[go: up one dir, main page]

JP5033332B2 - Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method - Google Patents

Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method Download PDF

Info

Publication number
JP5033332B2
JP5033332B2 JP2006032034A JP2006032034A JP5033332B2 JP 5033332 B2 JP5033332 B2 JP 5033332B2 JP 2006032034 A JP2006032034 A JP 2006032034A JP 2006032034 A JP2006032034 A JP 2006032034A JP 5033332 B2 JP5033332 B2 JP 5033332B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive adhesive
particles
nickel
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006032034A
Other languages
Japanese (ja)
Other versions
JP2007211122A (en
Inventor
和典 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2006032034A priority Critical patent/JP5033332B2/en
Publication of JP2007211122A publication Critical patent/JP2007211122A/en
Application granted granted Critical
Publication of JP5033332B2 publication Critical patent/JP5033332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

本発明は、例えば、表示装置と回路基板間との電気的な接続に用いられる異方導電性接着剤、異方導電性接着フィルム及びこれを用いた電極の接続方法に関する。   The present invention relates to an anisotropic conductive adhesive, an anisotropic conductive adhesive film used for electrical connection between a display device and a circuit board, and an electrode connection method using the same, for example.

従来より、例えば、液晶表示装置と集積回路基板等とを電気的に接続する手段として、異方導電性接着フィルムが用いられている。
この異方導電性接着フィルムは、フレキシブルプリント基板(FPC)やICチップ等の接続端子と、LCDパネルのガラス基板等上に形成されたITO(Indium Tin Oxide)電極端子とを接続する場合を始めとして、種々の端子同士を接着するとともに電気的に接続する場合に使用されるもので、絶縁性接着剤樹脂中に導電粒子を分散させたフィルムである。
Conventionally, for example, anisotropic conductive adhesive films have been used as means for electrically connecting a liquid crystal display device and an integrated circuit substrate or the like.
This anisotropic conductive adhesive film is used to connect connection terminals such as flexible printed circuit boards (FPC) and IC chips to ITO (Indium Tin Oxide) electrode terminals formed on the glass substrate of LCD panels. As described above, it is used when various terminals are bonded and electrically connected, and is a film in which conductive particles are dispersed in an insulating adhesive resin.

この異方導電性接着フィルムを用いて端子同士の接着及び電気的接続を行うには、接続端子と電極端子との間に異方導電性接着フィルムを介在させ、熱圧着ヘッドによって加熱するとともに押圧して圧着する。   In order to perform bonding and electrical connection between terminals using this anisotropic conductive adhesive film, an anisotropic conductive adhesive film is interposed between the connection terminal and the electrode terminal, heated and pressed by a thermocompression bonding head. And crimp.

ところで、電極の材料がアルミニウム等の金属からなる場合には表面に酸化皮膜が形成されやすいので、従来、異方導電性接着フィルムの導電粒子として金属粒子を使用し、酸化皮膜を突き破ることにより、安定した導通を確保するようにしている。しかし、前述した圧着により接着及び電気的に接続された接続部材は、圧着後の時間の経過とともに電極間の間隔の広がりに基づく緩みが発生する場合があり、導電粒子として金属粒子を用いた場合には弾力性がないため、その緩みに追従できず、安定した導通を確保できないという問題があった。   By the way, when the electrode material is made of a metal such as aluminum, an oxide film is likely to be formed on the surface, so conventionally, using metal particles as the conductive particles of the anisotropic conductive adhesive film, breaking through the oxide film, The stable conduction is ensured. However, the connection member that is bonded and electrically connected by the above-described crimping may loosen based on the spread of the interval between the electrodes with the passage of time after the crimping, and when metal particles are used as the conductive particles Since there is no elasticity, there is a problem that it is not possible to follow the loosening and to ensure a stable conduction.

そこで、近年、接続部の緩みに追従可能な導電粒子として、樹脂粒子のような弾力性に富んだ粒子にめっきを施した粒子を用いることも行われている。しかし、この粒子では、その柔らかさのために、電極表面上に形成された酸化被膜を突き破ることができず、導通抵抗が大きいという問題があった。   Therefore, in recent years, as the conductive particles capable of following the looseness of the connection portion, particles obtained by plating particles having high elasticity such as resin particles are also used. However, this particle has a problem that due to its softness, it cannot break through the oxide film formed on the electrode surface, resulting in high conduction resistance.

その一方、金属粒子の硬質性と樹脂粒子の弾力性とを併せ持った導電粒子として、樹脂粒子の表面に無電解めっきを施し金属薄膜を形成するとともに、その無電解めっきを施す際に処理温度を変化させることによって、その金属薄膜の表面に突起を設けた導電粒子も提案されている(特許文献1参照)。   On the other hand, as conductive particles having both the hardness of the metal particles and the elasticity of the resin particles, the surface of the resin particles is subjected to electroless plating to form a metal thin film, and the processing temperature is set when the electroless plating is performed. There has also been proposed a conductive particle in which protrusions are provided on the surface of the metal thin film by changing the thickness (see Patent Document 1).

また、導電粒子のうち、金属粒子については単一粒子として絶縁性接着剤中に分散させることに加えて、粒子の凝集体としても分散させても電極との接続は可能である(特許文献2乃至4参照)。しかし、この凝集体は圧着時の圧力で意図的に崩れやすく設計されており、結局、単一の金属粒子を分散させた以上の効果が得られない。
特開2000−195339号公報 特開昭60−218706号公報 特開平3−126783号公報 特開平6−136332号公報
Further, among conductive particles, metal particles can be connected to an electrode by dispersing them as an aggregate of particles in addition to being dispersed as a single particle in an insulating adhesive (Patent Document 2). To 4). However, this agglomerate is designed to be intentionally broken by pressure during pressure bonding, and as a result, an effect more than that obtained by dispersing single metal particles cannot be obtained.
JP 2000-195339 A JP 60-218706 A Japanese Patent Laid-Open No. 3-126783 JP-A-6-136332

本発明は、このような従来技術の課題を解決するためになされたもので、酸化膜が形成されやすい電極の接続において、長期間にわたって高い接続信頼性を維持することが可能な異方導電性接着剤、異方導電性接着フィルム及びこれを用いた電極の接続方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art, and an anisotropic conductivity capable of maintaining high connection reliability over a long period of time in connection of an electrode on which an oxide film is easily formed. It is an object of the present invention to provide an adhesive, an anisotropic conductive adhesive film, and an electrode connection method using the same.

上記目的を達成するためになされた請求項1記載の発明は、絶縁性接着剤成分中に、球状の金属微粒子が凝集された集合体として構成され、かつ、金属微粒子同士の間に空孔を有する導電粒子が配合され及び分散されている異方導電性接着剤であって、前記導電粒子が10μm以下の平均粒子径を有し、かつ、2.0g/cm3以上のタップ密度を有する異方導電性接着剤である。
請求項2記載の発明は、請求項1記載の発明において、導電粒子が、3.0g/cm3以下のタップ密度を有する異方導電性接着剤である。
請求項3記載の発明は、請求項1又は2のいずれか1項記載の発明において、導電粒子が、1〜40体積%の範囲で配合されてなる異方導電性接着剤である
求項記載の発明は、請求項1乃至のいずれか1項記載の発明において、前記導電粒子の表面には、凝集された球状の金属微粒子に基づく凹凸を有する異方導電性接着剤である。
請求項記載の発明は、請求項1乃至のいずれか1項記載の発明において、前記導電粒子が、4μm以下の平均粒子径を有する異方導電性接着剤である。
請求項記載の発明は、請求項1乃至のいずれか1項記載の異方導電性接着剤がフィルム状に形成されてなる異方導電性接着フィルムである。
請求項記載の発明は、接続用の電極を有する相対向させた複数の接続部材の間に、請求項1乃至のいずれか1項記載の異方導電性接着剤、又は請求項記載の異方導電性接着フィルムを電極の間に配置し、加熱及び加圧を行うことにより、前記接続部材同士を接着するとともに前記電極同士を電気的に接続する工程を有する電極の接続方法である。
The invention according to claim 1 made to achieve the above object is configured as an aggregate in which spherical metal fine particles are aggregated in an insulating adhesive component, and voids are formed between the metal fine particles. An anisotropic conductive adhesive in which conductive particles are blended and dispersed, wherein the conductive particles have an average particle diameter of 10 μm or less and a tap density of 2.0 g / cm 3 or more. This is a conductive adhesive.
The invention according to claim 2 is the anisotropic conductive adhesive according to claim 1, wherein the conductive particles have a tap density of 3.0 g / cm 3 or less.
Invention of Claim 3 is an anisotropic conductive adhesive in which electroconductive particle is mix | blended in 1-40 volume% in the invention of any one of Claim 1 or 2 .
Invention Motomeko 4 aspect of the present invention, in any one of claims 1 to 3, wherein the surface of the conductive particles, an anisotropic conductive adhesive having irregularities based on metal particles of agglomerated spherical It is.
A fifth aspect of the present invention is the anisotropic conductive adhesive according to any one of the first to fourth aspects, wherein the conductive particles have an average particle diameter of 4 μm or less.
The invention according to claim 6 is an anisotropic conductive adhesive film formed by forming the anisotropic conductive adhesive according to any one of claims 1 to 5 into a film shape.
According to a seventh aspect of the present invention, the anisotropic conductive adhesive according to any one of the first to fifth aspects, or the sixth aspect of the present invention is provided between a plurality of mutually facing connecting members having connection electrodes. The anisotropic conductive adhesive film is disposed between the electrodes, and heated and pressed to bond the connecting members together and electrically connect the electrodes to each other. .

本発明の場合、導電粒子を構成する金属微粒子同士の間に空孔を有しているため、金属単体からなる導電粒子に比べて変形し易く、弾力性が大きい。特に、特定のタップ密度を有する導電粒子は、導電粒子が崩れることなく電極間に位置することが可能となる。   In the case of this invention, since it has a void | hole between the metal microparticles which comprise electroconductive particle, it is easy to deform | transform compared with the electroconductive particle which consists of a metal simple substance, and its elasticity is large. In particular, the conductive particles having a specific tap density can be positioned between the electrodes without breaking the conductive particles.

その結果、本発明によれば、時間の経過とともに電極間の広がりに基づく接続部の緩みが生じた場合であっても、その緩みに追従し電極間の導通を確保することができる。   As a result, according to the present invention, even when the connection portion is loosened due to the spread between the electrodes with the passage of time, it is possible to follow the looseness and ensure conduction between the electrodes.

さらに、本発明の場合、導電粒子の表面部分には金属微粒子からなる硬質の突部が存在しているため、接続用電極表面上に絶縁性の酸化被膜が形成されている場合であっても、その酸化被膜を突き破って接続用電極と接触し、これにより接続用電極との低導通抵抗を確保することができる。   Further, in the case of the present invention, since there are hard protrusions made of metal fine particles on the surface portion of the conductive particles, even if an insulating oxide film is formed on the surface of the connection electrode The oxide film is pierced and brought into contact with the connection electrode, whereby a low conduction resistance with the connection electrode can be ensured.

本発明によれば、酸化膜が形成されやすい電極の接続において、長期間にわたって高い接続信頼性を維持することができる。   According to the present invention, high connection reliability can be maintained over a long period of time in the connection of an electrode on which an oxide film is easily formed.

以下、本発明に係る異方導電性接着剤及びこれを用いた電極の接続方法の好ましい形態について図を用いて説明する。
なお、本発明は、ペースト状又はフィルム状の異方導電性接着剤のいずれにも適用することができるものである。
Hereinafter, preferred embodiments of the anisotropic conductive adhesive and the electrode connecting method using the same according to the present invention will be described with reference to the drawings.
The present invention can be applied to any paste-like or film-like anisotropic conductive adhesive.

図1(a)(b)は、本発明に係る異方導電性接着剤の実施の形態を示す概略図で、図1(a)は、異方導電性接着フィルムを示す構成図、図1(b)は、本実施の形態の導電粒子を拡大して示す図である。
図1に示すように、本発明の異方導電性接着フィルム1は、フィルム状の絶縁性接着剤樹脂2中に導電粒子3が分散されているものである。
1A and 1B are schematic views showing an embodiment of an anisotropic conductive adhesive according to the present invention, and FIG. 1A is a configuration diagram showing an anisotropic conductive adhesive film, FIG. (B) is a figure which expands and shows the electrically-conductive particle of this Embodiment.
As shown in FIG. 1, the anisotropic conductive adhesive film 1 of the present invention has conductive particles 3 dispersed in a film-like insulating adhesive resin 2.

本発明の場合、絶縁性接着剤樹脂2としては、特に限定されることはないが、望ましい導通信頼性を確保する観点から、エポキシ樹脂とフェノキシ樹脂と硬化剤とを含む組成物、または、(メタ)アクリルモノマーと開始剤とを含む組成物を好適に用いることができる。   In the case of the present invention, the insulating adhesive resin 2 is not particularly limited, but from the viewpoint of securing desirable conduction reliability, a composition containing an epoxy resin, a phenoxy resin, and a curing agent, or ( A composition containing a (meth) acrylic monomer and an initiator can be suitably used.

図1(b)に示すように、本実施の形態の場合、導電粒子3は、球状の金属微粒子4が凝集された集合体として形成されている。この導電粒子3の表面は、凝集された金属微粒子4による多数の凹凸が存在する。   As shown in FIG. 1B, in the case of the present embodiment, the conductive particles 3 are formed as an aggregate in which spherical metal fine particles 4 are aggregated. The surface of the conductive particles 3 has a large number of irregularities due to the agglomerated metal fine particles 4.

また、導電粒子3の内部には多くの隙間、ここでは空孔5が存在する。そして、この空孔5は、導電粒子3に外部から圧縮荷重が加えられた場合に、導電粒子3が全体として変形する空間を提供する。   In addition, many gaps, here, holes 5 exist inside the conductive particles 3. The holes 5 provide a space where the conductive particles 3 are deformed as a whole when a compressive load is applied to the conductive particles 3 from the outside.

本発明の場合、導電粒子3の空孔率としては、特に限定されることはないが、導電粒子3の所望の弾力性を確保する観点からは、20〜80%であることが好ましい。なお、より好ましくは30〜70%であり、さらに好ましくは40〜60%である。   In the present invention, the porosity of the conductive particles 3 is not particularly limited, but is preferably 20 to 80% from the viewpoint of ensuring desired elasticity of the conductive particles 3. In addition, More preferably, it is 30 to 70%, More preferably, it is 40 to 60%.

また、導電粒子3のタップ密度は、特に限定されることはないが、導電粒子の集合体としての形態を崩すことなく、長時間の弾力性を維持する観点からは、2.0以上であることが好ましく、より好ましくは、2.0〜3.0g/cm3である。 Further, the tap density of the conductive particles 3 is not particularly limited, but is 2.0 or more from the viewpoint of maintaining long-term elasticity without destroying the form of the aggregate of conductive particles. It is preferably 2.0 to 3.0 g / cm 3 .

ここでタップ密度とは、粉体物の充填密度を上げるために一定の振動(タッピング)を与えた場合に測定される密度であり、与える振動の程度により所望のタッピング密度を有する導電粒子を得ることができる。   Here, the tap density is a density measured when a certain vibration (tapping) is applied in order to increase the packing density of the powder material, and conductive particles having a desired tapping density are obtained depending on the degree of the applied vibration. be able to.

本発明に使用する金属微粒子4としては、特に限定されることはないが、所望の硬さを確保する観点からは、ニッケルからなる微粒子を用いることが好ましい。
さらに、導電粒子3の粒径は、異方導電性接着フィルムの全厚み、電極高さ、電極間ピッチ及び想定される電極間の広がり等の諸条件により決定することができるが、粒子径のばらつきを考慮すると、平均粒子径は10μm以下であることが好ましく、より好ましくは、4μm以下である。
Although it does not specifically limit as the metal microparticle 4 used for this invention, From a viewpoint of ensuring desired hardness, it is preferable to use the microparticles | fine-particles which consist of nickel.
Furthermore, the particle diameter of the conductive particles 3 can be determined by various conditions such as the total thickness of the anisotropic conductive adhesive film, the electrode height, the pitch between the electrodes, and the expected spread between the electrodes. In consideration of variation, the average particle size is preferably 10 μm or less, and more preferably 4 μm or less.

また、導電粒子3の配合量は、特に限定されることはないが、接続信頼性、隣接する粒子間の絶縁性確保の観点からは、1〜40体積%であることが好ましい。
本実施の形態の導電粒子3は、例えば特開2005−2395号公報に記載された方法によって製造することができる。
以下、金属微粒子4としてニッケル微粒子を用いた場合の導電粒子3の製造方法について詳しく説明する。
Moreover, the compounding quantity of the electroconductive particle 3 is although it does not specifically limit, From a viewpoint of ensuring connection reliability and the insulation between adjacent particle | grains, it is preferable that it is 1-40 volume%.
The electroconductive particle 3 of this Embodiment can be manufactured by the method described in Unexamined-Japanese-Patent No. 2005-2395, for example.
Hereinafter, the manufacturing method of the electroconductive particle 3 at the time of using nickel microparticles as the metal microparticle 4 is demonstrated in detail.

本発明の場合、ニッケル微粒子は、市販の多孔質の球状ニッケル化合物を用いて製造することができる。この場合、特に限定されるものではないが、後述する加熱処理温度で分解し、その特性上許容できる範囲内での不純物を含有する酸化ニッケルが得られるニッケル化合物を用いることが好ましく、例えば、水酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、硝酸ニッケル等のニッケル化合物を好適に用いることができる。   In the case of the present invention, the nickel fine particles can be produced using a commercially available porous spherical nickel compound. In this case, although not particularly limited, it is preferable to use a nickel compound that can be decomposed at a heat treatment temperature to be described later and obtain nickel oxide containing impurities within an acceptable range in terms of its characteristics. Nickel compounds such as nickel oxide, nickel carbonate, basic nickel carbonate and nickel nitrate can be suitably used.

これらのうち、多孔質の微細構造を得る観点からは、水酸化ニッケル、炭酸ニッケル又は塩基性炭酸ニッケルから選ばれる少なくとも1種を用いることがより好ましい。また、加熱過程における脱水や脱炭酸による微細孔の形成効果をより顕著にする観点からは、水酸化ニッケル及び/又は塩基性炭酸ニッケルが特に好ましい。   Among these, from the viewpoint of obtaining a porous microstructure, it is more preferable to use at least one selected from nickel hydroxide, nickel carbonate, or basic nickel carbonate. Further, nickel hydroxide and / or basic nickel carbonate are particularly preferable from the viewpoint of making the effect of forming fine pores by dehydration and decarboxylation in the heating process more remarkable.

なお、球状ニッケル化合物は、例えば、水酸化ニッケル、硝酸ニッケル等の各種ニッケルを含む水溶液と、カ性アルカリ水溶液、炭酸アルカリ水溶液、又はアンモニウム水溶液から選ばれる少なくとも1種とを、液の供給速度、液温度、pH、攪拌等を適正化した条件で反応することによって所定の平均粒径と粒度分布との球状粒子を調製することができる。   The spherical nickel compound is, for example, an aqueous solution containing various nickels such as nickel hydroxide and nickel nitrate, and at least one selected from a caustic alkaline aqueous solution, an alkaline carbonate aqueous solution, or an aqueous ammonium solution, Spherical particles having a predetermined average particle size and particle size distribution can be prepared by reacting under conditions that optimize the liquid temperature, pH, stirring, and the like.

本発明に用いるニッケル微粒子の製造にあたっては、まず、球状ニッケル化合物を、中性又は酸化性雰囲気下にて、所定温度で二段階にて加熱処理する。
二段階の加熱処理のうち、第1段階の加熱処理の温度は、300〜500℃とすることが好ましい。その理由としては、300℃未満だと、球状ニッケル化合物が分解して酸化ニッケル粉末を生成する反応が不十分となるからであり、一方500℃を超えると、球状ニッケル化合物が急激に熱分解して、球状の外郭構造及び内部微細構造が壊れてしまうからである。
In producing the nickel fine particles used in the present invention, first, the spherical nickel compound is heat-treated in two stages at a predetermined temperature in a neutral or oxidizing atmosphere.
Of the two-stage heat treatment, the temperature of the first-stage heat treatment is preferably 300 to 500 ° C. The reason is that if the temperature is lower than 300 ° C., the reaction of the spherical nickel compound is decomposed to produce nickel oxide powder becomes insufficient. On the other hand, if the temperature exceeds 500 ° C., the spherical nickel compound is rapidly pyrolyzed. This is because the spherical outer structure and the inner fine structure are broken.

また、第2段階の加熱処理の温度としては、800〜1300℃とすることが好ましい。その理由としては、800℃未満だと、強固な球状の外郭構造の形成ができないからであり、一方1300℃を超えると、高比表面積で多孔質の酸化ニッケル粉末が得られないからである。なお、より好ましくは、800〜900℃である。   The temperature of the second stage heat treatment is preferably 800 to 1300 ° C. The reason is that if the temperature is lower than 800 ° C., a strong spherical outer structure cannot be formed, whereas if it exceeds 1300 ° C., a porous nickel oxide powder having a high specific surface area cannot be obtained. In addition, More preferably, it is 800-900 degreeC.

ここで、第1段階及び第2段階の加熱処理の温度及び処理時間は、得られる酸化ニッケル粉末の平均粒径、粒度分布、比表面積等の特性を制御可能にする観点から、球状ニッケル化合物の種類及び加熱処理装置に応じて選択する。また、第1段階から第2段階の加熱処理の昇温パターンは、特に限定されるものではないが、連続して、又は一旦冷却してから行ってもよい。   Here, the temperature and the treatment time of the heat treatment in the first stage and the second stage are such that the characteristics of the spherical nickel compound can be controlled from the viewpoint of enabling control of characteristics such as the average particle diameter, particle size distribution, and specific surface area of the obtained nickel oxide powder. Select according to type and heat treatment equipment. Further, the temperature rising pattern of the heat treatment from the first stage to the second stage is not particularly limited, but may be performed continuously or once cooled.

加熱処理の雰囲気としては、中性又は酸化性の雰囲気で行うことが好ましい。その理由としては、還元性の雰囲気では、金属ニッケルが生成してしまうからである。
加熱処理で使用する加熱装置としては、例えば、中性又は酸化性の雰囲気に調整したマッフル炉、ポット炉、管状炉、転動炉などを用いることができる。
The atmosphere for the heat treatment is preferably a neutral or oxidizing atmosphere. This is because metallic nickel is generated in a reducing atmosphere.
As a heating apparatus used in the heat treatment, for example, a muffle furnace, a pot furnace, a tubular furnace, a rolling furnace adjusted to a neutral or oxidizing atmosphere can be used.

この加熱処理により、球状ニッケル化合物が熱分解して、所望の平均粒径と粒度分布、比表面積等の特性を有する多孔質の微細構造を有する強固な形状の外郭構造の酸化ニッケル粉末が高収率で得られる。この酸化ニッケル粉末の構造は、その後に行われる水素還元処理の後も維持される。   By this heat treatment, the spherical nickel compound is thermally decomposed, and the nickel oxide powder having a strong outer shape having a porous microstructure having characteristics such as a desired average particle size and particle size distribution and specific surface area is obtained with high yield. Obtained at a rate. The structure of the nickel oxide powder is maintained after the subsequent hydrogen reduction treatment.

次に、この酸化ニッケル粉末を、水素雰囲気で加熱して水素還元処理し、球状のニッケル微粒子を生成する。
この処理における加熱温度は、特に限定されるものではないが、350〜700℃とすることが好ましい。その理由としては、350℃未満だと、未還元の酸化ニッケル粉末が残留しニッケル微粒子の酸素濃度が上昇するからであり、一方700℃を超えると、生成されたニッケル微粒子同士の凝集によって粗大粒子が形成されるからである。なお、より好ましくは、450〜650℃である。
Next, this nickel oxide powder is heated in a hydrogen atmosphere and subjected to hydrogen reduction treatment to produce spherical nickel fine particles.
Although the heating temperature in this process is not specifically limited, It is preferable to set it as 350-700 degreeC. The reason is that when the temperature is lower than 350 ° C., unreduced nickel oxide powder remains and the oxygen concentration of the nickel fine particles increases. On the other hand, when the temperature exceeds 700 ° C., coarse particles are formed by aggregation of the generated nickel fine particles. Is formed. In addition, More preferably, it is 450-650 degreeC.

ここで、上記加熱処理の後に得られる酸化ニッケル粉末の性状及び使用する還元装置に応じて、水素還元処理時の加熱温度の範囲内の所定温度及び処理時間を選ぶことによって、平均粒径、粒度分布、比表面積等の特性を制御することができる。
また、この水素還元処理に用いる還元装置としては、例えば、所定の濃度の水素雰囲気に調整したマッフル炉、ポット炉、管状炉、転動炉などを用いることができる。
Here, depending on the properties of the nickel oxide powder obtained after the above heat treatment and the reducing device used, by selecting a predetermined temperature and treatment time within the range of the heating temperature during the hydrogen reduction treatment, the average particle size, particle size Properties such as distribution and specific surface area can be controlled.
Moreover, as a reducing apparatus used for the hydrogen reduction treatment, for example, a muffle furnace, a pot furnace, a tubular furnace, a rolling furnace or the like adjusted to a hydrogen atmosphere with a predetermined concentration can be used.

上記製造方法で得られるニッケル微粒子は、多孔質の微細構造を有する球状のニッケル粉末であって、平均粒径、粒度分布、比表面積等の特性が所望値になるように制御して生成できる。   The nickel fine particles obtained by the above production method are spherical nickel powders having a porous fine structure, and can be produced by controlling properties such as average particle size, particle size distribution, and specific surface area to be desired values.

なお、上記製造方法では、必要によっては水素還元処理に先立ち、加熱処理後に得られる酸化ニッケル粉末を微粉砕処理する。これによって、得られるニッケル微粒子の粒径を制御することができる。上記微粉砕処理においては、ボールミル、ビーズミル、アトライターミル、ジェットミル、スタンプミルなど市販の各種粉砕装置を用いることができる。   In the above production method, the nickel oxide powder obtained after the heat treatment is finely pulverized prior to the hydrogen reduction treatment if necessary. Thereby, the particle diameter of the obtained nickel fine particles can be controlled. In the fine pulverization treatment, various commercially available pulverizers such as a ball mill, a bead mill, an attritor mill, a jet mill, and a stamp mill can be used.

以上の製造方法より得られた導電粒子3を用いて本実施の形態に係る異方導電性接着フィルム1を作成するには、まず、絶縁性接着剤樹脂2を溶解させた溶液に、適当な溶媒に分散させた導電粒子3を加え、ペースト状の混合物とする。次いで、このペースト状混合物を、例えばポリエステルフィルム等の剥離フィルム上にコーティングし、乾燥して異方導電性接着フィルム1を得る。   In order to create the anisotropic conductive adhesive film 1 according to the present embodiment using the conductive particles 3 obtained by the above manufacturing method, first, an appropriate solution is dissolved in a solution in which the insulating adhesive resin 2 is dissolved. Conductive particles 3 dispersed in a solvent are added to obtain a paste-like mixture. Next, the paste-like mixture is coated on a release film such as a polyester film and dried to obtain the anisotropic conductive adhesive film 1.

次に、本発明に係る異方導電性接着剤を用いた電極の接続方法について説明する。
図2(a)〜(c)は、本発明に係る異方導電性接着剤を用いて電気的接続を行う工程を示す概略図で、図2(a)は、加熱及び加圧を行う前の状態を示す構成図、図2(b)は、加熱及び加圧を行った後の状態を示す構成図、図2(c)は、図2(b)の接続部分を拡大して示す図である。
Next, an electrode connecting method using the anisotropic conductive adhesive according to the present invention will be described.
2 (a) to 2 (c) are schematic views showing a process of electrical connection using the anisotropic conductive adhesive according to the present invention, and FIG. 2 (a) is before heating and pressurization. FIG. 2B is a configuration diagram showing a state after heating and pressurization, and FIG. 2C is an enlarged view showing a connection portion of FIG. 2B. It is.

本実施の形態に係る異方導電性接着フィルム1を用いて接続用電極8及び9を電気的に接続するには、まず、図2(a)に示すように、相対向させたICチップ(接続部材)6の接続用電極8と回路基板(接続部材)7の接続用電極9との間に、異方導電性接着フィルム1を配置する。   In order to electrically connect the connection electrodes 8 and 9 using the anisotropic conductive adhesive film 1 according to the present embodiment, first, as shown in FIG. The anisotropic conductive adhesive film 1 is disposed between the connection electrode 8 of the connection member 6 and the connection electrode 9 of the circuit board (connection member) 7.

そして、図2(b)に示すように、図示しない熱圧着ヘッドを用い、異方導電性接着フィルム1を挟んだ状態でICチップ6を回路基板7に対して押圧する。
これにより、相対向する2つの接続用電極8及び9が導電粒子3を介して電気的に接続されるとともに、ICチップ6と回路基板7とが接着される。
Then, as shown in FIG. 2 (b), the IC chip 6 is pressed against the circuit board 7 with the anisotropic conductive adhesive film 1 sandwiched between them using a thermocompression bonding head (not shown).
Thereby, the two connection electrodes 8 and 9 facing each other are electrically connected via the conductive particles 3 and the IC chip 6 and the circuit board 7 are bonded.

以上説明した本実施の形態の異方導電性接着フィルム1においては、導電粒子3を構成する金属微粒子4同士の間に空孔5を有しているため、金属単体からなる導電粒子に比べて変形し易く、弾力性が大きい。   In the anisotropic conductive adhesive film 1 of this Embodiment demonstrated above, since it has the void | hole 5 between the metal microparticles 4 which comprise the electroconductive particle 3, compared with the electroconductive particle which consists of a metal simple substance. It is easy to deform and has great elasticity.

その結果、本実施の形態によれば、時間の経過とともに接続用電極8、9間の接続部に緩みが生じた場合であっても、この導電粒子3の弾力性により、その緩みに追従し接続用電極8、9間の導通を確保することができる。   As a result, according to the present embodiment, even if the connection portion between the connection electrodes 8 and 9 is loosened over time, the elasticity of the conductive particles 3 follows the looseness. The continuity between the connection electrodes 8 and 9 can be ensured.

さらに、本実施の形態の場合、導電粒子3の表面部分には金属微粒子4からなる硬質の突部が存在しているため、図2(c)に示すように、接続用電極8、9表面上に絶縁性の酸化被膜10が形成されている場合であっても、その酸化被膜10を突き破って接続用電極8、9と接触し、これにより接続用電極8、9間の低導通抵抗を確保することができる。   Furthermore, in the case of the present embodiment, since there are hard protrusions made of metal fine particles 4 on the surface portion of the conductive particles 3, as shown in FIG. 2 (c), the surfaces of the connection electrodes 8, 9 Even in the case where the insulating oxide film 10 is formed thereon, the oxide film 10 is pierced to come into contact with the connection electrodes 8 and 9, thereby reducing the low conduction resistance between the connection electrodes 8 and 9. Can be secured.

以下、本発明の実施例を比較例とともに詳細に説明する。   Examples of the present invention will be described below in detail together with comparative examples.

<実施例1>
絶縁性接着剤樹脂としてフェノキシ樹脂(東都化成社製 YP50)30重量部、液状エポキシ樹脂(ジャパンエポキシレジン社製 EP828)45重量部、イミダゾール系硬化剤(旭化成社製 HK3941HP)25重量部、導電粒子(住友金属鉱山社製 平均粒径4μm)10重量部(タップ密度1.0g/cm3)を、溶剤としてトルエン100重量部を用いてミキサーで溶解混合させペーストとした。
<Example 1>
As an insulating adhesive resin, 30 parts by weight of a phenoxy resin (YP50 manufactured by Toto Kasei Co., Ltd.), 45 parts by weight of a liquid epoxy resin (EP828 manufactured by Japan Epoxy Resin Co., Ltd.), 25 parts by weight of an imidazole curing agent (HK3941HP manufactured by Asahi Kasei Co., Ltd.), conductive particles 10 parts by weight (manufactured by Sumitomo Metal Mining Co., Ltd., average particle size 4 μm) 10 parts by weight (tap density 1.0 g / cm 3 ) was dissolved and mixed with a mixer using 100 parts by weight of toluene as a solvent to obtain a paste.

そして、剥離処理を施したPETフィルム上に、上述したペーストを塗布し、65℃に設定した電気オーブンで4分間加熱し、乾燥膜厚が20μmの異方導電性接着フィルムのサンプルを作成した。   And the paste mentioned above was apply | coated on PET film which performed the peeling process, it heated for 4 minutes with the electric oven set to 65 degreeC, and the sample of the anisotropic conductive adhesive film whose dry film thickness is 20 micrometers was created.

<実施例2〜5>
導電粒子のタップ密度を1.5、2.0、2.5及び3.0g/cm3と変化させた以外は、実施例1と同一の材料及び方法を用いて、異方導電性接着フィルムのサンプルを作成した。
<Examples 2 to 5>
An anisotropic conductive adhesive film using the same material and method as in Example 1 except that the tap density of the conductive particles was changed to 1.5, 2.0, 2.5 and 3.0 g / cm 3. A sample was created.

<比較例1>
導電粒子を従来から使用されているベンゾグアナミン粒子にニッケル−金メッキを施したもの(日本化学工業社製、平均粒径4μm)を用いた以外は、実施例1と同一の材料及び方法によって異方導電性接着フィルムのサンプルを作成した。
<Comparative Example 1>
Anisotropic conduction is performed using the same materials and methods as in Example 1 except that the conductive particles are nickel-gold plated particles (manufactured by Nippon Chemical Industry Co., Ltd., average particle size: 4 μm). An adhesive film sample was prepared.

<比較例2>
導電粒子を従来から使用されているニッケル金属粒子(日本化学工業社製、平均粒径4μm)を用いた以外は、実施例1と同一の方法によってサンプルを作成した。
<Comparative Example 2>
A sample was prepared by the same method as in Example 1 except that conventionally used nickel metal particles (manufactured by Nippon Chemical Industry Co., Ltd., average particle size 4 μm) were used.

<評価>
実施例1〜5並びに比較例1及び2のサンプルを用いて接続部材同士を圧着し、導通信頼性の評価を行った。
<Evaluation>
The connection members were pressure-bonded using the samples of Examples 1 to 5 and Comparative Examples 1 and 2, and the conduction reliability was evaluated.

この場合、一方の接続部材としては、厚さが75μmのポリイミド(宇部興産社製 商品名ユーピレックス−S)からなる基材上に、厚さ15μmの銅箔にニッケル/金めっきを施した電極パターンを50μmピッチで形成したTCPを用いた。
他方の接続部材としては、厚さ0.7mmで表面絶縁抵抗が1×1015Ω以上のガラス板上に、厚さ0.5μmのアルミニウム電極を全面蒸着形成したTEG(Test Element Group)を用いた。
In this case, as one connecting member, an electrode pattern in which a nickel / gold plating is applied to a copper foil having a thickness of 15 μm on a substrate made of polyimide having a thickness of 75 μm (trade name Upilex-S manufactured by Ube Industries) TCP formed with a pitch of 50 μm was used.
As the other connecting member, TEG (Test Element Group) is used, in which an aluminum electrode with a thickness of 0.5 μm is vapor-deposited on a glass plate with a thickness of 0.7 mm and a surface insulation resistance of 1 × 10 15 Ω or more. It was.

圧着条件は、温度170℃、圧力2MPa、時間20秒の条件とし、TCPとガラス基板とを上述のサンプルを用いて接続幅1mmで圧着接続し、温度85℃、相対湿度85%の条件下で125時間、250時間、500時間のエージングを行い、各電極間の導通試験を行った。その結果を表1に示す。   The crimping conditions are a temperature of 170 ° C., a pressure of 2 MPa, and a time of 20 seconds. A TCP and a glass substrate are crimped and connected with a connection width of 1 mm using the above-described sample, and the temperature is 85 ° C. and the relative humidity is 85%. Aging was performed for 125 hours, 250 hours, and 500 hours, and a continuity test between the electrodes was performed. The results are shown in Table 1.

この場合、導通信頼性の判定は、抵抗上昇が3Ω未満と測定され、殆ど変化がないと考えられる良好な場合を「○」として評価し、次に抵抗上昇が3〜5Ωの間で測定され、実用上は問題がないと考えられる場合を「△」として評価し、抵抗上昇が5Ωを超えて測定され、明らかな抵抗上昇があると判断できる場合を不良「×」と評価した。   In this case, the conduction reliability is determined by measuring the resistance increase as less than 3Ω, evaluating a good case considered almost unchanged as “◯”, and then measuring the resistance increase between 3 and 5Ω. The case where there was no problem in practical use was evaluated as “Δ”, and the case where the increase in resistance was measured to exceed 5Ω and it was determined that there was an apparent increase in resistance was evaluated as “bad”.

Figure 0005033332
Figure 0005033332

<評価結果>
実施例1については、熱圧着直後(初期)から500時間のエージング後にわたって、3〜5Ωの抵抗上昇で制御され、電極間導通が長期間安定していることがわかる。これは、実施例1の導電粒子は、回路基板のアルミニウム電極表面に形成された絶縁性の酸化被膜を、その外表面に位置するニッケル微粒子により突き破ることができ、さらに、経時による電極間の広がりに基づく接続部の緩みにも追従できることを示すものである。
また、実施例2〜5においては熱圧着直後から高い導通が可能となり、また実施例3〜5については500時間の長期間に渡って殆ど抵抗上昇がないことがわかる。
<Evaluation results>
About Example 1, it turns out that it is controlled by the resistance rise of 3-5 (ohm) over 500 hours after aging immediately after thermocompression bonding (initial stage), and it turns out that the electrical connection between electrodes is stable for a long period of time. This is because the conductive particles of Example 1 can break through the insulating oxide film formed on the aluminum electrode surface of the circuit board with the nickel fine particles located on the outer surface, and further spread between the electrodes over time. It shows that it is possible to follow the looseness of the connecting part based on.
Moreover, in Examples 2-5, high conduction | electrical_connection is possible immediately after thermocompression bonding, and it turns out that there is almost no resistance rise over 500 hours of Examples 3-5.

一方、比較例1については、250時間のエージング後では、5Ω以上の抵抗上昇が見られる。これは、導電粒子としてニッケル−金メッキを施した樹脂粒子では、回路基板のアルミニウム電極の表面に形成される絶縁性の酸化被膜の突き破る程度が浅く、その結果、樹脂粒子に弾力性を持たせても、電極間の広がりに基づく接続部の緩みに追従できないことがわかる。   On the other hand, in Comparative Example 1, a resistance increase of 5Ω or more is observed after aging for 250 hours. This is because the resin particles plated with nickel-gold as the conductive particles have a shallow degree of breakage of the insulating oxide film formed on the surface of the aluminum electrode of the circuit board. As a result, the resin particles are made elastic. It can also be seen that it is not possible to follow the looseness of the connecting portion based on the spread between the electrodes.

また、比較例2については、熱圧着直後から125時間のエージング後までは、抵抗上昇が殆ど見られないが、250時間のエージング後では5Ωの抵抗上昇が見られる。これは、金属粒子が絶縁性の酸化被膜を十分突き破っているものの、フィルムの厚み方向の広がりや接続部の緩みが一度発生すると、殆ど追従できないことがわかる。   In Comparative Example 2, almost no increase in resistance is observed from just after thermocompression bonding to after aging for 125 hours, but after aging for 250 hours, a resistance increase of 5Ω is observed. This shows that although the metal particles have sufficiently penetrated the insulating oxide film, they hardly follow once the film has spread in the thickness direction or the connection portion has loosened once.

(a)(b):本発明に係る異方導電性接着剤の実施の形態を示す概略図である。(A) (b): It is the schematic which shows embodiment of the anisotropically conductive adhesive which concerns on this invention. (a)〜(c):本発明に係る異方導電性接着剤を用いて電気的接続を行う工程を示す概略図である。(A)-(c): It is the schematic which shows the process of making an electrical connection using the anisotropic conductive adhesive which concerns on this invention.

符号の説明Explanation of symbols

1 異方導電性接着フィルム
2 絶縁性接着剤樹脂
3 導電粒子
4 金属微粒子
5 空孔
6 ICチップ(接続部材)
7 回路基板(接続部材)
8 接続用電極
9 接続用電極
10 酸化被膜
DESCRIPTION OF SYMBOLS 1 Anisotropic conductive adhesive film 2 Insulating adhesive resin 3 Conductive particle 4 Metal fine particle 5 Hole 6 IC chip (connection member)
7 Circuit board (connection member)
8 Connecting electrode 9 Connecting electrode 10 Oxide coating

Claims (7)

絶縁性接着剤成分中に、球状の金属微粒子が凝集された集合体として構成され、かつ、金属微粒子同士の間に空孔を有する導電粒子が配合され及び分散されている異方導電性接着剤であって、
前記導電粒子が10μm以下の平均粒子径を有し、かつ、2.0g/cm3以上のタップ密度を有する異方導電性接着剤。
An anisotropic conductive adhesive comprising an insulating adhesive component, which is configured as an aggregate in which spherical metal fine particles are aggregated, and in which conductive particles having pores are blended and dispersed between the metal fine particles Because
An anisotropic conductive adhesive, wherein the conductive particles have an average particle diameter of 10 μm or less and a tap density of 2.0 g / cm 3 or more.
前記導電粒子は、3.0g/cm3以下のタップ密度を有する請求項1記載の異方導電性接着剤。 The anisotropic conductive adhesive according to claim 1, wherein the conductive particles have a tap density of 3.0 g / cm 3 or less. 前記導電粒子は、1〜40体積%の範囲で配合されてなる請求項1又は2のいずれか1項記載の異方導電性接着剤。   The anisotropic conductive adhesive according to claim 1, wherein the conductive particles are blended in a range of 1 to 40% by volume. 前記導電粒子の表面には、凝集された球状の金属微粒子に基づく凹凸を有する請求項1乃至のいずれか1項記載の異方導電性接着剤。 The anisotropic conductive adhesive according to any one of claims 1 to 3 , wherein the surface of the conductive particles has irregularities based on aggregated spherical metal fine particles. 前記導電粒子は、4μm以下の平均粒子径を有する請求項1乃至のいずれか1項記載の異方導電性接着剤。 The conductive particles, anisotropic conductive adhesive according to any one of claims 1 to 4 having an average particle diameter of not more than 4 [mu] m. 請求項1乃至のいずれか1項記載の異方導電性接着剤がフィルム状に形成されてなる異方導電性接着フィルム。 An anisotropic conductive adhesive film formed by forming the anisotropic conductive adhesive according to any one of claims 1 to 5 into a film shape. 接続用の電極を有する相対向させた複数の接続部材の間に、請求項1乃至のいずれか1項記載の異方導電性接着剤、又は請求項記載の異方導電性接着フィルムを電極の間に配置し、加熱及び加圧を行うことにより、前記接続部材同士を接着するとともに電気的に接続する工程を有する電極の接続方法。 The anisotropic conductive adhesive according to any one of claims 1 to 5 or the anisotropic conductive adhesive film according to claim 6 between a plurality of mutually facing connection members having electrodes for connection. An electrode connection method comprising a step of adhering the connection members and electrically connecting them by arranging the electrodes between the electrodes and performing heating and pressurization.
JP2006032034A 2006-02-09 2006-02-09 Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method Active JP5033332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032034A JP5033332B2 (en) 2006-02-09 2006-02-09 Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032034A JP5033332B2 (en) 2006-02-09 2006-02-09 Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method

Publications (2)

Publication Number Publication Date
JP2007211122A JP2007211122A (en) 2007-08-23
JP5033332B2 true JP5033332B2 (en) 2012-09-26

Family

ID=38489842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032034A Active JP5033332B2 (en) 2006-02-09 2006-02-09 Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method

Country Status (1)

Country Link
JP (1) JP5033332B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5833809B2 (en) 2010-02-01 2015-12-16 デクセリアルズ株式会社 Anisotropic conductive film, joined body and connection method
JP6106148B2 (en) 2013-11-27 2017-03-29 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
KR102270480B1 (en) 2014-02-28 2021-06-29 닛토덴코 가부시키가이샤 Conductive adhesive tape and conductive adhesive tape attaching display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544051B2 (en) * 1991-12-20 1996-10-16 信越ポリマー株式会社 Anisotropic conductive adhesive film for electrical circuit connection with sliding surface
JPH08199109A (en) * 1995-01-23 1996-08-06 Tokuyama Corp Copper paste and manufacturing method thereof
JPH1112552A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Conductive particles
JPH11121073A (en) * 1997-10-15 1999-04-30 Hitachi Chem Co Ltd CONNECTION MEMBER AND ITS MANUFACTURING METHOD
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP3991218B2 (en) * 2002-12-20 2007-10-17 信越化学工業株式会社 Conductive adhesive and method for producing the same
JP4063151B2 (en) * 2003-06-11 2008-03-19 住友金属鉱山株式会社 Porous spherical nickel powder and method for producing the same
JP2004006417A (en) * 2003-08-22 2004-01-08 Hitachi Chem Co Ltd Connecting element and connection structure of electrode using this
JP2005166322A (en) * 2003-11-28 2005-06-23 Kyocera Chemical Corp Conductive paste and piezoelectric vibrator

Also Published As

Publication number Publication date
JP2007211122A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
TWI502608B (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
US5084211A (en) Anisotropically electroconductive adhesive
KR101082238B1 (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
JP2000195339A (en) Anisotropic conductive adhesive film
WO2014045931A1 (en) Anisotropic conductive film, connection method, and assembly
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
KR101475100B1 (en) Conductive fine particles, anisotropic conductive material, and connection structure
WO2013125388A1 (en) Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure
JPH0623349B2 (en) Anisotropic conductive adhesive
JP2006108523A (en) Method of connecting electrical component using anisotropic conductive film
JP2001283637A (en) Anisotropic conductive bonding material and its connecting method
JP5033332B2 (en) Anisotropic conductive adhesive, anisotropic conductive adhesive film, and electrode connection method
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2008223058A (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
US8470438B2 (en) Electrode-connecting structure, conductive adhesive used for the same, and electronic apparatus
JP3449889B2 (en) Anisotropic conductive adhesive
JP2009037928A (en) Adhesive for electrode connection
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JPS608377A (en) Anisotropically electrically-conductive adhesive
JP2680430B2 (en) Anisotropic conductive film
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP2001189170A (en) Conductive particles, anisotropic conductive adhesive, and conductively connected structure
JPH03101007A (en) Anisotropic conductive film
JP3417964B2 (en) Electronic components and their manufacturing method
JP3672840B2 (en) Anisotropic conductive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250