JP5034033B2 - Plate-like phosphor and display using it - Google Patents
Plate-like phosphor and display using it Download PDFInfo
- Publication number
- JP5034033B2 JP5034033B2 JP2006250080A JP2006250080A JP5034033B2 JP 5034033 B2 JP5034033 B2 JP 5034033B2 JP 2006250080 A JP2006250080 A JP 2006250080A JP 2006250080 A JP2006250080 A JP 2006250080A JP 5034033 B2 JP5034033 B2 JP 5034033B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- phosphor
- rare earth
- fluorescence
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 61
- 238000005342 ion exchange Methods 0.000 claims description 50
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 37
- 229910021536 Zeolite Inorganic materials 0.000 claims description 33
- 239000010457 zeolite Substances 0.000 claims description 33
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 25
- 230000005284 excitation Effects 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- -1 rare earth metal ions Chemical class 0.000 claims description 10
- 150000002910 rare earth metals Chemical class 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000002189 fluorescence spectrum Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000002105 nanoparticle Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- NNMXSTWQJRPBJZ-UHFFFAOYSA-K europium(iii) chloride Chemical compound Cl[Eu](Cl)Cl NNMXSTWQJRPBJZ-UHFFFAOYSA-K 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- GFISHBQNVWAVFU-UHFFFAOYSA-K terbium(iii) chloride Chemical compound Cl[Tb](Cl)Cl GFISHBQNVWAVFU-UHFFFAOYSA-K 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- SNMVVAHJCCXTQR-UHFFFAOYSA-K thulium(3+);triacetate Chemical compound [Tm+3].CC([O-])=O.CC([O-])=O.CC([O-])=O SNMVVAHJCCXTQR-UHFFFAOYSA-K 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Description
本発明は、ゼオライトの希土類金属イオン交換によって得られる、板状の結晶体である蛍光体と、その製造方法に関する。本発明はまた、この板状蛍光体がその特性を発揮する塗膜の形成方法に関する。本発明はさらに、この蛍光体の三原色(RGB)の組み合わせを使用したディスプレイにも関する。 The present invention relates to a phosphor that is a plate-like crystal obtained by rare earth metal ion exchange of zeolite, and a method for producing the same. The present invention also relates to a method of forming a coating film in which the plate phosphor exhibits its characteristics. The invention further relates to a display using this phosphor combination of the three primary colors (RGB).
ゼオライトは、その細孔内に、発光中心となる希土類元素をイオン交換により均一に分散させることが容易であることから、ゼオライトを母結晶ないし原料に用いた蛍光体が、多数知られている。希土類金属のイオンを、ゼオライトキャビティに混入した配位子と錯体を形成させ、この配位子を希土類金属の発光輻射線より低い波長範囲において励起電磁線を吸収できるように、電子構造に関して選定し、かつ、配位子のトリプレットレベルを希土類金属の放射レベルより上にすることが開示された(特許文献1)。ゼオライト中の水分の存在は、励起を妨げるので、ゼオライトのイオン交換をしたのち、焼成して水分を駆逐することにより、蛍光体として機能するようになる。 Since zeolite is easy to uniformly disperse a rare earth element serving as a luminescence center in its pores by ion exchange, many phosphors using zeolite as a mother crystal or raw material are known. A rare earth metal ion is complexed with a ligand mixed in the zeolite cavity, and this ligand is selected with respect to the electronic structure so that it can absorb excitation electromagnetic radiation in a wavelength range lower than the emission radiation of the rare earth metal. In addition, it has been disclosed that the triplet level of the ligand is higher than the radiation level of the rare earth metal (Patent Document 1). The presence of moisture in the zeolite hinders excitation, so that after exchanging the ions of the zeolite, the zeolite functions by functioning as a phosphor by firing to remove the moisture.
希土類元素としてはさまざまなものが使用可能であるが、とくにユーロピウムEuが有用である。しかし、ゼオライトは、蛍光体の製造時に失った水分を環境から再度取り込み、その結果として、蛍光体は蛍光を発する機能を失う。そこで、この機能を維持させるため、ゼオライトに水分が再吸着しないような手段が考えられている。たとえば、ビピリジンのような有機化合物をEuとの錯体として、Y−ゼオライトの内部に位置させるということが試みられた(非特許文献1)。EuやTbのイオンを含むゼオライトに、酸化モリブデン、酸化タングステン、酸化ニオブ、酸化タンタルなどの遷移金属酸化物を加えたものも提案された(特許文献2)。 Various rare earth elements can be used, and europium Eu is particularly useful. However, zeolite takes in water lost during production of the phosphor again from the environment, and as a result, the phosphor loses the function of emitting fluorescence. Therefore, in order to maintain this function, means for preventing moisture from being re-adsorbed on the zeolite has been considered. For example, an attempt has been made to locate an organic compound such as bipyridine inside the Y-zeolite as a complex with Eu (Non-patent Document 1). A proposal has also been made in which a transition metal oxide such as molybdenum oxide, tungsten oxide, niobium oxide, or tantalum oxide is added to zeolite containing Eu or Tb ions (Patent Document 2).
蛍光性能の維持という、上記の目的を達する技術としては、ゼオライト単結晶に発光マトリックス用金属酸化物、具体的にはスズ、亜鉛またはインジウムの酸化物に、発光中心用希土類金属との複合体を担持させたものもある(特許文献3)。発明者らの一部は、フォージャサイト型ゼオライトをEu3+でイオン交換したのち、焼成してなる蛍光体を開示した(特許文献4)。均一な粒子形状を有し、粒径の制御が容易であり、粒径が小さくても強い発光が得られる蛍光体を得るため、アルミノシリケート系非晶質マトリクス中に、セラミックスの結晶微粒子を分散させた複合体の提案もある(特許文献5)。 As a technology for achieving the above-mentioned purpose of maintaining the fluorescence performance, a composite of a single-crystal zeolite with a metal oxide for a light-emitting matrix, specifically a tin, zinc or indium oxide with a rare-earth metal for a light-emitting center. Some are supported (Patent Document 3). A part of the inventors disclosed a phosphor obtained by ion-exchanging faujasite-type zeolite with Eu 3+ and then firing (Patent Document 4). Disperse ceramic crystal particles in an aluminosilicate amorphous matrix in order to obtain a phosphor with uniform particle shape, easy particle size control, and strong light emission even when the particle size is small. There is also a proposal of a complex made (Patent Document 5).
フィールドエミッションディスプレイ用の蛍光体に代表される、いわゆる次世代蛍光材料には、高解像度、高発光効率に加えて、低速電子線で励起できるという特性が要求される。この目的には、ナノサイズの蛍光体が適当であるが、従来の蛍光体を単にナノサイズ化すると、表面積の増大に伴う発光強度の減少が避けられない。この問題を解決する途は、蛍光体を厚さ方向にだけナノサイズであって、面方向には大きな板状体にすることであるが、既知の方法では、所望の板状蛍光体を製造することはできない。従来の酸化物系または硫化物系の蛍光体を製造する方法は、固相反応法やフラックス法であって、これらの方法で、結晶形態や粒径を制御することは困難である。 A so-called next-generation fluorescent material typified by a phosphor for field emission display is required to have a characteristic that it can be excited by a low-speed electron beam in addition to high resolution and high luminous efficiency. For this purpose, a nano-sized phosphor is suitable. However, if the conventional phosphor is simply nano-sized, a decrease in emission intensity accompanying an increase in surface area is inevitable. The way to solve this problem is to make the phosphor nano-sized only in the thickness direction and large in the plane direction, but in the known method, the desired plate-like phosphor is manufactured. I can't do it. Conventional methods for producing oxide-based or sulfide-based phosphors are a solid-phase reaction method and a flux method, and it is difficult to control the crystal form and particle size by these methods.
これまで板状の蛍光体として知られているのは、ホウ酸塩系のa(M1 1−xM2 x)2O3・B2O3(M1はY,LaまたはGd、M2はEu,TbまたはCe、0.005≦x≦0.2、0.5≦a≦2)の組成式により表される化合物であるが(特許文献6)、得られる蛍光体粒子は、最大径1〜5μm、厚さ0.05〜0.5μmとのことであるが、形態や粒径の制御は容易でない。
本発明の中心的な目的は、ゼオライトを母体とし、これに希土類元素をイオン交換してなる蛍光体において、厚さ方向にはナノサイズであるが、面方向には用途に従って十分な広がりの粒径をもった板状体であるもの、とくに使用中にゼオライトが環境から水分を再吸着しても発光特性が実質上低下しないものと、その製造方法を提供することにある。 A central object of the present invention is a phosphor formed by using zeolite as a base material and ion-exchange of a rare earth element thereto, and is nano-sized in the thickness direction, but sufficiently widened in the plane direction according to the application. It is an object to provide a plate-like body having a diameter, particularly a product in which the light emission characteristics are not substantially lowered even if zeolite resorbs moisture from the environment during use, and a method for producing the same.
本発明の付随的な目的は、上記のような板状の蛍光体を含有し、厚さ方向にはナノサイズで蛍光体が存在するが、面方向には高い被覆率をもって蛍光体が存在する塗膜を形成する方法を提供することにある。これにより、低速の電子線や真空紫外線のような、比較的弱い励起電磁波によっても高い輝度の発光をする蛍光面が実現する。 An incidental object of the present invention is to contain the above-described plate-like phosphor, and the phosphor exists in a nano-size in the thickness direction but has a high coverage in the surface direction. It is providing the method of forming a coating film. This realizes a phosphor screen that emits light with high brightness even by a relatively weak excitation electromagnetic wave such as a low-speed electron beam or vacuum ultraviolet rays.
本発明のさらに発展した目的は、本発明の蛍光体において、蛍光スペクトルのピークがそれぞれ赤、緑および青の波長領域にあるものを組み合わせてなる、RGBディスプレイを提供することにある。 A further object of the present invention is to provide an RGB display in which the phosphors of the present invention are combined with those having fluorescence spectrum peaks in the red, green and blue wavelength regions, respectively.
本発明の板状蛍光体は、K2O・Al2O3・2SiO2・xH2Oの組成を有し、六角板状の結晶形態をもつ「リンデQ」型ゼオライトに、少なくとも20%の交換率でイオン交換を行なって希土類元素のイオンを分散させてなり、電子線または紫外線で励起されて蛍光を発する板状蛍光体である。 The plate-like phosphor of the present invention has a composition of K 2 O.Al 2 O 3 .2SiO 2 .xH 2 O and has at least 20% of “Linde Q” type zeolite having a hexagonal plate-like crystal form. It is a plate-like phosphor that performs ion exchange at an exchange rate to disperse ions of rare earth elements and emits fluorescence when excited by an electron beam or ultraviolet rays.
この板状蛍光体を製造する本発明の方法は、上記の「リンデQ」型ゼオライトを希土類金属の可溶性塩の水溶液に浸漬して、ゼオライト中のK+と希土類金属の3価または2価のイオンとのイオン交換を行なって、少なくとも20%の交換率で希土類金属のイオンを存在させたのち、濾過、洗浄、乾燥をへて、200〜900℃の温度で焼成することからなる。焼成したものは粉末状態であり、粉砕することなく使用可能である。 In the method of the present invention for producing this plate-like phosphor, the above-mentioned “Linde Q” type zeolite is immersed in an aqueous solution of a soluble salt of a rare earth metal, and the trivalent or divalent of K + and the rare earth metal in the zeolite. After ion exchange with ions and presence of rare earth metal ions at an exchange rate of at least 20%, filtration, washing and drying are carried out, followed by firing at a temperature of 200 to 900 ° C. The fired product is in a powder state and can be used without being pulverized.
本発明の蛍光体を特徴づけるものは、リンデQ型ゼオライトを母体として選択したことにある。リンデQ型ゼオライトは、六角板状の結晶形態を有し、厚さ10〜200nm、径0.5〜10μm、アスペクト比5以上のものが容易に合成できる。高度に扁平で、厚さ方向にナノサイズである結晶形態のゼオライトを使用することにより、比較的低速な電磁波により励起することができるだけでなく、微細化にともなう発光性能の低下を回避することができる。 What characterizes the phosphor of the present invention is that Linde Q-type zeolite is selected as a base material. Linde Q-type zeolite has a hexagonal plate-like crystal form, and can be easily synthesized with a thickness of 10 to 200 nm, a diameter of 0.5 to 10 μm, and an aspect ratio of 5 or more. By using zeolite in a crystalline form that is highly flat and nano-sized in the thickness direction, it can be excited by relatively low-speed electromagnetic waves, and it can avoid a decrease in luminous performance due to miniaturization. it can.
このゼオライトはまた、イオン交換容量が大きく、発光中心となる希土類金属のイオンを大量に含むことができるから、高い輝度の蛍光体を得ることが容易である。本発明の蛍光体に関して特筆すべき利点は、後記する実施例に見るように、製造時に焼成して蛍光性能を発揮させた後は、ゼオライトが環境中の水分を再吸着しても、その蛍光性能が実質上低下を見ないことである。本発明の蛍光体は、製造時は焼成により脱水した状態にあるところ、使用状態においては環境からの水分を取り込んで発光強度が低下するのではないかと思われたが、実質上影響がないことが確認された。 This zeolite also has a large ion exchange capacity and can contain a large amount of rare earth metal ions serving as a luminescent center, so that it is easy to obtain a phosphor with high brightness. The remarkable advantage of the phosphor of the present invention is that, as seen in the examples to be described later, after calcination at the time of production and exhibiting the fluorescence performance, even if the zeolite re-adsorbs moisture in the environment, the fluorescence The performance is not substantially reduced. The phosphor of the present invention is in a state of being dehydrated by firing at the time of manufacture. In use, it seems that the emission intensity is reduced by taking in moisture from the environment, but there is substantially no influence. Was confirmed.
従来の固相反応で製造した蛍光体は、焼成後に粉砕する必要があったが、本発明の蛍光体は前記のように焼成状態で粉末であるから、粉砕する必要がない。粉砕は、粒子表面の荒れを招き、それに起因する乱反射のために発光強度が減少することが避けられなかったが、本発明によれば、そのような不利益はない。 The phosphor manufactured by the conventional solid phase reaction has to be pulverized after firing, but the phosphor of the present invention is powdered in the fired state as described above, and therefore does not need to be pulverized. Although the pulverization causes the surface of the particles to become rough, and it is inevitable that the light emission intensity decreases due to the irregular reflection caused by the roughness, but according to the present invention, there is no such disadvantage.
本発明の板状蛍光体において発光中心となる希土類金属は、ユーロピウムEu、テルビウムTb、サマリウムSm、ツリウムTm、セリウムCeなどの中から、所望する発光色に従って選択する。希土類金属のイオンとしてEu3+を選べば、蛍光のピーク波長が610nmである、赤色に発光する蛍光体が得られる。Tb3+を選べば、蛍光のピーク波長が540nmである、緑色に発光する蛍光体が得られる。また、Tm3+を選べば、蛍光のピーク波長が453nmである青色に発光する蛍光体が得られる。これらを組み合わせることによって、本発明の蛍光体から、RGB三色のディスプレイを構成することができる。 The rare earth metal serving as the emission center in the plate-like phosphor of the present invention is selected from among europium Eu, terbium Tb, samarium Sm, thulium Tm, cerium Ce and the like according to a desired emission color. If Eu 3+ is selected as the rare earth metal ion, a phosphor emitting a red light having a fluorescence peak wavelength of 610 nm can be obtained. If Tb 3+ is selected, a green phosphor having a fluorescence peak wavelength of 540 nm can be obtained. Further, if Tm 3+ is selected, a phosphor emitting blue light having a fluorescence peak wavelength of 453 nm can be obtained. By combining these, an RGB three-color display can be constructed from the phosphor of the present invention.
希土類金属の可溶性塩としては、硝酸塩、塩化物、酢酸塩、硫酸塩などを挙げることができ、入手の容易なものを選んで使用すればよい。ゼオライト中のK+と希土類金属イオンとのイオン交換は、適宜の濃度をもつ可溶性塩の水溶液にゼオライトを浸漬し、100℃未満の温度に数〜数十時間保持することにより、容易に行なえる。イオン交換率は、蛍光体に実用的な輝度の発光を起こさせるためには、上記のように少なくとも20%が必要であるが、60%を超える高いイオン交換率の領域では、交換率を増大させても発光エネルギーが飽和する傾向が見られ、増大の意味が乏しくなる。到達するイオン交換率は、可溶性塩の濃度にほぼ比例するから、所望のイオン交換率に対して適切な濃度の水溶液を使用すべきである。 Examples of soluble salts of rare earth metals include nitrates, chlorides, acetates, sulfates, etc., and those that are readily available may be selected and used. Ion exchange between K + and rare earth metal ions in the zeolite can be easily performed by immersing the zeolite in an aqueous solution of a soluble salt having an appropriate concentration and holding it at a temperature of less than 100 ° C. for several to several tens of hours. . The ion exchange rate needs to be at least 20% as described above in order to cause the phosphor to emit light having a practical luminance. However, the exchange rate is increased in the region of a high ion exchange rate exceeding 60%. Even if it makes it, the tendency for luminescence energy to saturate is seen, and the meaning of increase becomes scarce. Since the ion exchange rate reached is approximately proportional to the concentration of soluble salt, an aqueous solution with an appropriate concentration for the desired ion exchange rate should be used.
希土類金属イオンに対して、賦活成分としてGd3+を添加することによって、本発明の板状蛍光体の発光強度を高めることができる。ただし、Gd3+の添加量を増すと、製品蛍光体が不安定になる傾向がみられるから、限界がある。 By adding Gd 3+ as an activation component to the rare earth metal ion, the emission intensity of the plate-like phosphor of the present invention can be increased. However, if the amount of Gd 3+ added is increased, there is a limit because the product phosphor tends to become unstable.
イオン交換後は、濾過、水洗、乾燥をする。100℃以下の温度で乾燥したイオン交換体の発光特性はきわめて低く、実用的でない。これは、希土類金属イオンに配位している水により、励起エネルギーが吸収されるためである。そこで、乾燥後、本発明においても、イオン交換試料を焼成して水分を駆逐することにより、発光特性を向上させる。従来の(ゼオライト+希土類金属イオン)からなる蛍光体においては、焼成によってゼオライト構造を破壊し、非晶質にするか、さもなければ、より緻密で吸水性を示さないアルミノケイ酸塩構造とすることが行なわれていた。 After ion exchange, it is filtered, washed with water and dried. The ion exchanger dried at a temperature of 100 ° C. or less has very low luminescence properties and is not practical. This is because excitation energy is absorbed by the water coordinated to the rare earth metal ions. Thus, after drying, also in the present invention, the luminescence characteristics are improved by firing the ion exchange sample to drive out moisture. In a conventional phosphor made of (zeolite + rare earth metal ions), the zeolite structure is destroyed by firing to make it amorphous, or else it is made into an aluminosilicate structure that is denser and does not show water absorption. Was done.
しかし、このような変化は、結晶形態の変化をも引き起こし、板状の蛍光体を得るという目的に合致しない。そこで本発明では、希土類金属イオンの配位水を確実に離脱させることができる200℃以上であって、結晶形態の変化は生じない900℃以下の温度において焼成を行なう。 However, such a change also causes a change in crystal form and does not meet the purpose of obtaining a plate-like phosphor. Therefore, in the present invention, the firing is performed at a temperature of 200 ° C. or higher at which the coordinated water of the rare earth metal ions can be surely released and no change in crystal form occurs.
板状の蛍光体は、それぞれの結晶が、厚さ方向にはナノサイズであって、面方向にはある程度の広い面積を占めるものであるから、各結晶粒子を基材の面に平行に配向させた塗膜を形成した状態で使用することが好ましい。このような塗膜は、本発明に従う、つぎのような適用方法を選択することにより実現する。すなわち、本発明の板状蛍光体を適宜のビヒクルに分散させて形成した塗料を、板状体が基材の面に沿って配向される塗布手段を用いて塗布し、厚さ方向にナノサイズの板状蛍光体が存在する塗膜を得るという塗膜形成方法を採用すればよい。板状の結晶を基材の面に沿って配向される手段としては、刷毛塗りやドクターブレードを用いた塗布がある。 In the plate-like phosphor, each crystal is nano-sized in the thickness direction and occupies a certain large area in the plane direction, so each crystal particle is oriented parallel to the surface of the substrate. It is preferable to use it in a state where a coated film is formed. Such a coating film is realized by selecting the following application method according to the present invention. That is, the coating material formed by dispersing the plate-like phosphor of the present invention in an appropriate vehicle is applied using a coating means in which the plate-like body is oriented along the surface of the substrate, and is nanosized in the thickness direction. What is necessary is just to employ | adopt the coating-film formation method of obtaining the coating film in which this plate-like fluorescent substance exists. Means for orienting the plate-like crystal along the surface of the substrate includes brush coating and coating using a doctor blade.
本発明の蛍光体は、厚さがナノサイズであるため、低速の電子線による励起で高い発光効率が期待できる。板状の結晶形状は、基材への塗布性が高く、塗膜は、多少の屈曲にも耐える。板状の結晶を配向させた塗膜は光隠蔽性が高いという利点があるから、各種のスクリーンの形成に有用である。このようなわけで本発明の蛍光体は、次世代パネルディスプレイとされるフィールドエミッションディスプレイへの利用が期待される。塗布性と隠蔽性が高いことは、もちろん、蛍光塗料の高性能化を図るうえでも好都合に利用できる。 Since the phosphor of the present invention is nano-sized, high luminous efficiency can be expected by excitation with a low-speed electron beam. The plate-like crystal shape has high applicability to the substrate, and the coating film can withstand some bending. A coating film in which plate-like crystals are oriented has an advantage of high light hiding properties and is useful for forming various screens. For this reason, the phosphor of the present invention is expected to be used for a field emission display which is a next generation panel display. High applicability and concealment can, of course, be used conveniently to improve the performance of fluorescent paints.
粒径約1μm、厚さ約100nmの六角板状結晶形態を有するK型リンデQゼオライト(以下、「リンデQ」と略称する)を製造した。このリンデQそれぞれ8gに、異なる濃度(0.01,0.02,0.03,0.04,0.05,0.10または0.15mol/dm3)の塩化ユーロピウムEuCl3水溶液をそれぞれ60mL加え、90℃に24時間保持して、イオン交換処理をした。濾過、洗浄後、乾燥し、得られたイオン交換試料を800℃または1000℃で1時間加熱することにより、焼成試料とした。 A K-type Linde Q zeolite (hereinafter abbreviated as “Linde Q”) having a hexagonal plate-like crystal form with a particle size of about 1 μm and a thickness of about 100 nm was produced. To each 8 g of this Linde Q, 60 mL each of an aqueous solution of europium chloride EuCl 3 having different concentrations (0.01, 0.02, 0.03, 0.04, 0.05, 0.10 or 0.15 mol / dm 3 ). In addition, it was kept at 90 ° C. for 24 hours for ion exchange treatment. After filtration and washing, the sample was dried, and the obtained ion exchange sample was heated at 800 ° C. or 1000 ° C. for 1 hour to obtain a calcined sample.
イオン交換試料のEu3+イオン交換率をしらべ、EuCl3水溶液の濃度との関係をプロットして、図1のグラフを得た。このグラフから、イオン交換率は、イオン交換処理に使用した溶液の濃度に比例することが確認された。なお、イオン交換率は、試料を酸分解し、誘導プラズマ発光分析装置によりEuおよびKを定量することによって算出した。 The graph of FIG. 1 was obtained by examining the Eu 3+ ion exchange rate of the ion exchange sample and plotting the relationship with the concentration of the EuCl 3 aqueous solution. From this graph, it was confirmed that the ion exchange rate was proportional to the concentration of the solution used for the ion exchange treatment. The ion exchange rate was calculated by acid-decomposing the sample and quantifying Eu and K with an induction plasma emission analyzer.
イオン交換試料を熱分析にかけた。得られたTG−DTA曲線を図2に示す。イオン交換してないリンデQは、250℃付近に脱水にもとづくと見られる吸熱ピークと、1100℃付近に結晶化に伴う発熱ピークが見られるのに対し、Eu3+で交換したイオン交換試料は、吸熱ピークはあるものの、発熱ピークは見られなかった。これは、焼成により構造が変化したことを示唆している。 The ion exchange sample was subjected to thermal analysis. The obtained TG-DTA curve is shown in FIG. Linde Q that has not undergone ion exchange has an endothermic peak that appears to be due to dehydration at around 250 ° C. and an exothermic peak that accompanies crystallization at around 1100 ° C., whereas an ion exchange sample that has been exchanged with Eu 3+ Although there was an endothermic peak, no exothermic peak was observed. This suggests that the structure has been changed by firing.
イオン交換率45%のイオン交換試料を400℃、800℃または1000℃で焼成した焼成試料について、X線回折分析を行なって図3のチャートを得た。リンデQは300℃に加熱すると構造分解するといわれているが、Eu3+で45%イオン交換したものは、800℃に加熱しても安定であって、六角板状の結晶構造が観察された。いっぽう、1000℃に加熱した場合、リンデQの結晶構造は失われ、カリオフィライトが生成したことがわかった。イオン交換率と熱的安定性との関係についていえば、交換率22%のイオン交換試料は、400℃の加熱では安定であったが、18%のものは不安定であった。この事実から、おおよそ20%以上のイオン交換率にすれば、加熱に対して安定になるといえる。 An X-ray diffraction analysis was performed on a fired sample obtained by firing an ion exchange sample having an ion exchange rate of 45% at 400 ° C., 800 ° C., or 1000 ° C. to obtain the chart of FIG. Although Linde Q is said to undergo structural decomposition when heated to 300 ° C., 45% ion exchanged with Eu 3+ is stable even when heated to 800 ° C., and a hexagonal plate-like crystal structure was observed. On the other hand, it was found that when heated to 1000 ° C., the crystal structure of Linde Q was lost and caryophyllite was produced. Regarding the relationship between the ion exchange rate and thermal stability, the ion exchange sample with an exchange rate of 22% was stable when heated at 400 ° C., but the sample with 18% was unstable. From this fact, it can be said that if the ion exchange rate is about 20% or more, it becomes stable against heating.
800℃または1100℃で焼成したものについて、走査型電子顕微鏡で観察した。800℃焼成のものの写真を、図4に示す。上記した、六角板状の結晶形態が、この写真から確認できる。1100℃に加熱した場合は、結晶形態が失われ、焼結状態に近いものとなっていた。 What was baked at 800 degreeC or 1100 degreeC was observed with the scanning electron microscope. A photograph of the one fired at 800 ° C. is shown in FIG. The above hexagonal plate-like crystal form can be confirmed from this photograph. When heated to 1100 ° C., the crystal form was lost and it was close to the sintered state.
蛍光特性をしらべるため、Eu3+イオン交換率の異なる800℃焼成試料について、励起波長395nmで励起して、蛍光スペクトルを得た。結果は図5に示すとおりで、610nmにピークがあり、赤色に発色していることがわかる。波長365nmの紫外線ランプを照射すると、目視でも赤色光を見ることができた。その蛍光スペクトルを、市販の赤色蛍光体であるY2O2S:Eu3+のそれと比較すると、ピーク波長が若干ずれている(本発明は上記のように610nm、市販品は620nm)ことから、両者は、色味が少し異なる赤色であるということになる。 In order to investigate the fluorescence characteristics, 800 ° C. calcined samples with different Eu 3+ ion exchange rates were excited at an excitation wavelength of 395 nm to obtain fluorescence spectra. The results are as shown in FIG. 5, and it can be seen that there is a peak at 610 nm and the color is red. When an ultraviolet lamp with a wavelength of 365 nm was irradiated, red light could be seen visually. When the fluorescence spectrum is compared with that of Y 2 O 2 S: Eu 3+ which is a commercially available red phosphor, the peak wavelength is slightly shifted (the present invention is 610 nm as described above, and the commercial product is 620 nm). Both of them are red with slightly different colors.
Eu3+イオン交換率の違いでみると、22%よりも45%の方が、ピーク強度が高く、Eu3+の存在量の増加が発光強度の増加をもたらしていることがわかる。しかし、イオン交換率64%の発光強度は、45%のものとほとんど変らなかった。これは濃度消光のためと考えられる。 Looking at the difference in Eu 3+ ion exchange rate, it can be seen that the peak intensity is higher at 45% than at 22%, and the increase in the amount of Eu 3+ brings about the increase in the emission intensity. However, the emission intensity at an ion exchange rate of 64% was almost the same as that at 45%. This is thought to be due to concentration quenching.
つぎに、蛍光波長610nmにおける励起スペクトルとして、図6の結果を得た。このデータから、610nmの蛍光発光を得るための励起波長としては、395nmが適切であることが確認できた。 Next, the result of FIG. 6 was obtained as an excitation spectrum at a fluorescence wavelength of 610 nm. From this data, it was confirmed that 395 nm was appropriate as the excitation wavelength for obtaining fluorescence emission of 610 nm.
Eu3+イオン交換率45%、800℃焼成試料を、常温で相対湿度58%の環境に置き、水分を再吸着させた。そのときの覆水挙動を、図7に示す。8時間程度の水分再吸着で、ほぼ飽和に近い水分が取り込まれ、最大で約16%の重量増加が見られることがわかった。この水分を再吸着した蛍光体の、励起波長395nmにおける蛍光スペクトルを、800℃焼成直後のものと比較して、図8に示す。ピーク強度に大きな差はなく、本発明の蛍光体においては、水分の存在が蛍光作用にあまり影響しないことがわかった。この事実は、焼成によって、Eu3+が再水和しない狭い結晶の原子位置に移動したことを示唆する。 An Eu 3+ ion exchange rate of 45% and a calcined sample at 800 ° C. were placed in an environment at room temperature and a relative humidity of 58% to re-adsorb moisture. The water-covering behavior at that time is shown in FIG. It was found that the water re-adsorption for about 8 hours took in nearly saturated water, and a maximum weight increase of about 16% was observed. FIG. 8 shows a fluorescence spectrum of the phosphor re-adsorbed with water at an excitation wavelength of 395 nm compared with that immediately after baking at 800 ° C. There was no significant difference in peak intensity, and in the phosphor of the present invention, it was found that the presence of moisture did not significantly affect the fluorescence action. This fact suggests that the firing moved Eu 3+ to a narrow crystalline atomic position that did not rehydrate.
希土類元素を利用した蛍光体においては、たとえばYの一部をGdで置き換えることにより、発光強度が増大することが知られている。そこで、本発明の蛍光体においても、Eu3+の一部をGd3+で置き換えることによる賦活効果が期待された。そこで試みたところ、この期待が正しいことが確認された。 In a phosphor using a rare earth element, it is known that the emission intensity is increased by replacing part of Y with Gd, for example. Therefore, also in the phosphor of the present invention, an activation effect by replacing a part of Eu 3+ with Gd 3+ was expected. An attempt was made to confirm that this expectation was correct.
EuCl3の濃度0.1mol/dm3の水溶液30mLと、GdCl3の濃度0,0.00025,0.0005,0.001,0.002,0.01または0.1mol/dm3の水溶液30mLとを混合し、リンデQの4gに加えた。実施例1と同様に、イオン交換、濾過、洗浄および乾燥を経て、800℃に1時間加熱する焼成処理を行なった。イオン交換試料について、実施例1と同様に分析を行なって、イオン交換率とイオン交換処理に使用した溶液の濃度との関係をしらべ、表1の結果を得た。 30 mL of aqueous solution of EuCl 3 concentration 0.1 mol / dm 3 and 30 mL of GdCl 3 concentration 0,0.00025,0.0005,0.001,0.002,0.01 or 0.1 mol / dm 3 aqueous solution And added to 4 g of Linde Q. In the same manner as in Example 1, a calcination treatment was performed by heating to 800 ° C. for 1 hour through ion exchange, filtration, washing and drying. The ion exchange sample was analyzed in the same manner as in Example 1, and the relationship between the ion exchange rate and the concentration of the solution used for the ion exchange treatment was examined, and the results shown in Table 1 were obtained.
表 1
Table 1
実施例1における、Eu3+イオン交換溶液とイオン交換量との間にみられた比例関係が、Gd3+に関しても確認された。希土類元素は各元素の化学的挙動が類似しているので、リンデQのイオン交換においても、Eu3+とGd3+とは同様な挙動をし、イオン交換選択性には差がないことがわかる。Eu3+とGd3+とのイオン交換溶液の合計濃度が0.2mol/dm3に達すると、イオン交換は飽和に近いレベルに達する。 The proportional relationship between the Eu 3+ ion exchange solution and the ion exchange amount in Example 1 was also confirmed for Gd 3+ . Since the rare earth elements have similar chemical behavior, it can be seen that Eu 3+ and Gd 3+ behave similarly in the ion exchange of Linde Q, and there is no difference in ion exchange selectivity. When the total concentration of the ion exchange solution of Eu 3+ and Gd 3+ reaches 0.2 mol / dm 3 , the ion exchange reaches a level close to saturation.
このイオン交換試料についても、実施例1と同様に、TG−DTA曲線を調べた。結果を、図7に示す。すべての試料について、90℃付近と170℃付近において重量減少を伴う吸熱ピークが現れており、それぞれ物理吸着水とゼオライト水の脱水に起因するものと考えられる。また、各試料とも、940℃付近から緩やかな発熱反応が認められ、ゼオライト構造の分解によるものと解される。このことから、リンデQにみられた構造の熱的安定性は、Gdの共存によって変化しないことがわかった。 For this ion exchange sample, the TG-DTA curve was examined in the same manner as in Example 1. The results are shown in FIG. For all the samples, endothermic peaks accompanied by weight reduction appear at around 90 ° C. and around 170 ° C., which are considered to be caused by dehydration of physically adsorbed water and zeolite water, respectively. Further, in each sample, a mild exothermic reaction was observed from around 940 ° C., which is considered to be due to the decomposition of the zeolite structure. From this, it was found that the thermal stability of the structure seen in Linde Q was not changed by the coexistence of Gd.
800℃焼成試料についてのX線回折チャートを、図8に示す。前記したようにGdを含まないもの(No.1)の構造安定性はここでも確認されたが、Gd3+が多量に存在するNo.7は、構造が熱的に不安定になる傾向が見られる。各資料の電子顕微鏡写真は、どの場合もリンデQの六角板状の結晶形態が保たれていることを示した。 An X-ray diffraction chart for the 800 ° C. sintered sample is shown in FIG. As described above, the structural stability of the material not containing Gd (No. 1) was confirmed here, but No. 1 containing a large amount of Gd 3+ was confirmed. No. 7 shows a tendency that the structure becomes thermally unstable. The electron micrographs of each material showed that the hexagonal plate-like crystal form of Linde Q was maintained in all cases.
この蛍光体について、励起波長395nmおよび250nmにおける蛍光スペクトルをしらべた。Eu3+・Gd3+イオン交換体の焼結試料も、Eu3+イオン交換体のそれと同様に610nmに蛍光ピークがみられ、赤色に発光していることが確認された。励起波長250nmの場合の蛍光スペクトルを、図9に示す。このスペクトルでは、波長615nm付近の発光ピークの幅が広がり、積分強度の増加が認められた。とくに、短波長側のショルダー部の強度が大きくなっている。 With respect to this phosphor, fluorescence spectra at excitation wavelengths of 395 nm and 250 nm were examined. A sintered sample of Eu 3 + · Gd 3+ ion exchanger also showed a fluorescence peak at 610 nm and was confirmed to emit red light, similar to that of Eu 3+ ion exchanger. FIG. 9 shows the fluorescence spectrum when the excitation wavelength is 250 nm. In this spectrum, the width of the emission peak near the wavelength of 615 nm was widened, and an increase in the integrated intensity was observed. In particular, the strength of the shoulder portion on the short wavelength side is increased.
実施例1において、塩化ユーロピウムEuCl3の水溶液に代えて、濃度0.1mol/dm3の塩化テルビウムTbCl3の水溶液を使用したほかは同様に操作して、Tb3+交換ゼオライトを製造した。大気雰囲気で同じく800℃に1時間加熱して、本発明の蛍光体を得た。その結晶構造をX線回折により確認したところ、リンデQゼオライトの結晶構造が維持されていた。蛍光特性を分光光度計により測定し、励起波長370nmにおいて、540nmの発光(緑色)が認められた。蛍光スペクトルを、図10に示す。 A Tb 3 + exchanged zeolite was produced in the same manner as in Example 1 except that an aqueous solution of terbium chloride TbCl 3 having a concentration of 0.1 mol / dm 3 was used instead of the aqueous solution of europium chloride EuCl 3 . Similarly, the phosphor of the present invention was obtained by heating at 800 ° C. for 1 hour in an air atmosphere. When the crystal structure was confirmed by X-ray diffraction, the crystal structure of Linde Q zeolite was maintained. Fluorescence characteristics were measured with a spectrophotometer, and emission of 540 nm (green) was observed at an excitation wavelength of 370 nm. The fluorescence spectrum is shown in FIG.
実施例1において、塩化ユーロピウムEuCl3の水溶液に代えて、濃度0.1mol/dm3の酢酸ツリウムTm(CH3CO2)3の水溶液を使用したほかは、同様な操作を行なって、Tm3+交換ゼオライトを製造した。大気雰囲気で同じく800℃に1時間加熱して、本発明の蛍光体を得た。その結晶構造をX線回折により確認したところ、この場合も、リンデQゼオライトの結晶構造が維持されていた。蛍光特性を分光光度計により測定し、励起波長360nmにおいて、453nmの発光(青色)が認められた。蛍光スペクトルを、図11に示す。 In Example 1, a similar operation was performed except that an aqueous solution of thulium acetate Tm (CH 3 CO 2 ) 3 having a concentration of 0.1 mol / dm 3 was used instead of the aqueous solution of europium chloride EuCl 3 , and Tm 3+ Exchanged zeolite was produced. Similarly, the phosphor of the present invention was obtained by heating at 800 ° C. for 1 hour in an air atmosphere. When the crystal structure was confirmed by X-ray diffraction, the crystal structure of Linde Q zeolite was maintained also in this case. The fluorescence characteristics were measured with a spectrophotometer, and emission of 453 nm (blue) was observed at an excitation wavelength of 360 nm. The fluorescence spectrum is shown in FIG.
Claims (9)
A display configured by providing excitation means to the RGB luminous body according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250080A JP5034033B2 (en) | 2006-09-14 | 2006-09-14 | Plate-like phosphor and display using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250080A JP5034033B2 (en) | 2006-09-14 | 2006-09-14 | Plate-like phosphor and display using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008069290A JP2008069290A (en) | 2008-03-27 |
JP5034033B2 true JP5034033B2 (en) | 2012-09-26 |
Family
ID=39291162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006250080A Active JP5034033B2 (en) | 2006-09-14 | 2006-09-14 | Plate-like phosphor and display using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5034033B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5279134B2 (en) * | 2009-06-16 | 2013-09-04 | 栃木県 | Plate-like phosphors and their use |
JP5700326B2 (en) * | 2010-03-11 | 2015-04-15 | 栃木県 | Fluorescent substance emitting blue light, its production method and use |
ITMI20101250A1 (en) | 2010-07-07 | 2012-01-08 | Getters Spa | IMPROVEMENTS FOR PHOSPHORS |
DE102011108618A1 (en) | 2010-08-02 | 2012-02-02 | Rengo Co., Ltd. | Photoluminescent material containing silver ions |
JP5750662B2 (en) * | 2011-02-01 | 2015-07-22 | 栃木県 | Cerium oxide nanoparticle-zeolite composite, its production method and use as ultraviolet shielding material |
JP2013079342A (en) * | 2011-10-04 | 2013-05-02 | Tochigi Prefecture | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
JP6184174B2 (en) | 2013-06-03 | 2017-08-23 | 第一稀元素化学工業株式会社 | Phosphor and method for producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382420A (en) * | 1992-09-25 | 1995-01-17 | Exxon Research & Engineering Company | ECR-33: a stabilized rare-earth exchanged Q type zeolite |
US6632767B2 (en) * | 2000-12-19 | 2003-10-14 | Praxair Technology, Inc. | Stabilization of molecular sieves by salt addition |
JP4244744B2 (en) * | 2003-07-30 | 2009-03-25 | 吉澤石灰工業株式会社 | Phosphor |
-
2006
- 2006-09-14 JP JP2006250080A patent/JP5034033B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008069290A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators | |
JP5034033B2 (en) | Plate-like phosphor and display using it | |
TWI390011B (en) | Green phosphor | |
Vishwakarma et al. | Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs | |
US5643674A (en) | Luminescent materials prepared by coating luminescent compositions onto substrate particles | |
JP2012521342A (en) | Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method | |
Singh et al. | Green emission from Tb3+-doped CaLaAl3O7 phosphor–a photoluminescence study | |
Singh et al. | Synthesis and optical investigations of Eu3+ activated MYAlO4 (M= Ca and Sr) as promising display nanomaterials | |
Wang et al. | Tunable compositions and luminescent performances on members of the layered rare-earth hydroxides (Y 1− x Ln x) 2 (OH) 5 NO 3· n H 2 O (Ln= Tb, Eu) | |
Guanghuan et al. | Preparation and luminescent properties of CaAl2O4: Eu3+, R+ (R= Li, Na, K) phosphors | |
Jung et al. | Preparation of CaMgSi2O6: Eu blue phosphor particles by spray pyrolysis and its VUV characteristics | |
Ryabochkina et al. | Synthesis and photoluminescence properties of novel LaGa0. 5Sb1. 5O6: Eu3+, Dy3+, Tb3+ and BiGeSbO6: Eu3+, Dy3+, Tb3+ phosphors | |
Jaiswal et al. | Luminescence enhancement of high temperature hexagonal phase of Ba0. 99MgAl10O17: Eu0. 01 nanophosphor synthesized at moderately low temperature | |
JP5525031B2 (en) | Composition containing core / shell cerium and / or terbium phosphate, phosphor from said composition, and method of preparation thereof | |
CN1278855A (en) | Use as phosphor dot in a plasma or x-ray system of a lanthanum phosphate comprising thulium | |
Steblevskaya et al. | Luminophores and protective coatings based on oxides and oxysulfides of rare-earth elements prepared by extraction pyrolysis | |
JP5156947B2 (en) | Oxide nanosheet phosphor and method for producing the same | |
Lakshmanan et al. | Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes | |
JP2013079342A (en) | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same | |
Zhang et al. | Fabrication and enhanced photoluminescence properties of NaLa (MoO _ 4) _ 2 NaLa (MoO 4) 2: Sm^ 3+ Sm 3+, Bi^ 3+ Bi 3+ phosphors with high efficiency white-light-emitting | |
Cho | Deciphering competing radiative relaxation pathways observed in Pr3+-Activated yttrium-based compounds: UV emission versus visible emission | |
WO2014006755A1 (en) | Silicate phosphor and process for manufacturing same | |
JP5279134B2 (en) | Plate-like phosphors and their use | |
JP5700326B2 (en) | Fluorescent substance emitting blue light, its production method and use | |
KR101496959B1 (en) | Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091229 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120604 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5034033 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |