[go: up one dir, main page]

JP5024794B2 - Manufacturing method of oxidation catalyst device for exhaust gas purification - Google Patents

Manufacturing method of oxidation catalyst device for exhaust gas purification Download PDF

Info

Publication number
JP5024794B2
JP5024794B2 JP2007316336A JP2007316336A JP5024794B2 JP 5024794 B2 JP5024794 B2 JP 5024794B2 JP 2007316336 A JP2007316336 A JP 2007316336A JP 2007316336 A JP2007316336 A JP 2007316336A JP 5024794 B2 JP5024794 B2 JP 5024794B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
gas purification
catalyst device
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007316336A
Other languages
Japanese (ja)
Other versions
JP2009136786A (en
Inventor
潔 田名網
祐二 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007316336A priority Critical patent/JP5024794B2/en
Publication of JP2009136786A publication Critical patent/JP2009136786A/en
Application granted granted Critical
Publication of JP5024794B2 publication Critical patent/JP5024794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、内燃機関の排ガスに含まれるパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置の製造方法に関するものである。   The present invention relates to a method of manufacturing an oxidation catalyst device for purifying exhaust gas that oxidizes and purifies particulates contained in exhaust gas of an internal combustion engine using a catalyst made of a composite metal oxide.

従来、内燃機関の排ガスに含まれるパティキュレートや炭化水素を酸化して浄化するために、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されると共に排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されると共に排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セル境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材の該セル隔壁に、ペロブスカイト型複合金属酸化物からなる触媒を担持した排ガス浄化用酸化触媒装置が知られている。   Conventionally, in order to oxidize and purify particulates and hydrocarbons contained in exhaust gas of an internal combustion engine, an exhaust gas inflow portion is opened and an exhaust gas outflow portion among a plurality of through-holes formed to penetrate in the axial direction And a plurality of outflow cells in which the exhaust gas inflow portions of the plurality of through holes are closed and the exhaust gas outflow portions are opened, and the inflow cells and the outflow cells are alternately arranged. There is known an oxidation catalyst device for purifying exhaust gas, in which a catalyst made of a perovskite type composite metal oxide is supported on the cell partition wall of a porous filter substrate having a wall flow structure in which each cell boundary part is a cell partition wall. Yes.

前記触媒として用いられるペロブスカイト型複合金属酸化物として、例えば、一般式AMOで表され、AとしてYを用い、MとしてMnを用いる複合金属酸化物が知られている(例えば特許文献1参照)。 As the perovskite-type composite metal oxide used as the catalyst, for example, a composite metal oxide represented by the general formula AMO 3 and using Y as A and Mn as M is known (see, for example, Patent Document 1). .

前記排ガス浄化用酸化触媒装置は、例えば次のようにして製造することが考えられる。まず、硝酸イットリウム、硝酸マンガン、リンゴ酸及び水を混合し、一次焼成する。前記一次焼成で得られた結果物を再度混合し、二次焼成する。次に、前記二次焼成で得られた結果物と、水と、バインダーとを破砕混合し、ペロブスカイト型複合金属酸化物を合成するための複合金属酸化物前駆体のスラリー(以下、前駆体スラリーという。)を得る。   The exhaust gas purification oxidation catalyst device may be manufactured, for example, as follows. First, yttrium nitrate, manganese nitrate, malic acid and water are mixed and subjected to primary firing. The resultant obtained by the primary firing is mixed again and subjected to secondary firing. Next, a slurry of a composite metal oxide precursor (hereinafter referred to as precursor slurry) for crushing and mixing the resultant product obtained by the secondary firing, water, and a binder to synthesize a perovskite composite metal oxide. To get.)

次に、前記前駆体スラリーを、多孔質フィルタ基材のセル隔壁表面に塗布し、焼成することにより、該多孔質フィルタ基材のセル隔壁表面に、ペロブスカイト型複合金属酸化物であるYMnOからなる触媒が担持された前記排ガス浄化用酸化触媒装置を得る。 Next, the precursor slurry is applied to the surface of the cell partition wall of the porous filter base material and baked, so that the surface of the cell partition wall of the porous filter base material is coated with YMnO 3 which is a perovskite complex metal oxide. The exhaust gas-purifying oxidation catalyst device carrying the catalyst is obtained.

しかしながら、前記複合金属酸化物前駆体のスラリーを用いた製造方法では、担持された前記触媒により形成される触媒層において、前記パティキュレートを酸化する温度を十分に低くすることが困難になることがあり、排ガスの圧力損失(圧損)を低減することも困難になることがあるという不都合がある。
特開2007−237012号公報
However, in the manufacturing method using the slurry of the composite metal oxide precursor, it may be difficult to sufficiently lower the temperature for oxidizing the particulates in the catalyst layer formed by the supported catalyst. In addition, there is a disadvantage that it may be difficult to reduce the pressure loss (pressure loss) of the exhaust gas.
Japanese Patent Laid-Open No. 2007-237012

本発明は、かかる不都合を解消して、内燃機関の排ガス中のパティキュレートを酸化し浄化する温度を低くすることができ、しかも排ガスを通過させる際の圧損を小さくすることができる排ガス浄化用酸化触媒装置の製造方法を提供することを目的とする。   The present invention eliminates such inconveniences, can lower the temperature for oxidizing and purifying particulates in the exhaust gas of an internal combustion engine, and can reduce the pressure loss when passing the exhaust gas. It aims at providing the manufacturing method of a catalyst apparatus.

かかる目的を達成するために、本発明の排ガス浄化用酸化触媒装置の製造方法は、内燃機関の排ガス中のパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置の製造方法であって、Y、Mn、Ag及びRuの塩を水に溶解して触媒原料水溶液を作成する工程と、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されると共に排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されると共に排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セル境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材に該触媒原料水溶液を導入して、該多孔質フィルタ基材を構成する粒子表面に該触媒原料水溶液を塗布する工程と、該触媒原料水溶液が塗布された該多孔質フィルタ基材を焼成して、該粒子表面にY、Mn、Ag及びRuを含む複合金属酸化物からなる触媒を均一に担持させる工程とを含むことを特徴とする。   In order to achieve such an object, the method for producing an oxidation catalyst device for exhaust gas purification according to the present invention is for exhaust gas purification in which particulates in exhaust gas of an internal combustion engine are oxidized and purified using a catalyst made of a composite metal oxide. A method for producing an oxidation catalyst device, wherein a salt solution of Y, Mn, Ag and Ru is dissolved in water to form a catalyst raw material aqueous solution, and among a plurality of through holes formed penetrating in the axial direction, A plurality of inflow cells in which the exhaust gas inflow portion is opened and the exhaust gas outflow portions are closed; and a plurality of outflow cells in which the exhaust gas inflow portions of the plurality of through holes are closed and the exhaust gas outflow portions are opened, The catalyst raw material aqueous solution is introduced into a porous filter base material having a wall flow structure in which the inflow cells and the outflow cells are alternately arranged and each cell boundary part is a cell partition wall, and the porous filter base material is Composing grains A step of applying the catalyst raw material aqueous solution on the surface, and firing the porous filter substrate coated with the catalyst raw material aqueous solution, and comprising a composite metal oxide containing Y, Mn, Ag and Ru on the particle surface And a step of uniformly supporting the catalyst.

本発明の排ガス浄化用酸化触媒装置の製造方法においては、まず、Y、Mn、Ag及びRuの塩を水に溶解して、触媒原料水溶液を作成する。次に軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されると共に排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されると共に排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セル境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材に該触媒原料水溶液を導入する。前記触媒原料水溶液は、前記多孔質フィルタ基材を構成する粒子間の空隙によって形成される細孔の内部にまで浸透することができるので、該粒子表面に均一に塗布される。次に、前記粒子表面に前記触媒原料水溶液が塗布された前記多孔質フィルタ基材を焼成する。これにより、前記粒子表面に塗布された前記触媒原料水溶液が酸化され、該粒子表面に、Y、Mn、Ag及びRuを含む複合金属酸化物からなる触媒が担持される。   In the method for producing an oxidation catalyst device for exhaust gas purification according to the present invention, first, a salt of Y, Mn, Ag, and Ru is dissolved in water to prepare an aqueous catalyst raw material solution. Next, among the plurality of through holes formed in the axial direction, a plurality of inflow cells in which the exhaust gas inflow portion is opened and the exhaust gas outflow portion is blocked, and the exhaust gas inflow portions of the plurality of through holes are blocked. A porous filter base having a wall flow structure including a plurality of outflow cells opened in an exhaust gas outflow portion, the inflow cells and the outflow cells being alternately arranged, and each cell boundary portion serving as a cell partition wall The catalyst raw material aqueous solution is introduced into the material. Since the catalyst raw material aqueous solution can penetrate into the pores formed by the voids between the particles constituting the porous filter substrate, it is uniformly applied to the surface of the particles. Next, the porous filter substrate having the catalyst raw material aqueous solution coated on the particle surface is fired. Thereby, the catalyst raw material aqueous solution applied to the particle surface is oxidized, and a catalyst made of a composite metal oxide containing Y, Mn, Ag and Ru is supported on the particle surface.

この結果、本発明の製造方法で製造された排ガス浄化用酸化触媒装置によれば、前記排ガスが、前記多孔質フィルタ基材のセル隔壁を通過する際に、前記粒子表面に担持された前記触媒の触媒作用により該排ガス中の前記パティキュレートを酸化し浄化する温度を低くすることができる。   As a result, according to the oxidation catalyst device for exhaust gas purification manufactured by the manufacturing method of the present invention, the catalyst supported on the particle surface when the exhaust gas passes through the cell partition walls of the porous filter substrate. Due to the catalytic action, the temperature at which the particulates in the exhaust gas are oxidized and purified can be lowered.

また、本発明の製造方法で製造された排ガス浄化用酸化触媒装置によれば、前記多孔質フィルタ基材を構成する粒子表面に前記触媒が担持されているので、該多孔質フィルタ基材のセル隔壁表面に触媒層を形成する場合と比較して、排ガスを通過させる際の圧損を低減することができる。   Further, according to the oxidation catalyst device for purifying exhaust gas produced by the production method of the present invention, since the catalyst is supported on the surface of the particles constituting the porous filter substrate, the cell of the porous filter substrate Compared with the case where the catalyst layer is formed on the partition wall surface, the pressure loss when passing the exhaust gas can be reduced.

また、本発明の排ガス浄化用酸化触媒装置の製造方法において、前記複合金属酸化物は、組成式がY1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2であることが好ましい。 Further, in the method of manufacturing the exhaust gas purifying oxidation catalyst device of the present invention, the complex metal oxide represented by a compositional formula of Y 1-x Ag x Mn 1 -y Ru y O 3, 0.01 ≦ x ≦ It is preferable that 0.15 and 0.005 ≦ y ≦ 0.2.

前記複合金属酸化物は、一般式YMnOで表される複合金属酸化物において、第1の金属であるYの一部を第3の金属であるAgで置換するとともに、第2の金属であるMnを第4の金属であるRuで置換したものである。この置換により、Y1−xAgMn1−yRuは、その結晶構造が六方晶とペロブスカイト構造との混晶となり、高い触媒活性を有することとなる。したがって、本発明によれば、前記排ガスが、前記複合金属酸化物が担持された前記多孔質フィルタ基材を通過する際に、担持された前記触媒の触媒作用により該排ガス中の前記パティキュレートを酸化し浄化する温度を低くすることができる。 In the composite metal oxide represented by the general formula YMnO 3 , the composite metal oxide is a second metal while substituting a part of Y as the first metal with Ag as the third metal. Mn is substituted with Ru as the fourth metal. This substitution, Y 1-x Ag x Mn 1-y Ru y O 3 , the crystal structure becomes a mixed crystal of hexagonal crystal and perovskite structures and has a high catalytic activity. Therefore, according to the present invention, when the exhaust gas passes through the porous filter substrate on which the composite metal oxide is supported, the particulates in the exhaust gas are removed by the catalytic action of the supported catalyst. The temperature for oxidation and purification can be lowered.

このとき、xが0.01未満である場合には、触媒活性を高める効果が不十分になることがある。一方、xが0.15を超える場合には、混晶を維持することが困難になることがある。   At this time, when x is less than 0.01, the effect of increasing the catalytic activity may be insufficient. On the other hand, when x exceeds 0.15, it may be difficult to maintain a mixed crystal.

また、yが0.005未満である場合には、触媒活性を高める効果が不十分になることがある。一方、yが0.2を超える場合には、混晶を維持することが困難になることがある。   Moreover, when y is less than 0.005, the effect of increasing the catalytic activity may be insufficient. On the other hand, when y exceeds 0.2, it may be difficult to maintain a mixed crystal.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の排ガス浄化用酸化触媒装置の説明的断面図である。図2は本実施形態の排ガス浄化用酸化触媒装置の製造方法を説明するための説明的断面図である。図3は本実施形態の排ガス浄化用酸化触媒装置によるパティキュレートの燃焼温度を示すグラフである。図4は本実施形態の排ガス浄化用酸化触媒装置による圧力損失を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view of an oxidation catalyst device for exhaust gas purification according to this embodiment. FIG. 2 is an explanatory cross-sectional view for explaining a method of manufacturing the exhaust gas purifying oxidation catalyst device of the present embodiment. FIG. 3 is a graph showing the combustion temperature of particulates by the oxidation catalyst device for exhaust gas purification of this embodiment. FIG. 4 is a graph showing pressure loss due to the exhaust gas purification oxidation catalyst device of the present embodiment.

図1に示す本実施形態の排ガス浄化用酸化触媒装置1は、ウォールフロー構造を備える多孔質フィルタ基材2と、多孔質フィルタ基材2を構成する粒子表面に担持された触媒層(図示せず)とを備える。   An oxidation catalyst device 1 for purifying exhaust gas according to the present embodiment shown in FIG. 1 includes a porous filter substrate 2 having a wall flow structure, and a catalyst layer (not shown) supported on the surface of particles constituting the porous filter substrate 2. Z)).

多孔質フィルタ基材2は、SiC粒子の成形体を焼結して得たSiC多孔質体である。多孔質フィルタ基材2は、軸方向に貫通する複数の貫通孔が断面格子状に配設された略直方体であり、該貫通孔からなる複数の流入セル4と複数の流出セル5とを備えている。流入セル4は、排ガス流入部4aが開放されると共に排ガス流出部4bが閉塞されている。一方、流出セル5は、排ガス流入部5aが閉塞されると共に排ガス流出部5bが開放されている。流入セル4及び流出セル5は、断面市松格子状となるように交互に配設されていて、各セル4,5の境界部をセル隔壁6とする構造となっている。また、図示しないが、最外層のセル隔壁6の外周部には、排ガスの流出を規制する金属からなる規制部材が設けられている。   The porous filter substrate 2 is a SiC porous body obtained by sintering a shaped body of SiC particles. The porous filter substrate 2 is a substantially rectangular parallelepiped in which a plurality of through-holes penetrating in the axial direction are arranged in a cross-sectional lattice shape, and includes a plurality of inflow cells 4 and a plurality of outflow cells 5 formed of the through-holes. ing. In the inflow cell 4, the exhaust gas inflow portion 4 a is opened and the exhaust gas outflow portion 4 b is closed. On the other hand, in the outflow cell 5, the exhaust gas inflow portion 5a is closed and the exhaust gas outflow portion 5b is opened. The inflow cells 4 and the outflow cells 5 are alternately arranged so as to have a checkered cross section, and have a structure in which the boundary between the cells 4 and 5 is a cell partition wall 6. Although not shown, a regulating member made of a metal that regulates the outflow of exhaust gas is provided on the outer peripheral portion of the outermost cell partition wall 6.

前記触媒層は、一般式Y1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2である複合金属酸化物からなる。 The catalyst layer is represented by general formula Y 1-x Ag x Mn 1 -y Ru y O 3, 0.01 ≦ x ≦ 0.15 and complex metal oxide is 0.005 ≦ y ≦ 0.2 Consists of.

また、本実施形態では多孔質フィルタ基材2として、SiC多孔質体からなるものを用いているが、Si−SiC多孔質体からなるものを用いてもよい。   Moreover, in this embodiment, what consists of a SiC porous body is used as the porous filter base material 2, However, You may use what consists of a Si-SiC porous body.

前記構成を備えた排ガス浄化用酸化触媒装置1は、次のようにして製造することができる。まず、硝酸イットリウム、硝酸銀、硝酸マンガン及び硝酸ルテニウムを混合し、水に溶解して、触媒原料水溶液を調製する。   The exhaust gas purifying oxidation catalyst device 1 having the above-described configuration can be manufactured as follows. First, yttrium nitrate, silver nitrate, manganese nitrate and ruthenium nitrate are mixed and dissolved in water to prepare a catalyst raw material aqueous solution.

次に、図2に示す、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部4aが開放されると共に排ガス流出部4bが閉塞された複数の流入セル4と、該複数の貫通孔の排ガス流入部5aが閉塞されると共に排ガス流出部5bが開放された複数の流出セル5と、各セル4,5の境界部であるセル隔壁6とを備えるSiC多孔質体を用意する。前記SiC多孔質体は、流入セル4及び流出セル5を断面市松格子状に交互に配設したウォールフロー構造を有する。SiC多孔質体として、例えば表1に示すイビデン株式会社製の商品名SD031を用いることができる。

Figure 0005024794
Next, among the plurality of through holes formed so as to penetrate in the axial direction shown in FIG. 2, the plurality of inflow cells 4 in which the exhaust gas inflow portion 4a is opened and the exhaust gas outflow portion 4b is closed, and the plurality An SiC porous body comprising a plurality of outflow cells 5 in which the exhaust gas inflow portions 5a of the through-holes are closed and the exhaust gas outflow portions 5b are opened, and cell partition walls 6 that are boundaries between the cells 4 and 5 are prepared. To do. The SiC porous body has a wall flow structure in which inflow cells 4 and outflow cells 5 are alternately arranged in a checkered cross section. As the SiC porous body, for example, trade name SD031 manufactured by Ibiden Co., Ltd. shown in Table 1 can be used.
Figure 0005024794

次に、前記SiC多孔質体に、排ガス流入部4a側から前記触媒原料水溶液を導入することにより、該触媒原料水溶液は、該SiC多孔質体の細孔に浸透して、該SiC多孔質体を構成する粒子表面に均一に塗布される。続いて、前記SiC多孔質体から過剰な前記触媒原料水溶液を除去する。   Next, by introducing the catalyst raw material aqueous solution into the SiC porous body from the exhaust gas inflow portion 4a side, the catalyst raw material aqueous solution penetrates into the pores of the SiC porous body, and the SiC porous body Are uniformly applied to the surface of the particles constituting the. Subsequently, the excess catalyst raw material aqueous solution is removed from the SiC porous body.

次に、前記粒子表面に前記触媒原料水溶液が塗布されたSiC多孔質体を、800〜1000℃の範囲の温度で1〜10時間の範囲で焼成することにより、該SiC多孔質体を構成する粒子表面に、複合金属酸化物Y1−xAgMn1−yRu(ただし、0.01≦x≦0.15かつ0.005≦y≦0.2)からなる触媒層を形成する。この結果、排ガス浄化用酸化触媒装置1が製造される。 Next, the SiC porous body in which the catalyst raw material aqueous solution is applied to the particle surface is fired at a temperature in the range of 800 to 1000 ° C. for 1 to 10 hours, thereby forming the SiC porous body. A catalyst layer made of a composite metal oxide Y 1-x Ag x Mn 1-y Ru y O 3 (where 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2) is formed on the particle surface. Form. As a result, the exhaust gas purification oxidation catalyst device 1 is manufactured.

次に、図1を参照して本実施形態の製造方法により製造される排ガス浄化用酸化触媒装置1の作動について説明する。まず、排ガス浄化用酸化触媒装置1を、流入セル4及び流出セル5の排ガス流入部4a,5aが内燃機関の排ガスの流路に対して上流側となるように設置する。前記排ガスは、流入セル4の排ガス流入部4aから流入セル4内へ導入される。このとき、流出セル5は排ガス流入部5aが閉塞されているので、流出セル5内へ前記排ガスが導入されることはない。   Next, the operation of the exhaust gas purifying oxidation catalyst device 1 manufactured by the manufacturing method of the present embodiment will be described with reference to FIG. First, the exhaust gas purifying oxidation catalyst device 1 is installed such that the exhaust gas inflow portions 4a and 5a of the inflow cell 4 and the outflow cell 5 are upstream of the exhaust gas flow path of the internal combustion engine. The exhaust gas is introduced into the inflow cell 4 from the exhaust gas inflow portion 4 a of the inflow cell 4. At this time, since the exhaust gas inflow portion 5a of the outflow cell 5 is blocked, the exhaust gas is not introduced into the outflow cell 5.

続いて、流入セル4内へ導入された前記排ガスは、流入セル4の排ガス流出部4bが閉塞されているので、多孔質フィルタ基材2のセル隔壁6を通過して、流出セル5内へ移動する。前記排ガスがセル隔壁6を通過する際、該排ガス中のパティキュレートは、前記多孔質フィルタ基材2を構成する粒子表面に担持された前記触媒層の表面に接触し、該触媒層の触媒作用により燃焼除去される。   Subsequently, the exhaust gas introduced into the inflow cell 4 passes through the cell partition 6 of the porous filter substrate 2 and into the outflow cell 5 because the exhaust gas outflow portion 4b of the inflow cell 4 is blocked. Moving. When the exhaust gas passes through the cell partition walls 6, the particulates in the exhaust gas come into contact with the surface of the catalyst layer supported on the particle surface constituting the porous filter substrate 2, and the catalytic action of the catalyst layer Is removed by combustion.

そして、流出セル5内へ移動した前記排ガスは、流出セル5の排ガス流入部5aが閉塞されているので、開放されている排ガス流出部5bから排出されることとなる。以上により、排ガス浄化用酸化触媒装置1は、内燃機関の排ガス中のパティキュレートを、該排ガスの圧損を低減しつつ、酸化し浄化することができる。   The exhaust gas that has moved into the outflow cell 5 is discharged from the open exhaust gas outflow portion 5b because the exhaust gas inflow portion 5a of the outflow cell 5 is closed. As described above, the exhaust gas purification oxidation catalyst device 1 can oxidize and purify the particulates in the exhaust gas of the internal combustion engine while reducing the pressure loss of the exhaust gas.

また、本実施形態の製造方法により形成される排ガス浄化用酸化触媒装置1においては、前記触媒層は、一般式Y1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2である複合金属酸化物からなっている。前記複合金属酸化物は、一般式YMnOで表される複合金属酸化物において、第1の金属であるYの一部を第3の金属であるAgで置換するとともに、第2の金属であるMnの一部を第4の金属であるRuで置換したものである。この置換により、Y1−xAgMn1−yRuは、その結晶構造が六方晶とペロブスカイト構造との混晶となり、高い触媒活性を有することとなる。したがって、排ガス浄化用酸化触媒装置1によれば、前記排ガスが前記触媒層の表面に接触する際に、該触媒層の触媒作用により該排ガス中のパティキュレートを十分に燃焼除去することができる。 In the oxidation catalyst apparatus for purifying an exhaust gas 1 which is formed by the production method of the present embodiment, the catalyst layer is represented by general formula Y 1-x Ag x Mn 1 -y Ru y O 3, 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2. In the composite metal oxide represented by the general formula YMnO 3 , the composite metal oxide is a second metal while substituting a part of Y as the first metal with Ag as the third metal. A part of Mn is substituted with Ru as the fourth metal. This substitution, Y 1-x Ag x Mn 1-y Ru y O 3 , the crystal structure becomes a mixed crystal of hexagonal crystal and perovskite structures and has a high catalytic activity. Therefore, according to the oxidation catalyst device 1 for exhaust gas purification, when the exhaust gas contacts the surface of the catalyst layer, particulates in the exhaust gas can be sufficiently burned and removed by the catalytic action of the catalyst layer.

次に本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be shown.

本実施例では、まず硝酸イットリウム、硝酸銀、硝酸マンガン及び硝酸ルテニウムを0.95:0.05:0.95:0.05のモル比となるように混合し、25℃の温度で15分間乳鉢で粉砕し、均一化した後、イオン交換水を添加して、イットリウム濃度が0.1mol/Lとなるように調整し、触媒原料水溶液を作製した。   In this example, first, yttrium nitrate, silver nitrate, manganese nitrate and ruthenium nitrate were mixed at a molar ratio of 0.95: 0.05: 0.95: 0.05, and a mortar at a temperature of 25 ° C. for 15 minutes. After pulverizing and homogenizing, ion-exchanged water was added to adjust the yttrium concentration to 0.1 mol / L to prepare an aqueous catalyst raw material solution.

次に、軸方向に貫通する複数の貫通孔のうち、排ガス流入部4aが開放されると共に排ガス流出部4bが閉塞された複数の流入セル4と、該複数の貫通孔の排ガス流入部5aが閉塞されると共に排ガス流出部5bが開放された複数の流出セル5とを備え、該流入セル4及び該流出セル5を交互に配設して各セル境界部をセル隔壁6とするウォールフロー構造を有するSiC多孔質体(イビデン株式会社製、商品名:SD031、寸法:36mm×36mm×50mm)を用意した。次に、前記SiC多孔質体に、前記触媒原料水溶液を導入した。そして、前記触媒原料水溶液を、前記多孔質フィルタ基材を構成する粒子間の空隙によって形成される細孔の内部にまで浸透させることにより、該粒子表面に塗布した。続いて、前記SiC多孔質体から過剰な前記触媒原料水溶液を除去した。   Next, among the plurality of through holes penetrating in the axial direction, a plurality of inflow cells 4 in which the exhaust gas inflow portion 4a is opened and the exhaust gas outflow portion 4b is closed, and the exhaust gas inflow portions 5a of the plurality of through holes are provided. A wall flow structure including a plurality of outflow cells 5 which are closed and whose exhaust gas outflow portions 5b are opened, and in which the inflow cells 4 and the outflow cells 5 are alternately arranged and each cell boundary is a cell partition wall 6 A SiC porous body (made by IBIDEN Co., Ltd., trade name: SD031, dimensions: 36 mm × 36 mm × 50 mm) was prepared. Next, the catalyst raw material aqueous solution was introduced into the SiC porous body. And the said catalyst raw material aqueous solution was apply | coated to this particle | grain surface by making it penetrate | invade to the inside of the pore formed by the space | gap between the particle | grains which comprise the said porous filter base material. Subsequently, the excess catalyst raw material aqueous solution was removed from the SiC porous body.

次に、前記SiC多孔質体を850℃の温度で1時間焼成し、該SiC多孔質体を構成する粒子表面に、該SiC多孔質体の見かけ体積1L当たりの担持量が10gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成し、本実施例の排ガス浄化用酸化触媒装置1を製造した。 Next, the SiC porous body is baked at a temperature of 850 ° C. for 1 hour so that the supported amount per 1 L of the apparent volume of the SiC porous body is 10 g on the particle surface constituting the SiC porous body. Then, a catalyst layer made of composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed, and the oxidation catalyst device 1 for exhaust gas purification of this example was manufactured.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、次のようにして触媒性能評価を行った。排ガス浄化用酸化触媒装置1を、排気量が2400ccであるディーゼルエンジンを搭載したエンジンベンチの排気系に搭載した。次に、排ガス浄化用酸化触媒装置1への入りガス温度が180℃であり、エンジン回転数が1500回転/分であり、トルクが70N/mであるようにして、前記ディーゼルエンジンを20分間運転することにより、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりパティキュレートを2g捕集させた。   Next, the catalyst performance evaluation was performed as follows for the oxidation catalyst device 1 for exhaust gas purification of this example. The exhaust gas purifying oxidation catalyst device 1 was mounted on an exhaust system of an engine bench equipped with a diesel engine having a displacement of 2400 cc. Next, the diesel engine is operated for 20 minutes so that the temperature of the gas entering the oxidation catalyst device 1 for exhaust gas purification is 180 ° C., the engine speed is 1500 rpm, and the torque is 70 N / m. As a result, 2 g of particulates were collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification.

次に、パティキュレートが捕集された排ガス浄化用酸化触媒装置1を前記排気系から取り出し、流通型昇温度装置内の石英管内に固定した。次に、石英管の一端部(供給口)から、酸素及び窒素の体積比が10:90である雰囲気ガスを空間速度20000/時間で供給し、石英管の他端部(排出口)から排出させながら、流通型昇温度装置の管状マッフル炉により、排ガス浄化用酸化触媒装置1を、室温から700℃の温度まで3℃/分で昇温するように加熱した。このとき、石英管からの排出ガスのCO濃度を質量分析計を用いて計測し、CO濃度のピークからパティキュレートの燃焼温度を求めた。結果を図3に示す。また、石英管の供給口と排出口とにおける圧力差を計測することにより、排ガス浄化用酸化触媒装置1の圧力損失を求めた。結果を図4に示す。 Next, the exhaust gas-purifying oxidation catalyst device 1 in which the particulates were collected was taken out from the exhaust system and fixed in a quartz tube in a flow-type temperature rising device. Next, an atmospheric gas having a volume ratio of oxygen and nitrogen of 10:90 is supplied from one end (supply port) of the quartz tube at a space velocity of 20000 / hour, and discharged from the other end (discharge port) of the quartz tube. Then, the exhaust gas purification oxidation catalyst device 1 was heated from a room temperature to a temperature of 700 ° C. at a rate of 3 ° C./min. At this time, the CO 2 concentration of the exhaust gas from the quartz tube was measured using a mass spectrometer, and the combustion temperature of the particulate was determined from the peak of the CO 2 concentration. The results are shown in FIG. Moreover, the pressure loss of the oxidation catalyst device 1 for exhaust gas purification was determined by measuring the pressure difference between the supply port and the discharge port of the quartz tube. The results are shown in FIG.

本実施例では、見かけ体積1L当たりの担持量が20gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the supported amount per 1 L apparent volume was 20 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が30gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the point that the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the supported amount per 1 L apparent volume was 30 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が40gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the supported amount per 1 L apparent volume was 40 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が50gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the loading amount per 1 L apparent volume was 50 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が60gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the loading amount per 1 L apparent volume was 60 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が70gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the point that the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the supported amount per 1 L apparent volume was 70 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.

本実施例では、見かけ体積1L当たりの担持量が80gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる触媒層を形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 In this example, the point that the catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was formed so that the supported amount per 1 L apparent volume was 80 g. Except for this, the exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 1.

次に、本実施例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。
[比較例]
本比較例では、まず、硝酸銀及び硝酸ルテニウムを全く用いずに、硝酸イットリウム、硝酸マンガン、リンゴ酸及び水を、1:1:6:40のモル比となるように調製し、25℃の温度で15分間乳鉢で混合した後、350℃の温度で1時間の一次焼成を行った。次に、前記一次焼成で得られた結果物を25℃の温度で15分間乳鉢で混合した後、900℃の温度で二次焼成を行った。次に、前記二次焼成で得られた結果物と水とバインダーとしての市販の水分散ジルコニアゾルとを10:100:10の重量比となるように秤量し、回転式ボールミルにて100回転/分で5時間混合粉砕し、触媒前駆体スラリーを作製した。
Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this example, exactly the same as in Example 1, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined. The results are shown in FIGS.
[Comparative example]
In this comparative example, first, without using silver nitrate and ruthenium nitrate at all, yttrium nitrate, manganese nitrate, malic acid and water were prepared at a molar ratio of 1: 1: 6: 40, and a temperature of 25 ° C. Then, the mixture was mixed in a mortar for 15 minutes and then subjected to primary baking at a temperature of 350 ° C. for 1 hour. Next, the resultant obtained by the primary firing was mixed in a mortar at a temperature of 25 ° C. for 15 minutes, and then subjected to secondary firing at a temperature of 900 ° C. Next, the resulting product obtained by the secondary firing, water, and a commercially available water-dispersed zirconia sol as a binder are weighed so as to have a weight ratio of 10: 100: 10, and 100 revolutions / The mixture was pulverized for 5 hours to prepare a catalyst precursor slurry.

次に、前記触媒前駆体スラリーを用いたこと以外は実施例1と全く同一にして、SiC多孔質体(イビデン株式会社製、商品名SD031)内に前記触媒前駆体スラリーを導入し、該SiC多孔質体のセル隔壁表面に該触媒前駆体スラリーを塗布した。続いて、前記SiC多孔質体から過剰な前記触媒前駆体スラリーを除去した。   Next, the catalyst precursor slurry was introduced into a SiC porous body (trade name SD031 manufactured by Ibiden Co., Ltd.) exactly as in Example 1 except that the catalyst precursor slurry was used. The catalyst precursor slurry was applied to the surface of the cell partition walls of the porous body. Subsequently, the excess catalyst precursor slurry was removed from the SiC porous body.

次に、前記SiC多孔質体を800℃の温度で1時間の二次焼成を行い、前記端部が閉塞されていない前記貫通孔の表面に、該SiC多孔質体の見かけ体積1L当たりの担持量が40gとなるように、複合金属酸化物YMnOからなる触媒層を形成した。以上により本比較例の排ガス浄化用酸化触媒装置を製造した。 Next, the SiC porous body is subjected to secondary baking at a temperature of 800 ° C. for 1 hour, and the SiC porous body is supported on the surface of the through holes whose end portions are not blocked per apparent volume of 1 L. A catalyst layer made of the composite metal oxide YMnO 3 was formed so that the amount was 40 g. The oxidation catalyst device for exhaust gas purification of this comparative example was manufactured as described above.

次に、本比較例で得られた排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、パティキュレートの燃焼温度と排ガス浄化用酸化触媒装置の圧力損失とを求めた。結果を図3及び図4に示す。   Next, regarding the oxidation catalyst device for exhaust gas purification obtained in this comparative example, the combustion temperature of the particulates and the pressure loss of the oxidation catalyst device for exhaust gas purification were determined in exactly the same manner as in Example 1. The results are shown in FIGS.

図3から、実施例1〜8の製造方法により製造された排ガス浄化用酸化触媒装置1によれば、比較例の製造方法により製造された排ガス浄化用酸化触媒装置に対して、パティキュレートをより低温で酸化(燃焼)できることが明らかである。   From FIG. 3, according to the oxidation catalyst device for exhaust gas purification 1 manufactured by the manufacturing method of Examples 1 to 8, more particulates are provided to the oxidation catalyst device for exhaust gas purification manufactured by the manufacturing method of the comparative example. It is clear that it can be oxidized (combusted) at low temperatures.

また、図4から、実施例1〜8の製造方法により形成された排ガス浄化用酸化触媒装置1によれば、比較例の製造方法により製造された排ガス浄化用酸化触媒装置に対して、圧力損失が小さいことが明らかである。   Moreover, from FIG. 4, according to the oxidation catalyst apparatus 1 for exhaust gas purification formed by the manufacturing method of Examples 1-8, pressure loss is compared with the oxidation catalyst apparatus for exhaust gas purification manufactured by the manufacturing method of the comparative example. Is clearly small.

本発明の製造方法により製造された排ガス浄化用酸化触媒装置の説明的断面図。Explanatory sectional drawing of the oxidation catalyst apparatus for exhaust gas purification manufactured with the manufacturing method of this invention. 本発明の製造方法を説明するための説明的断面図。Explanatory sectional drawing for demonstrating the manufacturing method of this invention. 本発明の製造方法により製造された排ガス浄化用酸化触媒装置によるパティキュレートの燃焼温度を示すグラフ。The graph which shows the combustion temperature of the particulates by the oxidation catalyst apparatus for exhaust gas purification manufactured with the manufacturing method of this invention. 本発明の製造方法により製造された排ガス浄化用酸化触媒装置の圧力損失を示すグラフ。The graph which shows the pressure loss of the oxidation catalyst apparatus for exhaust gas purification manufactured with the manufacturing method of this invention.

符号の説明Explanation of symbols

1…排ガス浄化用酸化触媒装置、 2…多孔質フィルタ基材、 4…流入セル, 5…流出セル、 6…セル隔壁。
DESCRIPTION OF SYMBOLS 1 ... Oxidation catalyst apparatus for exhaust gas purification, 2 ... Porous filter base material, 4 ... Inflow cell, 5 ... Outflow cell, 6 ... Cell partition.

Claims (2)

内燃機関の排ガス中のパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置の製造方法であって、
Y、Mn、Ag及びRuの塩を水に溶解して触媒原料水溶液を作成する工程と、
軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されると共に排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されると共に排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セル境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材に該触媒原料水溶液を導入して、該多孔質フィルタ基材を構成する粒子表面に該触媒原料水溶液を塗布する工程と、
該触媒原料水溶液が塗布された該多孔質フィルタ基材を焼成して、該粒子表面にY、Mn、Ag及びRuを含む複合金属酸化物からなる触媒を均一に担持させる工程とを含むことを特徴とする排ガス浄化用酸化触媒装置の製造方法。
A method for producing an exhaust gas purification oxidation catalyst device for oxidizing and purifying particulates in exhaust gas of an internal combustion engine using a catalyst comprising a composite metal oxide,
Dissolving a salt of Y, Mn, Ag and Ru in water to prepare a catalyst raw material aqueous solution;
Among a plurality of through holes formed so as to penetrate in the axial direction, a plurality of inflow cells in which an exhaust gas inflow portion is opened and an exhaust gas outflow portion is blocked, and an exhaust gas inflow portion of the plurality of through holes are blocked. A porous filter substrate having a wall flow structure in which the inflow cells and the outflow cells are alternately arranged and each cell boundary portion is a cell partition wall. Introducing the catalyst raw material aqueous solution and applying the catalyst raw material aqueous solution to the surface of the particles constituting the porous filter substrate;
Firing the porous filter substrate coated with the catalyst raw material aqueous solution, and uniformly supporting a catalyst comprising a composite metal oxide containing Y, Mn, Ag, and Ru on the particle surface. A manufacturing method of an oxidation catalyst device for exhaust gas purification characterized.
前記複合金属酸化物は、組成式がY1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2であることを特徴とする請求項1記載の排ガス浄化用酸化触媒装置の製造方法。
Said composite metal oxide is represented by a compositional formula of Y 1-x Ag x Mn 1 -y Ru y O 3, is 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2 The method for producing an oxidation catalyst device for exhaust gas purification according to claim 1.
JP2007316336A 2007-12-06 2007-12-06 Manufacturing method of oxidation catalyst device for exhaust gas purification Expired - Fee Related JP5024794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316336A JP5024794B2 (en) 2007-12-06 2007-12-06 Manufacturing method of oxidation catalyst device for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316336A JP5024794B2 (en) 2007-12-06 2007-12-06 Manufacturing method of oxidation catalyst device for exhaust gas purification

Publications (2)

Publication Number Publication Date
JP2009136786A JP2009136786A (en) 2009-06-25
JP5024794B2 true JP5024794B2 (en) 2012-09-12

Family

ID=40868001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316336A Expired - Fee Related JP5024794B2 (en) 2007-12-06 2007-12-06 Manufacturing method of oxidation catalyst device for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP5024794B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558568B2 (en) * 1992-01-20 1996-11-27 財団法人石油産業活性化センター Catalyst for catalytic reduction of nitrogen oxides
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JP4311918B2 (en) * 2002-07-09 2009-08-12 ダイハツ工業株式会社 Method for producing perovskite complex oxide
JP2004041868A (en) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP4611927B2 (en) * 2006-04-05 2011-01-12 本田技研工業株式会社 Oxidation catalyst for exhaust gas purification
JP5085176B2 (en) * 2006-04-07 2012-11-28 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification device
JP2009136787A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP4753209B2 (en) * 2007-12-06 2011-08-24 本田技研工業株式会社 Oxidation catalyst equipment for exhaust gas purification

Also Published As

Publication number Publication date
JP2009136786A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4753209B2 (en) Oxidation catalyst equipment for exhaust gas purification
US10125649B2 (en) Exhaust gas purification catalyst
JP5273446B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5376261B2 (en) Exhaust gas purification catalyst
JP5773337B2 (en) Oxidation catalyst and diesel particulate filter
EP2441510B1 (en) Oxidation catalyst device for exhaust gas purification
JP2008522801A (en) Catalytic membrane reactor
WO2009130869A1 (en) Oxidation catalyst and oxidation catalyst device for exhaust gas purification
JP2009136787A (en) Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP4987794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
CN112041062A (en) Exhaust gas purifying catalyst and method for producing same
JP5095538B2 (en) Oxidation catalyst equipment for exhaust gas purification
WO2010110298A1 (en) Exhaust gas purifying catalyst
JP5052401B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP5330044B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP5024794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP5041367B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP5610319B2 (en) Layered complex oxide, oxidation catalyst and diesel particulate filter
EP2113303B1 (en) Production method of oxidation catalyst device for exhaust gas purification
JP2009262102A (en) Oxidation catalyst device for purification of exhaust gas
CN112512687B (en) Exhaust gas purifying catalyst and method for producing the same
JP2005246208A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees