported as a promoter after heating to a temperature of 0 ° C.
本発明で得られる光触媒は、毒性が低く、水を水素と酸素に完全に分解することができる水分解用光触媒等として極めて有用である。 The photocatalyst obtained by the present invention has very low toxicity and is extremely useful as a water splitting photocatalyst that can completely decompose water into hydrogen and oxygen.
本発明の光触媒を製造する好ましい手順の例について、以下に説明する。
1)はじめに、粉末状の(1)酸化セリウムと(2)カルシウム、ストロンチウム、イットリウム、ランタンからなる群から選択された異種元素を含む化合物の1種又は2種以上を、(2)異種元素の添加量が(1)酸化セリウムを基準として0.1〜50モル%の範囲で混合して前駆体を得る。
1’)別法として、(1)硝酸セリウムあるいは塩化セリウムと、(2)ストロンチウム、カルシウム、イットリウム、ランタンからなる群から選択された異種元素を含むの水溶性化合物を、(2)異種元素の添加量が(1)セリウム化合物を基準として0.1〜50モル%の範囲で水に溶解させ、pHを7以上に調製して得られた沈殿を前駆体とすることもできる。
An example of a preferred procedure for producing the photocatalyst of the present invention will be described below.
1) First, one or more kinds of compounds containing different elements selected from the group consisting of (1) cerium oxide and (2) calcium, strontium, yttrium, and lanthanum in the form of powder; (2) The precursor is obtained by mixing the addition amount in the range of 0.1 to 50 mol% based on (1) cerium oxide.
1 ′) Alternatively, a water-soluble compound containing (1) cerium nitrate or cerium chloride and (2) a heterogeneous element selected from the group consisting of strontium, calcium, yttrium and lanthanum, (2) A precipitate obtained by dissolving in water in an amount of 0.1 to 50 mol% based on the cerium compound (1) and adjusting the pH to 7 or more can be used as a precursor.
2)次に、前駆体を空気中、500〜1400℃の温度に加熱する。
3)得られた(1)酸化セリウム及び(2)異種元素からなる複合体に、複合体を基準として0.1〜10重量%程度になるように、助触媒として酸化ルテニウムを担持させることによって光触媒を構成する。
また、助触媒を担持する方法としては、上記の浸漬による方法の他に、光照射によって生じる励起電子を用いた光電着法を使用することも可能である。
2) Next, the precursor is heated to a temperature of 500 to 1400 ° C. in air.
3) By supporting ruthenium oxide as a co-catalyst in the composite composed of (1) cerium oxide and (2) the different element so that it becomes about 0.1 to 10% by weight based on the composite. Construct a photocatalyst.
Moreover, as a method for supporting the cocatalyst, it is also possible to use a photo-deposition method using excited electrons generated by light irradiation in addition to the above-described method by immersion.
次に本発明の光触媒を製造する方法ついて実施例によりさらに詳細に説明するが、以下の具体例は本発明を限定するものではない。
以下の例では、光触媒の性能は水分解反応に対する水素と酸素の生成活性、および有害物質分解の代表例としてメチレンブルーの分解活性により評価した。
(実施例1)
粉末状の酸化セリウムと炭酸ストロンチウムを、セリウムに対してストロンチウム元素を10%のモル比で混合し、大気中で、1000℃の温度で10時間焼成した。得られた複合体のX線回折パターンを図4に、紫外可視拡散反射スペクトルを図5に、そして発光スペクトルを図6に示す。
Next, the method for producing the photocatalyst of the present invention will be described in more detail by way of examples. However, the following specific examples do not limit the present invention.
In the following examples, the performance of the photocatalyst was evaluated by hydrogen and oxygen generation activity for water splitting reaction and methylene blue decomposition activity as a representative example of harmful substance decomposition.
(Example 1)
Powdered cerium oxide and strontium carbonate were mixed with a strontium element at a molar ratio of 10% with respect to cerium, and calcined in the atmosphere at a temperature of 1000 ° C. for 10 hours. The X-ray diffraction pattern of the obtained composite is shown in FIG. 4, the ultraviolet-visible diffuse reflection spectrum is shown in FIG. 5, and the emission spectrum is shown in FIG.
図4のX線回折パターンによると、ストロンチウム添加酸化セリウムは酸化セリウムと同様な結晶構造を有し、ほぼ単一相であること、および高い結晶性を有することが判る。また、図5の可視紫外拡散反射スペクトルから、ストロンチウムを添加した酸化セリウムの光吸収特性は、酸化セリウムとほぼ一致し、吸収端は450nm付近であることが判る。そして、図6の発光スペクトルから、ストロンチウムを添加することにより、470nm付近に発光ピークが出現し、その励起スペクトルの最大波長は275nmであることが判る。 According to the X-ray diffraction pattern of FIG. 4, it can be seen that strontium-added cerium oxide has a crystal structure similar to that of cerium oxide, is almost single phase, and has high crystallinity. Further, from the visible ultraviolet diffuse reflection spectrum of FIG. 5, it can be seen that the light absorption characteristics of cerium oxide to which strontium is added are substantially the same as cerium oxide, and the absorption edge is around 450 nm. From the emission spectrum of FIG. 6, it can be seen that by adding strontium, an emission peak appears in the vicinity of 470 nm, and the maximum wavelength of the excitation spectrum is 275 nm.
このストロンチウム添加酸化セリウム複合体1.000gとトリルテニウムドデカカルボニル0.0210gをテトラヒドロフラン30mLに溶かし、60℃の温度で4時間還流した後に、空気中で4時間焼成して光触媒を得た(複合体を基準として、助触媒酸化ルテニウム1.0重量%を担持)。 1.100 g of this strontium-added cerium oxide complex and 0.0210 g of triruthenium dodecacarbonyl were dissolved in 30 mL of tetrahydrofuran, refluxed at 60 ° C. for 4 hours, and then calcined in air for 4 hours to obtain a photocatalyst (composite) On the basis of 1.0% by weight of the cocatalyst ruthenium oxide).
(光触媒の水分解活性)
このようにして作製した酸化ルテニウム担持酸化セリウム0.8gを蒸留水700mL中に懸濁させ、450W高圧水銀ランプを光源として円筒型石英製ジャケットを通して光を照射した。その結果を図1に示す。
図1に見られるように、光照射によって水素と酸素がほぼ化学量論比で生成することが判った。反応初期の水素と酸素の生成活性は119μmol/時間、58μmol/時間であった。3時間の光照射後、生成した水素と酸素を真空排気し、再び光照射を行うと水素と酸素の生成が見られたが、生成活性は低下した。しかし、4回目以降は、安定な水素と酸素の生成活性が見られた。この時の水素および酸素の生成活性はそれぞれ47μmol/時間、23μmol/時間となった。
(Water catalytic activity of photocatalyst)
The thus prepared ruthenium oxide-supporting cerium oxide (0.8 g) was suspended in 700 mL of distilled water, and irradiated with light through a cylindrical quartz jacket using a 450 W high-pressure mercury lamp as a light source. The result is shown in FIG.
As can be seen in FIG. 1, it was found that hydrogen and oxygen were produced in a substantially stoichiometric ratio by light irradiation. The production activity of hydrogen and oxygen at the beginning of the reaction was 119 μmol / hour and 58 μmol / hour. After 3 hours of light irradiation, the produced hydrogen and oxygen were evacuated and irradiated again to produce hydrogen and oxygen, but the production activity decreased. However, after the fourth time, stable hydrogen and oxygen generation activity was observed. At this time, the production activities of hydrogen and oxygen were 47 μmol / hour and 23 μmol / hour, respectively.
(比較例1)
上記実施例1において、ストロンチウムを添加していない酸化セリウムを用いて、大気中で、1000℃の温度で10時間焼成した以外は、実施例1と同様にして助触媒として
酸化ルテニウムを担持した光触媒を得た。この光触媒に同様に光を照射した結果を図3に示す。図3の左端に見られるように、水素0μmol/時間、酸素0μmol/時間の生成活性を示し、水分解活性を有しないことが判明した。
一方、実施例1において、酸化ルテニウムを担持する前のストロンチウム添加酸化セリウムに、同様に光照射したところ、水分解活性を示さなかった。
(Comparative Example 1)
A photocatalyst carrying ruthenium oxide as a co-catalyst in the same manner as in Example 1 except that cerium oxide to which strontium was not added was used and calcined in the atmosphere at a temperature of 1000 ° C. for 10 hours. Got. The result of irradiating the photocatalyst in the same manner is shown in FIG. As can be seen from the left end of FIG. 3, it was found that the production activity was 0 μmol / hour for hydrogen and 0 μmol / hour for oxygen, and there was no water splitting activity.
On the other hand, in Example 1, when strontium-added cerium oxide before carrying ruthenium oxide was similarly irradiated with light, it did not show water splitting activity.
(実施例2)
粉末状の酸化セリウムと炭酸ストロンチウムを、セリウムに対してストロンチウム元素のモル比が0〜50%の範囲で混合し、大気中で、1000℃の温度で10時間焼成した。得られた焼成体に、実施例1と同様な方法で酸化ルテニウムを1.0重量%の割合で担持して、光触媒を作製した。これらの光触媒に、同様に光を照射した結果を図2示す。
図2に見られるように、ストロンチウムの添加量を変えることにより、水素と酸素の生成活性が変化することが判った。酸化セリウムに対して、ストロンチウムを10%のモル比で添加した光触媒が最も高い生成活性を示し、10%以上の添加量では活性が単調に減少することが判った。
(Example 2)
Powdered cerium oxide and strontium carbonate were mixed at a molar ratio of strontium element to cerium in the range of 0 to 50%, and calcined in the atmosphere at a temperature of 1000 ° C. for 10 hours. On the obtained fired body, ruthenium oxide was supported at a ratio of 1.0% by weight in the same manner as in Example 1 to produce a photocatalyst. The results of irradiating these photocatalysts similarly are shown in FIG.
As shown in FIG. 2, it was found that the generation activity of hydrogen and oxygen changes by changing the amount of strontium added. It was found that the photocatalyst added with strontium at a molar ratio of 10% showed the highest production activity with respect to cerium oxide, and the activity decreased monotonously at an addition amount of 10% or more.
(実施例3及び比較例2)
粉末状の酸化セリウムに、ストロンチウムと同様に2価の価数をとるカルシウム、マグネシウム、バリウム、亜鉛、鉛の炭酸塩あるいは酸化物を、セリウムに対してそれぞれの元素のモル比が10%となるように混合し、大気中で、1000℃の温度で10時間焼成した。ついで、実施例1と同様な方法で酸化ルテニウムを1.0重量%で担持して、光触媒を得た。これらの光触媒に、同様に光を照射した結果を図3に示す。
(Example 3 and Comparative Example 2)
Like strontium, powdered cerium oxide has a divalent calcium, magnesium, barium, zinc, lead carbonate or oxide, and the molar ratio of each element to cerium is 10%. And were fired in the atmosphere at a temperature of 1000 ° C. for 10 hours. Subsequently, ruthenium oxide was supported at 1.0% by weight in the same manner as in Example 1 to obtain a photocatalyst. The results of irradiating these photocatalysts similarly are shown in FIG.
カルシウムを添加した酸化セリウムは、ストロンチウムを添加した酸化セリウムと同様に水分解反応に対して活性を示し、安定な水素と酸素の生成が見られた。水素および酸素の生成活性はそれぞれ32μmol/時間、17μmol/時間であった。
一方、マグネシウム、バリウム、亜鉛、鉛を添加した酸化セリウムは、化学量論比で水素と酸素を生成させる光触媒機能を有しなかった。
The cerium oxide to which calcium was added showed activity against the water splitting reaction in the same manner as the cerium oxide to which strontium was added, and stable generation of hydrogen and oxygen was observed. The production activities of hydrogen and oxygen were 32 μmol / hour and 17 μmol / hour, respectively.
On the other hand, cerium oxide added with magnesium, barium, zinc, and lead did not have a photocatalytic function for generating hydrogen and oxygen in a stoichiometric ratio.
(実施例4)
粉末状の酸化セリウムに3価のランタンを含有する酸化ランタンを、セリウムに対してランタン元素のモル比が10%となるように混合し、大気中で、1000℃の温度で10時間焼成した。ついで、実施例1と同様な方法で酸化ルテニウムを1.0重量%で担持して、光触媒を得た。この光触媒に、同様に光を照射した結果を図7示す。
図7に見られるように反応初期から安定に水素および酸素が生成した。3時間の光照射後、生成した水素および酸素を真空排気して反応を繰り返したが、活性は変化しなかった。この時の水素および酸素の生成活性はそれぞれ205μmol/時間、101μmol/時間であった。
(Example 4)
Lanthanum oxide containing trivalent lanthanum in powdered cerium oxide was mixed so that the molar ratio of lanthanum element to cerium was 10%, and baked in air at a temperature of 1000 ° C. for 10 hours. Subsequently, ruthenium oxide was supported at 1.0% by weight in the same manner as in Example 1 to obtain a photocatalyst. FIG. 7 shows the result of similarly irradiating the photocatalyst with light.
As seen in FIG. 7, hydrogen and oxygen were stably generated from the beginning of the reaction. After irradiation for 3 hours, the generated hydrogen and oxygen were evacuated and the reaction was repeated, but the activity did not change. At this time, the production activities of hydrogen and oxygen were 205 μmol / hour and 101 μmol / hour, respectively.
(実施例5及び比較例3)
粉末状の酸化セリウムに、ランタンと同様に3価の価数をするイットリウム、エルビウム、インジウム、アンチモンの炭酸塩あるいは酸化物を、セリウムに対してそれぞれの元素のモル比が10%となるように混合し、大気中で、1000℃の温度で10時間焼成した。ついで、実施例1と同様な方法で酸化ルテニウムを1.0重量%で担持して、光触媒を得た。これらの光触媒に、同様に光を照射した結果を図8に示す。
(Example 5 and Comparative Example 3)
Powdered cerium oxide is mixed with yttrium, erbium, indium, antimony carbonate or oxide having trivalent valence like lanthanum so that the molar ratio of each element to cerium is 10%. The mixture was mixed and baked in the air at a temperature of 1000 ° C. for 10 hours. Subsequently, ruthenium oxide was supported at 1.0% by weight in the same manner as in Example 1 to obtain a photocatalyst. The results of irradiating these photocatalysts similarly are shown in FIG.
イットリウムを添加した酸化セリウムは、ランタンを添加した酸化セリウムと同様に水分解反応に対して活性を示した。水素および酸素の生成活性はそれぞれ45μmol/時間、19μmol/時間であった。
一方、エルビウム、インジウム、アンチモンを添加した酸化セリウムは化学量論比で水素と酸素を生成させる光触媒機能を有しなかった。
Cerium oxide to which yttrium was added showed activity for water splitting reaction as cerium oxide to which lanthanum was added. The production activities of hydrogen and oxygen were 45 μmol / hour and 19 μmol / hour, respectively.
On the other hand, cerium oxide to which erbium, indium, and antimony were added did not have a photocatalytic function for generating hydrogen and oxygen in a stoichiometric ratio.
(実施例6)
粉末状の塩化セリウムとストロンチウムの塩化物を、セリウムに対してストロンチウム元素を10%のモル比で水に溶解させ、水酸化ナトリウムを滴下して得られた沈殿を前駆体とした。この前駆体を大気中、1000℃の温度で10時間焼成した。ついで、実施例1と同様な方法で酸化ルテニウムを1.0重量%で担持して、光触媒を得た。この光触媒に、同様に光を照射したところ、実施例1と同様に水素と酸素が安定に生成した。
(Example 6)
Powdered cerium chloride and strontium chloride were dissolved in water at a molar ratio of 10% of strontium element to cerium, and sodium hydroxide was added dropwise as a precursor. This precursor was calcined in the atmosphere at a temperature of 1000 ° C. for 10 hours. Subsequently, ruthenium oxide was supported at 1.0% by weight in the same manner as in Example 1 to obtain a photocatalyst. When this photocatalyst was irradiated with light in the same manner, hydrogen and oxygen were stably generated as in Example 1.
(参考例1)
粉末状の酸化セリウムと酸化ランタンを、セリウムに対してランタン元素がモル比10%となるように混合し、大気中で、1000℃の温度で10時間焼成した。このランタン添加酸化セリウムを蒸留水30mLに懸濁させ、ランタン添加酸化セリウムに対して白金元素が1.0重量%となるように濃度調整を行った塩化白金酸水溶液を加えた。ついで、外部照射型石英セル内にこの溶液を移し、200W水銀キセノン光源により光を照射し、白金の光電着を行った後に、分離することにより光触媒を得た。
得られた白金担持ランタン添加酸化セリウムを、メチレンブルー3mgを水1000mlに溶解させたメチレンブルー水溶液に懸濁させ、1時間の光照射を行った結果を図9に示す。
( Reference Example 1 )
Powdered cerium oxide and lanthanum oxide were mixed so that the lanthanum element had a molar ratio of 10% with respect to cerium, and baked in air at a temperature of 1000 ° C. for 10 hours. This lanthanum-added cerium oxide was suspended in 30 mL of distilled water, and a chloroplatinic acid aqueous solution whose concentration was adjusted so that the platinum element was 1.0 wt% with respect to the lanthanum-added cerium oxide was added. Next, this solution was transferred into an external irradiation type quartz cell, irradiated with light from a 200 W mercury xenon light source, subjected to photoelectron deposition of platinum, and then separated to obtain a photocatalyst.
The resulting platinum-supported lanthanum-added cerium oxide was suspended in a methylene blue aqueous solution in which 3 mg of methylene blue was dissolved in 1000 ml of water, and the result of light irradiation for 1 hour is shown in FIG.
また、白金を担持させる前のランタン添加酸化セリウムについても1時間の光照射を行いその結果を図9に示した。図9に見られるように、光照射により、ランタン添加酸化セリウムでは36%、白金担持ランタン添加酸化セリウムでは100%のメチレンブルーが分解した。 Also, lanthanum-added cerium oxide before carrying platinum was irradiated with light for 1 hour, and the result is shown in FIG. As seen in FIG. 9, 36% of methylene blue was decomposed by lanthanum-added cerium oxide and 100% of platinum-supported lanthanum-added cerium oxide by light irradiation.
本発明で得られた光触媒は、水の完全分解やメチレンブルーの分解のみならず、エタノールや油などの有機物質の分解、或いは排ガスなどに含まれる環境汚染物質の光分解反応や、各種の光合成反応等の幅広い分野にも適用可能なものである。さらには、本発明の光触媒の持つ低い毒性を生かして、医療用光触媒や環境用光触媒としての応用することができる。 The photocatalyst obtained in the present invention is not only the complete decomposition of water and the decomposition of methylene blue, but also the decomposition of organic substances such as ethanol and oil, or the photolysis reaction of environmental pollutants contained in exhaust gas, and various photosynthesis reactions. It can be applied to a wide range of fields. Furthermore, taking advantage of the low toxicity of the photocatalyst of the present invention, it can be applied as a medical photocatalyst or an environmental photocatalyst.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006345205A JP5034046B2 (en) | 2006-12-22 | 2006-12-22 | Photocatalyst for water splitting and method for producing the photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006345205A JP5034046B2 (en) | 2006-12-22 | 2006-12-22 | Photocatalyst for water splitting and method for producing the photocatalyst |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012105862A Division JP5399530B2 (en) | 2012-05-07 | 2012-05-07 | Photocatalyst for organic matter decomposition and method for producing the photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008155099A JP2008155099A (en) | 2008-07-10 |
JP5034046B2 true JP5034046B2 (en) | 2012-09-26 |
Family
ID=39656603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006345205A Active JP5034046B2 (en) | 2006-12-22 | 2006-12-22 | Photocatalyst for water splitting and method for producing the photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5034046B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6425001B2 (en) * | 2013-10-03 | 2018-11-21 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member and light emitting device |
CN116272950A (en) * | 2023-03-08 | 2023-06-23 | 江苏科技大学 | Flaky photocatalyst with completely separated different surfaces and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4780490B2 (en) * | 2001-03-09 | 2011-09-28 | 株式会社エクォス・リサーチ | Activated carbon filter |
JP4025029B2 (en) * | 2001-04-10 | 2007-12-19 | 独立行政法人科学技術振興機構 | Photocatalyst using oxide containing typical metal ion in d10 electronic state |
JP4696414B2 (en) * | 2001-07-23 | 2011-06-08 | 住友金属鉱山株式会社 | Photocatalyst having catalytic activity in the visible light region |
JP4736267B2 (en) * | 2001-08-08 | 2011-07-27 | 住友金属鉱山株式会社 | Photocatalyst having catalytic activity even in the visible light region |
JP3735711B2 (en) * | 2002-03-06 | 2006-01-18 | 独立行政法人物質・材料研究機構 | Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method |
-
2006
- 2006-12-22 JP JP2006345205A patent/JP5034046B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008155099A (en) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108380235A (en) | A kind of preparation method and applications of the heterogeneous class fenton catalyst of graphite phase carbon nitride base | |
WO2007052512A1 (en) | Catalyst for water decomposition by light and process for producing the same | |
WO2002062467A1 (en) | Oxysulfide photocatalyst for use in decomposition of water by visible light | |
JP3890414B2 (en) | Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method | |
JP5071857B2 (en) | Photocatalyst and nitrate ion and nitrite ion reduction method | |
JP3742873B2 (en) | Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances | |
JPH0724329A (en) | Photocatalyst | |
JP5034046B2 (en) | Photocatalyst for water splitting and method for producing the photocatalyst | |
JP3421628B2 (en) | Photocatalyst manufacturing method | |
JP2006088019A (en) | Photocatalyst having iridium oxide-based cocatalyst deposited in oxidizing atmosphere in presence of nitrate ion, and method for producing the same | |
JP4070516B2 (en) | Visible light-responsive sulfide photocatalyst for hydrogen production from water | |
JP3096728B2 (en) | Method and apparatus for decomposing water by sunlight | |
JP5399530B2 (en) | Photocatalyst for organic matter decomposition and method for producing the photocatalyst | |
JP3735711B2 (en) | Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method | |
JP3440295B2 (en) | Novel semiconductor photocatalyst and photocatalytic reaction method using the same | |
JP2004008963A (en) | Rh AND/OR Ir DOPED SrTiO3 PHOTOCATALYST FOR PRODUCING HYDROGEN FROM WATER UNDER VISIBLE LIGHT IRRADIATION | |
JP3612552B2 (en) | Photoreaction catalyst | |
CN1905940A (en) | Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same | |
JP2004066028A (en) | Indium-barium composite oxide visible light responsive photocatalyst, method for producing hydrogen using this photocatalyst, and method for decomposing harmful chemical substances | |
WO2002013965A1 (en) | Photocatalysts made by using oxides containing metal ions of d10 electronic state | |
JP2022113648A (en) | Photocatalytic composite material, and production method thereof | |
JP3903179B2 (en) | Indium complex oxide visible light responsive photocatalyst and oxidative decomposition method of materials using the same | |
JP2003033661A (en) | Visible light responsive photocatalyst, hydrogen production method using the same, and harmful chemical substance decomposition method | |
JP3837548B2 (en) | Bismuth complex oxide visible light responsive photocatalyst and method for decomposing and removing harmful chemicals using the same | |
JP7586107B2 (en) | Photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |