JP5022777B2 - Method for manufacturing ferroelectric memory device - Google Patents
Method for manufacturing ferroelectric memory device Download PDFInfo
- Publication number
- JP5022777B2 JP5022777B2 JP2007140297A JP2007140297A JP5022777B2 JP 5022777 B2 JP5022777 B2 JP 5022777B2 JP 2007140297 A JP2007140297 A JP 2007140297A JP 2007140297 A JP2007140297 A JP 2007140297A JP 5022777 B2 JP5022777 B2 JP 5022777B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- ferroelectric
- electrode
- oxygen
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Description
本発明は、強誘電体キャパシタを有する強誘電体メモリ装置の製造方法に関する。 The present invention relates to a method of manufacturing a ferroelectric memory device having a ferroelectric capacitor.
強誘電体メモリ装置(FeRAM)は、強誘電体材料の自発分極を利用した低電圧及び高速動作が可能な不揮発性メモリであり、メモリセルが1トランジスタ/1キャパシタ(1T/1C)で構成できる。そのため、DRAM並の集積化が可能であることから、大容量の不揮発性メモリとして期待されている。
ここで、強誘電体材料としては、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3:PZT)などのペロブスカイト型酸化物やタンタル酸ビスマスストロンチウム(SrBi2TaO9:SBT)などのビスマス層状化合物などが挙げられる。
A ferroelectric memory device (FeRAM) is a nonvolatile memory capable of low voltage and high speed operation utilizing spontaneous polarization of a ferroelectric material, and a memory cell can be composed of one transistor / one capacitor (1T / 1C). . Therefore, since it can be integrated in the same manner as a DRAM, it is expected as a large-capacity nonvolatile memory.
Here, as the ferroelectric material, a perovskite type oxide such as lead zirconate titanate (Pb (Zr, Ti) O 3 : PZT) or a bismuth layer such as bismuth strontium tantalate (SrBi 2 TaO 9 : SBT) is used. Compound etc. are mentioned.
ところで、上記強誘電体材料の強誘電特性を最大限に発揮させるためには、その結晶配向性が極めて重要である。例えば、強誘電体材料としてPZTを用いる場合は、その結晶系に依存して優位な配向が存在する。一般的にメモリ装置の用途では、より大きな自発分極量を獲得するため、Zr(ジルコニウム)に比べてTi(チタン)を多く含むチタンリッチの組成を採用している。この組成域ではPZTが正方晶に属し、その自発分極軸がc軸となっている。この場合、理想的にはc軸配向させることで最大の分極量が得られるが、実際は非常に難しく、c軸と直交するa軸配向成分が同時に存在する。ところが、このa軸配向成分は、分極反転に寄与しないため、強誘電特性が損なわれることがある。
そこで、PZTの結晶配向を(111)配向にすることにより、a軸を基板法線から一定の角度だけオフセットした方向に向けることが考えられている。これによれば、分極軸が基板法線方向の成分を持つようになるため、分極反転に寄与させることが可能となる。一方、c軸配向成分も同時に分極軸が基板法線方向に対して一定のオフセット角度を向くため、分極反転で誘発される表面電荷量には一定量のロスが生じる。しかし、すべての結晶成分を分極反転に寄与させることができるため、電荷の取り出し効率がc軸配向と比較して格段に優れている。
By the way, in order to maximize the ferroelectric properties of the ferroelectric material, the crystal orientation is extremely important. For example, when PZT is used as the ferroelectric material, there is a dominant orientation depending on the crystal system. In general, in the use of a memory device, a titanium-rich composition containing more Ti (titanium) than Zr (zirconium) is employed in order to obtain a larger amount of spontaneous polarization. In this composition range, PZT belongs to tetragonal crystal, and its spontaneous polarization axis is c-axis. In this case, ideally, the maximum amount of polarization can be obtained by orienting the c-axis, but in reality, it is very difficult and an a-axis orientation component orthogonal to the c-axis is present at the same time. However, this a-axis orientation component does not contribute to polarization reversal, and thus the ferroelectric characteristics may be impaired.
Therefore, it is considered that the a-axis is oriented in a direction offset by a certain angle from the substrate normal by setting the crystal orientation of PZT to the (111) orientation. According to this, since the polarization axis has a component in the substrate normal direction, it is possible to contribute to polarization inversion. On the other hand, since the polarization axis of the c-axis orientation component is also at a certain offset angle with respect to the normal direction of the substrate, a certain amount of loss occurs in the surface charge amount induced by polarization reversal. However, since all crystal components can contribute to polarization reversal, the charge extraction efficiency is remarkably superior to the c-axis orientation.
ここで、PZTを(111)配向させるためには、上面にPZT膜が形成される下部電極の結晶配向性が重要となる。下部電極を構成する材料としては、熱的・化学的安定性を考慮してIr(イリジウム)などの貴金属が一般的に用いられる。しかし、PZT膜を(111)配向させるためには、Ir膜を(111)配向させる必要があるが、Ir膜の自己配向性が弱いため、結晶配向が(111)配向である下地層上にIr膜を形成する必要がある。
しかし、Ir膜を(111)配向させたとしても、この表面に形成されるPZT膜の結晶配向を(111)配向させることが困難であった。
Here, in order to orient (111) the PZT, the crystal orientation of the lower electrode on which the PZT film is formed on the upper surface is important. As a material constituting the lower electrode, a noble metal such as Ir (iridium) is generally used in consideration of thermal and chemical stability. However, in order to orient the PZT film in the (111) orientation, it is necessary to orient the Ir film in the (111) orientation. However, since the Ir film has a weak self-orientation property, the crystal orientation is on the underlayer having the (111) orientation. It is necessary to form an Ir film.
However, even if the Ir film is (111) oriented, it is difficult to make the crystal orientation of the PZT film formed on this surface (111) oriented.
そこで、下部電極を構成するIr膜の表面に酸化処理を施してIrの酸化物であるIrOx膜を形成し、この表面に有機金属化学気相蒸着(Metal Organic Chemical Vapor Deposition:MOCVD)法によりPZTを形成することでPZTの結晶配向を(111)配向とすることが提案されている(例えば、特許文献1参照)。ここでは、Ir膜を高温下で酸素雰囲気中にさらすことにより、IrOx膜を形成している。
しかし、熱酸化によりIrOx膜を形成しているため、面内における均一性や膜厚などの所望の膜質を得ることが困難である。また、所望の膜質が得られないことにより、IrOx膜上に形成される強誘電体膜の結晶配向にバラツキが生じるという問題がある。
そこで、下部電極の表層にスパッタ法を用いて酸化膜を形成することにより、所望の膜質のIrOx膜を形成し、強誘電体膜の結晶配向性を向上させることが考えられる。
However, since the IrOx film is formed by thermal oxidation, it is difficult to obtain desired film quality such as in-plane uniformity and film thickness. In addition, since the desired film quality cannot be obtained, there is a problem in that the crystal orientation of the ferroelectric film formed on the IrOx film varies.
Therefore, it is conceivable that an IrOx film having a desired film quality is formed by forming an oxide film on the surface layer of the lower electrode by sputtering, thereby improving the crystal orientation of the ferroelectric film.
しかしながら、上記従来の強誘電体メモリ装置の製造方法においても、以下の課題が残されている。すなわち、MOCVD法に用いられる有機金属原料ガスとして、例えばPb(DIBM)、Zr(DIBM)及びTi(OiPr)2(DPM)2が用いられている。そして、気相反応において各有機金属原料ガスの間で配位子の交換が発生することで、Zr(DPM)4が生成される。配位子の交換により発生するZr(DPM)4は、配位子の分離温度が高いという問題がある。そのため、強誘電体膜の結晶化温度が高くなってしまう。また、高い結晶配向性を得ることも望まれている。 However, the following problems remain in the conventional method for manufacturing a ferroelectric memory device. That is, for example, Pb (DIBM), Zr (DIBM), and Ti (OiPr) 2 (DPM) 2 are used as the organic metal source gas used in the MOCVD method. And Zr (DPM) 4 is produced | generated by exchange of a ligand generate | occur | producing between each organometallic raw material gas in a gaseous-phase reaction. Zr (DPM) 4 generated by ligand exchange has a problem that the separation temperature of the ligand is high. This increases the crystallization temperature of the ferroelectric film. It is also desired to obtain high crystal orientation.
本発明は、上記従来の問題に鑑みてなされたもので、強誘電体膜の結晶化温度を下げると共に高い結晶配向性が得られる強誘電体メモリ装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method of manufacturing a ferroelectric memory device that can lower the crystallization temperature of a ferroelectric film and obtain high crystal orientation. .
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明にかかる強誘電体メモリ装置の製造方法は、下部電極及び上部電極間に挟持された強誘電体膜を有する強誘電体キャパシタを備える強誘電体メモリ装置の製造方法であって、前記下部電極を形成する工程と、複数の有機金属原料ガスと酸素ガスとの反応により、前記下部電極上に第1強誘電体膜を形成する工程と、複数の有機金属原料ガスと酸素ガスとの反応により、前記第1強誘電体膜上に第2強誘電体膜を形成する工程とを備え、前記下部電極の形成工程が、電極膜を形成する工程と、該電極膜上に該電極膜の構成材料の酸化物で構成される電極酸化膜を形成する工程とを有し、前記第1強誘電体膜の形成工程において、前記酸素ガス量が前記有機金属原料ガスを反応させるために必要な酸素量よりも少ないと共に、成膜温度が前記第1強誘電体膜の結晶化温度よりも高く、前記第2強誘電体膜の形成工程において、前記酸素ガス量が前記有機金属原料ガスを反応させるために必要な酸素量以上であると共に、成膜温度が前記第1強誘電体膜の形成工程よりも低く、前記複数の有機金属原料ガスが、互いに同一の配位子を有すると共に、成膜圧力において成膜温度で前記配位子を分離可能であることを特徴とする。 The present invention employs the following configuration in order to solve the above problems. That is, a method for manufacturing a ferroelectric memory device according to the present invention is a method for manufacturing a ferroelectric memory device including a ferroelectric capacitor having a ferroelectric film sandwiched between a lower electrode and an upper electrode, A step of forming the lower electrode; a step of forming a first ferroelectric film on the lower electrode by a reaction of a plurality of organometallic source gases and oxygen gas; a plurality of organometallic source gases and oxygen gas; A step of forming a second ferroelectric film on the first ferroelectric film by the reaction of the step, wherein the step of forming the lower electrode comprises the step of forming an electrode film, and the electrode on the electrode film. Forming an electrode oxide film composed of an oxide of a constituent material of the film, and in the step of forming the first ferroelectric film, the oxygen gas amount is used to cause the organometallic source gas to react Less than the required amount of oxygen, The temperature is higher than the crystallization temperature of the first ferroelectric film, and in the step of forming the second ferroelectric film, the amount of oxygen gas is greater than the amount of oxygen necessary for reacting the organometallic source gas. In addition, the deposition temperature is lower than that of the first ferroelectric film formation step, the plurality of organometallic source gases have the same ligands as each other, and the distribution temperature is set at the deposition temperature at the deposition pressure. It is characterized in that the ligand can be separated.
この発明では、気相反応中に配位子の交換が発生しても交換前と同一の構成となるため、強誘電体膜の結晶化温度の上昇を防止できる。そして、第1強誘電体膜の成膜温度を結晶化温度よりも高くすることで、強誘電体膜を高い結晶配向性とすることができる。すなわち、各有機金属原料ガスが互いに同一の配位子を有することで、配位子の交換が行われても、有機金属原料ガスの構成が交換前と同一となる。そのため、配位子の交換により配位子の分離温度が高い有機金属原料ガスが発生することを抑制し、結晶化温度の上昇を防止する。また、第1強誘電体膜の成膜温度が結晶化温度よりも高いため、第1強誘電体膜を所望の結晶配向とすることが容易に行える。そして、第2強誘電体膜が第1強誘電体膜を核として結晶成長するため、第2強誘電体膜の成膜温度を第1強誘電体膜の成膜温度よりも低くしても、第1強誘電体膜の結晶配向が反映される。したがって、強誘電体膜の結晶配向性が向上すると共に、第2強誘電体膜の成膜温度が低いことで他の素子への熱的影響を抑制できる。
ここで、下部電極に酸化処理を施すことで下部電極の表面を酸化して酸化膜を形成することと比較して、電極酸化膜の膜質を面内で均一化することが容易に行える。これにより、電極酸化膜上に形成される強誘電体膜の結晶配向が均一化される。
なお、本発明において、有機金属原料ガスを反応させるために必要な酸素量とは、有機金属原料ガスの原料起因のカーボン及び水素を燃焼してCO2(二酸化炭素)及びH2O(水)として排出するために必要な酸素量と、強誘電体膜を構成する強誘電体材料が結晶化するために必要な酸素量との和を示す。
In the present invention, even if ligand exchange occurs during the gas phase reaction, the same configuration as before the exchange is obtained, so that an increase in the crystallization temperature of the ferroelectric film can be prevented. And the ferroelectric film can be made high crystal orientation by making the film-forming temperature of a 1st ferroelectric film higher than crystallization temperature. That is, since each organometallic source gas has the same ligand, the configuration of the organometallic source gas is the same as before the exchange even when the ligand is exchanged. Therefore, generation | occurrence | production of organometallic raw material gas with a high separation temperature of a ligand by exchange of a ligand is suppressed, and the raise of crystallization temperature is prevented. In addition, since the deposition temperature of the first ferroelectric film is higher than the crystallization temperature, the first ferroelectric film can be easily set to a desired crystal orientation. Since the second ferroelectric film is crystal-grown using the first ferroelectric film as a nucleus, even if the film formation temperature of the second ferroelectric film is lower than the film formation temperature of the first ferroelectric film. The crystal orientation of the first ferroelectric film is reflected. Therefore, the crystal orientation of the ferroelectric film is improved, and the thermal influence on other elements can be suppressed by the low deposition temperature of the second ferroelectric film.
Here, it is possible to easily make the film quality of the electrode oxide film in-plane uniform as compared with forming the oxide film by oxidizing the surface of the lower electrode by oxidizing the lower electrode. Thereby, the crystal orientation of the ferroelectric film formed on the electrode oxide film is made uniform.
In the present invention, the amount of oxygen necessary for reacting the organometallic raw material gas refers to CO 2 (carbon dioxide) and H 2 O (water) by burning carbon and hydrogen originating from the raw material of the organometallic raw material gas. Represents the sum of the amount of oxygen necessary for discharging and the amount of oxygen necessary for crystallization of the ferroelectric material constituting the ferroelectric film.
また、本発明における強誘電体メモリ装置の製造方法は、前記強誘電体膜が、Pb(Zr,Ti)O3で構成されていることとしてもよい。
この発明では、ペロブスカイト型の結晶構造を有する強誘電体材料であるPZTにより強誘電体膜を形成する。
In the method for manufacturing a ferroelectric memory device according to the present invention, the ferroelectric film may be composed of Pb (Zr, Ti) O 3 .
In the present invention, the ferroelectric film is formed of PZT, which is a ferroelectric material having a perovskite crystal structure.
また、本発明における強誘電体メモリ装置の製造方法は、前記配位子が、ジイソブチリルメタナトであることが好ましい。
この発明では、ジイソブチリルメタナトを共通の配位子とする有機金属原料ガスを用いて気相反応により強誘電体膜を形成する。
In the method for manufacturing a ferroelectric memory device according to the present invention, the ligand is preferably diisobutyrylmethanato.
In this invention, a ferroelectric film is formed by a gas phase reaction using an organometallic source gas having diisobutyrylmethanato as a common ligand.
また、本発明における強誘電体メモリ装置の製造方法は、前記電極酸化膜を、スパッタ法により形成することが好ましい。
この発明では、スパッタ法を用いて、低温状態で均一な膜質を有する電極酸化膜が形成される。
In the method for manufacturing a ferroelectric memory device according to the present invention, the electrode oxide film is preferably formed by sputtering.
In the present invention, an electrode oxide film having a uniform film quality is formed at a low temperature using a sputtering method.
また、本発明における強誘電体メモリ装置の製造方法は、スパッタ時における雰囲気ガス中の酸素ガスの分圧が、20%以上40%以下であることが好ましい。
この発明では、電極酸化膜上に形成される第1強誘電体膜をより確実に所望の結晶配向とすることができる。すなわち、酸素ガスの分圧を20%以上とすることで、形成された電極酸化膜が十分に酸化されてメタリックな状態に近くなることを防止する。また、酸素ガスの分圧を40%以下とすることで、形成された電極酸化膜が酸化によって安定になりすぎて還元され難くなり、電極膜の表面構造(配向性)が第1強誘電体膜まで伝達されなくなることを防止する。したがって、第1強誘電体膜を所望の結晶配向にすることが容易になる。
In the method for manufacturing a ferroelectric memory device according to the present invention, the partial pressure of oxygen gas in the atmospheric gas during sputtering is preferably 20% or more and 40% or less.
In the present invention, the first ferroelectric film formed on the electrode oxide film can be more reliably set to a desired crystal orientation. That is, by setting the partial pressure of the oxygen gas to 20% or more, it is possible to prevent the formed electrode oxide film from being sufficiently oxidized and becoming close to a metallic state. Further, by setting the partial pressure of oxygen gas to 40% or less, the formed electrode oxide film becomes too stable due to oxidation and is difficult to be reduced, and the surface structure (orientation) of the electrode film is the first ferroelectric. Prevents transmission to the membrane. Therefore, it becomes easy to make the first ferroelectric film have a desired crystal orientation.
また、本発明における強誘電体メモリ装置の製造方法は、前記電極酸化膜の膜厚が、30nm以下であることが好ましい。
この発明では、電極酸化膜の膜厚を0nmより大きく30nm以下とすることで、電極酸化膜が厚くなりすぎて、電極膜の表面構造(配向性)が第1強誘電体膜まで伝達されなくなることを防止する。これにより、第1強誘電体膜を所望の結晶配向にすることがより確実に行える。
In the method for manufacturing a ferroelectric memory device according to the present invention, the electrode oxide film preferably has a thickness of 30 nm or less.
In the present invention, by setting the thickness of the electrode oxide film to be greater than 0 nm and 30 nm or less, the electrode oxide film becomes too thick and the surface structure (orientation) of the electrode film is not transmitted to the first ferroelectric film. To prevent that. As a result, the first ferroelectric film can be more reliably set to a desired crystal orientation.
また、本発明における強誘電体メモリ装置の製造方法は、前記第1強誘電体膜の形成時における前記酸素ガスの酸素量が、前記有機金属原料ガスを反応させるために必要な酸素量に対して、0.1倍以上1.0倍未満であることとしてもよい。
この発明では、第1強誘電体膜の形成時における酸素ガスの酸素量が有機金属原料ガスを反応させるために必要な酸素量に対して、0.1倍以上1.0倍未満とすることにより、有機金属原料ガスが電極酸化膜中の酸素を奪って分解、酸化される還元雰囲気を形成する。
In the method for manufacturing a ferroelectric memory device according to the present invention, the oxygen amount of the oxygen gas at the time of forming the first ferroelectric film is smaller than an oxygen amount necessary for reacting the organometallic source gas. Thus, it may be 0.1 times or more and less than 1.0 times.
In the present invention, the oxygen amount of the oxygen gas at the time of forming the first ferroelectric film is 0.1 times or more and less than 1.0 times the oxygen amount necessary for reacting the organometallic source gas. Thus, a reducing atmosphere is formed in which the organic metal source gas takes oxygen in the electrode oxide film and decomposes and oxidizes.
また、本発明における強誘電体メモリ装置の製造方法は、前記第2強誘電体膜の形成時における前記酸素ガスの酸素量が、前記有機金属原料ガスを反応させるために必要な酸素量に対して、1.0倍以上であることとしてもよい。
この発明では、第2強誘電体膜の形成時における酸素ガスの酸素量が有機金属原料ガスを反応させるために必要な酸素量に対して1.0倍以上とすることにより、第2強誘電体膜の形成時に十分な酸素量を供給し、酸素欠損のない第2強誘電体膜を形成する。
In the method for manufacturing a ferroelectric memory device according to the present invention, the oxygen amount of the oxygen gas at the time of forming the second ferroelectric film is smaller than an oxygen amount necessary for reacting the organometallic source gas. It may be 1.0 times or more.
In the present invention, the amount of oxygen in the oxygen gas at the time of forming the second ferroelectric film is set to 1.0 times or more than the amount of oxygen necessary for reacting the organometallic raw material gas, thereby providing the second ferroelectric film. A sufficient amount of oxygen is supplied during the formation of the body film to form a second ferroelectric film free from oxygen vacancies.
以下、本発明における強誘電体メモリ装置の製造方法の一実施形態を、図面に基づいて説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。 Hereinafter, an embodiment of a method for manufacturing a ferroelectric memory device according to the present invention will be described with reference to the drawings. In each drawing used in the following description, the scale is appropriately changed to make each member a recognizable size.
〔強誘電体メモリ装置〕
まず、本実施形態における強誘電体メモリ装置の製造方法により製造される強誘電体メモリ装置を、図1を参照しながら説明する。ここで、図1は強誘電体メモリ装置を模式的に示す拡大断面図である。
強誘電体メモリ装置1は、1トランジスタ/1キャパシタ(1T/1C)型のメモリセル構造を有するスタック型であって、図1に示すように、半導体基板2と、半導体基板2上に形成された強誘電体キャパシタ3及びトランジスタ4とを備えている。
[Ferroelectric memory device]
First, a ferroelectric memory device manufactured by the method for manufacturing a ferroelectric memory device in this embodiment will be described with reference to FIG. Here, FIG. 1 is an enlarged cross-sectional view schematically showing a ferroelectric memory device.
The ferroelectric memory device 1 is a stack type having a 1-transistor / 1-capacitor (1T / 1C) type memory cell structure, and is formed on a
半導体基板2は、例えばSi(シリコン)によって構成されており、上面に順に積層された層間絶縁膜11が形成されている。
層間絶縁膜11は、例えばSiO2(酸化ケイ素)で構成されており、半導体基板2上に形成されたトランジスタ4を被覆している。また、層間絶縁膜11の後述するドレイン領域32上には貫通孔16が形成されており、プラグ17が充填されている。
プラグ17は、貫通孔16内に充填された導電材料で構成されており、例えばW(タングステン)やMo(モリブデン)、Ta(タンタル)、Ti、Ni(ニッケル)などで構成されている。
The
The
The
強誘電体キャパシタ3は、層間絶縁膜11及びプラグ17上に形成されており、下層から順に、導電膜21、酸素バリア膜22、下部電極23、強誘電体膜24及び上部電極25を積層した構成となっている。
導電膜21は、例えばTiNなどの導電材料で構成されており、プラグ17と強誘電体キャパシタ3との導通を図っている。
酸素バリア膜22は、例えばTiAlN、TiAl、TiSiN、TiN、TaN、TaSiNなどの酸素バリア性を有する材料で構成されている。
The ferroelectric capacitor 3 is formed on the
The conductive film 21 is made of a conductive material such as TiN, for example, and is intended to connect the
The
下部電極23は、例えばIrで構成されている。なお、下部電極23は、Irのほか、Pt、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)のうちから少なくとも1つまたはこれらにIrを含めた中から選択した合金で構成されてもよい。また、下部電極23は、単層膜であっても、積層した多層膜であってもよい。
The
強誘電体膜24は、ABO3の一般式で示されるペロブスカイト型の結晶構造を有する強誘電体材料で構成されている。ここで、上記一般式中のAがPbからなり、BがZr及びTiのうちの少なくとも一方からなる。
なお、強誘電体膜24において、上記一般式中のAを構成するPbの一部をLa(ランタン)に置換してもよく、Bを構成するZrやTiの一部をV(バナジウム)、Ta、Cr(クロム)、Mo、W、Ca(カルシウム)、Sr(ストロンチウム)及びMg(マグネシウム)のうちの少なくとも1つで置換してもよい。また、強誘電体膜24を構成する強誘電体材料としては、PZTのほか、例えばSBTや(Bi,La)4Ti3O12(チタン酸ビスマスランタン:BLT)などの公知の材料を用いてもよい。
The
In the
上部電極25は、例えばPtまたはIrOxとIrとの多層膜で構成されている。なお、上部電極25は、上述した下部電極23と同様の材料やAl(アルミニウム)、Ag(銀)、Niなどからなる単層膜や、これらを積層した多層膜であってもよい。
The
トランジスタ4は、半導体基板2の表層に形成されたソース領域31、ドレイン領域32及びチャネル領域(図示略)と、チャネル領域上に形成されたゲート絶縁膜33と、ゲート絶縁膜33上に形成されたゲート電極34とを備えている。そして、トランジスタ4は、ドレイン領域32上に形成されたプラグ17と導通している。
また、トランジスタ4は、半導体基板2に間隔をおいて複数形成されており、隣接する他のトランジスタ4との間に設けられた素子分離領域35によって互いの絶縁が図られている。
The
In addition, a plurality of
〔強誘電体メモリ装置の製造方法〕
次に、上述した強誘電体メモリ装置1の製造方法について、図2を参照しながら説明する。ここで、図2は、強誘電体メモリ装置の製造工程を示す説明図である。
最初に、半導体基板2にトランジスタ4を形成すると共に、トランジスタ4を被覆する層間絶縁膜11を形成する。そして、層間絶縁膜11を貫通する貫通孔16を形成し、プラグ17でこの貫通孔16を充填する(図2(a))。
[Manufacturing Method of Ferroelectric Memory Device]
Next, a manufacturing method of the above-described ferroelectric memory device 1 will be described with reference to FIG. Here, FIG. 2 is an explanatory view showing a manufacturing process of the ferroelectric memory device.
First, the
次に、層間絶縁膜11上に強誘電体キャパシタ3を形成する。ここでは、層間絶縁膜11上に下層から順に、導電膜21a、酸素バリア膜22a、下部電極23a、強誘電体膜24a及び上部電極25aを形成する。
まず、層間絶縁膜11上に導電膜21aを形成する(図2(b))。ここでは、層間絶縁膜11上に例えばCVD法やスパッタ法などを用いてTiからなる膜を形成する。このとき、Tiが一般的に高い自己配向性を有するため、CVD法やスパッタ法によって(001)配向を有する六方最密構造の膜が形成される。したがって、Tiからなる膜は、自己配向性により(001)配向を示す。そして、この膜に例えば窒素雰囲気下で熱処理(例えば500℃以上650℃以下)を施す窒化処理により、導電膜21aを形成する。このとき、熱処理温度を650℃未満とすることでトランジスタ4の特性への影響を抑制すると共に、500℃以上とすることで窒化処理の短縮化が図れる。なお、形成された導電膜21aは、元のメタル状態のTiの配向性を反映して、(111)配向のTiNとなる。
Next, the ferroelectric capacitor 3 is formed on the
First, a
次に、導電膜21a上に酸素バリア膜22aを形成する(図2(c))。ここでは、導電膜21a上に例えばスパッタ法やCVD法などを用いてTiAlNからなる酸素バリア膜22aを形成する。ここで、導電膜21aと酸素バリア膜22aとの界面において導電膜21aの格子構造と酸素バリア膜22aの格子構造とをマッチングさせることで、エピタキシャルライクに酸素バリア膜22aが形成される。これにより、導電膜21aの(111)配向を反映した(111)配向を有する酸素バリア膜22aが形成される。また、上述のように酸素バリア膜22aが結晶質を有するTiAlNで構成されているため、酸素バリア膜22aを(111)面方位に配向させることが可能となる。
Next, an
続いて、酸素バリア膜22a上に図2(f)に示す下部電極23aを構成する電極膜41a及び電極酸化膜42aを形成する。
最初に、酸素バリア膜22a上に電極膜41aを形成する(図2(d))。ここでは、酸素バリア膜22a上に、例えばスパッタ法やCVD法を用いてIrからなる電極膜41aを形成する。このとき、結晶質を有する酸素バリア膜22a上に電極膜41aを形成することで、電極膜41aの結晶性が著しく向上すると共に、酸素バリア膜22aの結晶配向が電極膜41aに反映される。これにより、電極膜41aが、酸素バリア膜22aと同様の(111)面方位に配向される。
Subsequently, an
First, the
そして、電極膜41a上に電極酸化膜42aを形成する(図2(e))。ここでは、電極膜41a上に、酸素ガスを供給しながらIrをスパッタ法により成膜することで、電極膜41a上にIrOxからなる電極酸化膜42aを形成する。このように、スパッタ法を用いることで電極酸化膜42aが均一な膜厚で形成される。また、熱酸化と比較して低温で電極酸化膜42aを形成するため、あらかじめ形成されているトランジスタ4などの他の素子に対する熱的影響が軽減する。
また、スパッタ成膜時にチャンバ内に供給される酸素ガスの比率は、酸素ガスと共に供給される不活性ガスなどの他のガスとの混合ガスにおいてモル比率で30%となっている。これにより、十分に酸化した電極酸化膜42aが形成される。なお、スパッタ成膜時における酸素ガスの比率は、20%以上40%以下であればよい。
Then, an
Further, the ratio of oxygen gas supplied into the chamber at the time of sputtering film formation is 30% in terms of a molar ratio in a mixed gas with another gas such as an inert gas supplied together with the oxygen gas. As a result, a sufficiently oxidized
次に、電極酸化膜42a上に図2(g)に示す強誘電体膜24aを形成する。ここでは、図3に示すようなMOCVD装置50を用いてMOCVD法により強誘電体膜24aを形成する。ここで、図3は、MOCVD装置を示す模式図である。また、MOCVD法による半導体基板2の温度及び酸素ガスの流量の時間変化を、図4に示す。
Next, a
MOCVD装置50は、図3に示すように、半導体基板2を収容するチャンバ51と、チャンバ51内に配置されて半導体基板2を載置するサセプタ52と、チャンバ51内にガスを供給するシャワーヘッド53と、載置された半導体基板2を加熱する加熱ランプ54とを備えている。そして、シャワーヘッド53には、チャンバ51内にPZT原料である有機金属原料ガスや酸素ガスを供給するための供給管55、56が設けられている。また、MOCVD装置50は、チャンバ51外に設けられた供給手段(図示略)により有機金属原料ガスを供給管55からチャンバ51内に供給すると共に、酸素ガスを供給管56からチャンバ51内に供給する構成となっている。なお、供給管55、56は、互いに独立して設けられており、有機金属原料ガス及び酸素ガスがチャンバ51に供給されるまでは遭遇しない構成となっている。また、チャンバ51には、排気口(図示略)が適宜形成されている。そして、サセプタ52には、加熱ランプ54とは別にヒータ(図示略)が設けられている。
As shown in FIG. 3, the
最初に、電極酸化膜42a上に初期膜(第1強誘電体膜)43aを形成する(図2(f))。ここでは、電極酸化膜42aが形成された半導体基板2をサセプタ52上に載置し、供給管55、56からチャンバ51内に有機金属原料ガス及び酸素ガスをそれぞれ供給しながら加熱ランプ54により半導体基板2を下面側から加熱する。このとき、有機金属原料ガスとして、例えばDIBM(C9H15O2:ジイソブチリルメタナト)を互いに共通する配位子とするPb(DIBM)2、Zr(DIBM)4、Ti(OiPr)2(DIBM)2をチャンバ51内に供給する。なお、これら有機金属原料ガスは、成膜圧力である数Torrにおいて245℃で蒸発可能である。
First, an initial film (first ferroelectric film) 43a is formed on the
ここで、半導体基板2の加熱温度は、図4に示すようにチャンバ51内の成膜圧力において供給される有機原料ガスの配位子が分離する結晶化温度よりも高い、例えば650℃となっている。また、酸素ガスの流量は、図4に示すように例えば600sccmとなっており、酸素量が有機金属原料ガスを反応させるために必要な酸素量の0.1倍以上1.0倍未満になっている。すなわち、供給される有機金属原料ガスを反応させるために必要な酸素量が十分に供給されていない。そして、初期膜43aの形成時間は、例えば100秒程度となっている。
なお、本実施形態において、有機金属原料ガスを反応させるために必要な酸素量とは、有機金属原料ガスの原料起因のカーボン及び水素を燃焼してCO2及びH2Oとして排出するために必要な酸素量と、強誘電体膜24aを構成するPZTが結晶化するために必要な酸素量との和を示す。
Here, the heating temperature of the
In this embodiment, the amount of oxygen necessary for reacting the organometallic source gas is necessary for burning carbon and hydrogen originating from the source of the organometallic source gas and discharging them as CO 2 and H 2 O. The sum of the amount of oxygen and the amount of oxygen necessary for crystallization of the PZT constituting the
供給された有機金属原料ガスは、酸素ガスと反応して配位子を分離し、酸化されることで結晶化したPZTとなって初期膜43aとして電極酸化膜42a上に堆積する。
このとき、供給された各有機金属原料ガスにおいて互いの配位子の交換が発生する。しかし、各有機金属原料ガスがDIBMを配位子としているため、配位子の交換が発生しても、各有機金属原料ガスの構成が交換前と同一になる。そのため、例えばZr(DBM)4のように配位子の分離温度が高い有機金属ガスの発生が回避される。また、酸素ガスが十分に供給されていないので、有機金属原料ガスは、電極酸化膜42aを構成するIrOx中の酸素を奪って分離、酸化される。
The supplied organic metal source gas reacts with oxygen gas to separate ligands and is oxidized to form crystallized PZT, which is deposited on the
At this time, exchange of ligands occurs in each of the supplied organometallic source gases. However, since each organic metal source gas uses DIBM as a ligand, even if ligand exchange occurs, the configuration of each organic metal source gas is the same as that before the exchange. Therefore, generation of an organometallic gas having a high ligand separation temperature such as Zr (DBM) 4 is avoided. In addition, since the oxygen gas is not sufficiently supplied, the organic metal source gas is separated and oxidized by depriving oxygen in IrOx constituting the
一方、電極酸化膜42aは、電極酸化膜42aを構成するIrOx中の酸素が奪われて還元されることにより、Irで構成される電極膜41aと同一の構成となって一体化する。これにより、下部電極23aが形成される。
この際、一体化した下部電極23aの結晶配向は、(111)配向となっている。そして、初期膜43aの結晶配向は、下部電極23aと同様の(111)配向となる。このとき、半導体基板2の加熱温度を結晶化温度よりも高くしているので、初期膜43aの結晶配向を下部電極23aと同様の(111)配向とさせることが容易となる。
On the other hand, the
At this time, the crystal orientation of the integrated
ここで、電極酸化膜42aの膜厚を例えば20nm以上30nm以下とすることで、電極酸化膜42aが下部電極23aの表面構造である(111)配向を初期膜43aまで確実に伝達する。
また、電極酸化膜42aの形成時における酸素ガスの比率を20%以上40%以下とすることで、電極酸化膜42aが十分に酸化されてメタリックな状態に近くなることを防止すると共に、過度の酸化によってこの下層に配置される下部電極23aの表面構造である配向性が初期膜43aまで伝達されなくなることを防止する。
Here, by setting the film thickness of the
Further, by setting the ratio of oxygen gas at the time of forming the
次に、初期膜43a上にコア膜(第2強誘電体膜)44aを形成する(図2(g))。ここでは、上述した初期膜43aと同様に、MOCVD装置50を用いたMOCVD法により、コア膜44aを形成する。
このとき、半導体基板2の加熱温度は、図4に示すように結晶化温度と同等の500℃となっている。また、酸素ガスの流量は、図4に示すように例えば2000sccmとなっており、例えば酸素ガス中の酸素量が有機金属原料ガスを反応させるために必要な酸素量以上となっている。すなわち、供給される有機金属原料ガス中の有機成分を反応させるために必要な酸素量が十分に供給されている。そして、コア膜44aの形成時間は、例えば600秒程度となっている。
Next, a core film (second ferroelectric film) 44a is formed on the
At this time, the heating temperature of the
供給された有機金属原料ガスは、上述と同様に酸素ガスと反応して配位子を分離し、酸化されることで結晶化したPZTとなって初期膜43a上にコア膜44aとして堆積する。
このとき、半導体基板2の加熱温度を結晶化温度と同等としても、結晶配向が(111)配向である初期膜43aを核として、コア膜44aの結晶配向が(111)配向に制御される。このように、半導体基板2の加熱温度を結晶化温度と同等とすることで、半導体基板2が過度に加熱されない。これにより、あらかじめ形成されているトランジスタ4などの他の素子への熱的影響を抑制すると共に、蒸気圧の高いPbの揮発を回避する。また、酸素ガスが十分に供給された雰囲気内でコア膜44aを形成することにより、酸素欠損の少ない高品質のコア膜44aが形成される。
以上のようにして、初期膜43a及びコア膜44aからなる強誘電体膜24aが形成される。なお、半導体基板2の加熱は、サセプタ52に設けられたヒータを用いて行ってもよい。
The supplied organic metal source gas reacts with oxygen gas in the same manner as described above to separate the ligand, and is oxidized to form crystallized PZT, which is deposited on the
At this time, even if the heating temperature of the
As described above, the
続いて、強誘電体膜24a上に上部電極25aを形成する(図2(h))。ここでは、強誘電体膜24a上に、例えばスパッタ法やCVD法などを用いて上部電極25を構成する金属材料からなる上部電極25aを形成する。
その後、積層して形成された導電膜21a、酸素バリア膜22a、下部電極23a、強誘電体膜24a及び上部電極25aをフォトリソグラフィ技術などによりパターニングし、強誘電体キャパシタ3を形成する。以上のようにして、図1に示す強誘電体メモリ装置1を製造する。
Subsequently, an
Thereafter, the
以上のように、本実施形態における強誘電体メモリ装置1の製造方法によれば、気相反応中に配位子の交換が発生しても交換前と同一の構成となるため、初期膜43a及びコア膜44aの結晶化温度の上昇を防止できる。そして、初期膜43aの成膜温度を結晶化温度より高くすることで、初期膜43aの結晶配向を(111)配向とさせることができる。このようにコア膜44aが初期膜43aを核として結晶成長するため、コア膜44aの成膜温度を初期膜43aの成膜温度よりも下げることができる。
また、電極酸化膜42aのスパッタ成膜時における酸素ガスの分圧を20%以上40%以下とすることでとすることで、電極酸化膜42aを十分に酸化できると共に電極酸化膜42aが酸化により安定になりすぎて初期膜43aの形成時に還元されずに電極膜41aの配向性が初期膜43aまで伝達されなくなることを防止する。
そして、電極酸化膜42aの膜厚を30nm以下とすることで、強誘電体膜24aの結晶配向の配向度をより高めることができる。
As described above, according to the manufacturing method of the ferroelectric memory device 1 in the present embodiment, even if the exchange of the ligand occurs during the gas phase reaction, the same structure as before the exchange is obtained, so that the
In addition, by setting the partial pressure of the oxygen gas during the sputter deposition of the
The degree of crystal orientation of the
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、初期膜の成膜温度は初期膜の結晶化温度よりも高ければよく、コア膜の成膜温度は初期膜の成膜温度よりも低ければよい。
また、DIBMを共通の配位子とする有機金属原料ガスを用いているが、他の有機基を共通の配位子とする有機金属原料ガスを用いてもよい。
そして、熱酸化によって下部電極の表層を酸化することと比較して低温で電極酸化膜を形成することができれば、スパッタ法に限らず、CVD法など他の方法を用いてもよい。
さらに、スパッタ時における雰囲気ガス中の酸素ガスの分圧を20%以上40%以下としているが、十分に酸化された電極酸化膜が形成できると共に初期膜を所望の結晶配向とすることができれば、他の値であってもよい。
また、電極酸化膜の膜厚を20nm以上30nm以下としているが、強誘電体膜を所望の結晶配向で形成できれば、他の値であってもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, the film formation temperature of the initial film may be higher than the crystallization temperature of the initial film, and the film formation temperature of the core film may be lower than the film formation temperature of the initial film.
In addition, although an organometallic source gas having DIBM as a common ligand is used, an organometallic source gas having another organic group as a common ligand may be used.
As long as the electrode oxide film can be formed at a low temperature as compared with oxidizing the surface layer of the lower electrode by thermal oxidation, other methods such as a CVD method may be used instead of the sputtering method.
Furthermore, the partial pressure of oxygen gas in the atmospheric gas during sputtering is set to 20% or more and 40% or less. If a sufficiently oxidized electrode oxide film can be formed and the initial film can have a desired crystal orientation, Other values may be used.
Further, although the film thickness of the electrode oxide film is set to 20 nm or more and 30 nm or less, other values may be used as long as the ferroelectric film can be formed with a desired crystal orientation.
また、初期膜の形成工程において、電極酸化膜の全体を還元しているが、電極酸化膜の少なくとも最表層を含む一部が還元されていればよい。
さらに、強誘電体膜の形成工程において半導体基板の下面側から半導体基板を加熱しているが、上面側から加熱するなど、他の方法で加熱してもよい。
Further, in the initial film formation step, the entire electrode oxide film is reduced, but it is sufficient that at least a part of the electrode oxide film including at least the outermost layer is reduced.
Furthermore, although the semiconductor substrate is heated from the lower surface side of the semiconductor substrate in the formation process of the ferroelectric film, it may be heated by other methods such as heating from the upper surface side.
1 強誘電体メモリ装置、3 強誘電体キャパシタ、23,23a 下部電極、24,24a 強誘電体膜、25,25a 上部電極、41a 電極膜、42a 電極酸化膜、43a 初期膜(第1強誘電体膜)、44a コア膜(第2強誘電体膜) DESCRIPTION OF SYMBOLS 1 Ferroelectric memory device, 3 Ferroelectric capacitor, 23, 23a Lower electrode, 24, 24a Ferroelectric film, 25, 25a Upper electrode, 41a Electrode film, 42a Electrode oxide film, 43a Initial film (1st ferroelectric) Body film), 44a Core film (second ferroelectric film)
Claims (8)
前記下部電極を形成する工程と、
複数の有機金属原料ガスと酸素ガスとの反応により、前記下部電極上に第1強誘電体膜を形成する工程と、
複数の有機金属原料ガスと酸素ガスとの反応により、前記第1強誘電体膜上に第2強誘電体膜を形成する工程とを備え、
前記下部電極の形成工程が、電極膜を形成する工程と、該電極膜上に該電極膜の構成材料の酸化物で構成される電極酸化膜を形成する工程とを有し、
前記第1強誘電体膜の形成工程において、前記酸素ガス量が前記有機金属原料ガスを反応させるために必要な酸素量よりも少ないと共に、成膜温度が前記第1強誘電体膜の結晶化温度よりも高く、
前記第2強誘電体膜の形成工程において、前記酸素ガス量が前記有機金属原料ガスを反応させるために必要な酸素量以上であると共に、成膜温度が前記第1強誘電体膜の形成工程よりも低く、
前記複数の有機金属原料ガスが、互いに同一の配位子を有すると共に、成膜圧力において成膜温度で前記配位子を分離可能であることを特徴とする強誘電体メモリ装置の製造方法。 A method of manufacturing a ferroelectric memory device comprising a ferroelectric capacitor having a ferroelectric film sandwiched between a lower electrode and an upper electrode,
Forming the lower electrode;
Forming a first ferroelectric film on the lower electrode by a reaction between a plurality of organometallic source gases and oxygen gas;
Forming a second ferroelectric film on the first ferroelectric film by a reaction between a plurality of organometallic source gases and oxygen gas,
The step of forming the lower electrode includes a step of forming an electrode film, and a step of forming an electrode oxide film composed of an oxide of a constituent material of the electrode film on the electrode film;
In the step of forming the first ferroelectric film, the amount of oxygen gas is less than the amount of oxygen necessary for reacting the organometallic source gas, and the film formation temperature is crystallization of the first ferroelectric film. Higher than temperature,
In the step of forming the second ferroelectric film, the amount of oxygen gas is equal to or greater than the amount of oxygen necessary for reacting the organometallic source gas, and the film formation temperature is the step of forming the first ferroelectric film. Lower than
A manufacturing method of a ferroelectric memory device, wherein the plurality of organometallic source gases have the same ligands and can be separated at a film forming temperature at a film forming pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007140297A JP5022777B2 (en) | 2007-05-28 | 2007-05-28 | Method for manufacturing ferroelectric memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007140297A JP5022777B2 (en) | 2007-05-28 | 2007-05-28 | Method for manufacturing ferroelectric memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008294346A JP2008294346A (en) | 2008-12-04 |
JP5022777B2 true JP5022777B2 (en) | 2012-09-12 |
Family
ID=40168736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007140297A Expired - Fee Related JP5022777B2 (en) | 2007-05-28 | 2007-05-28 | Method for manufacturing ferroelectric memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5022777B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3971645B2 (en) * | 2002-04-30 | 2007-09-05 | 富士通株式会社 | Manufacturing method of semiconductor device |
JP4348547B2 (en) * | 2005-04-14 | 2009-10-21 | セイコーエプソン株式会社 | Method for manufacturing perovskite oxide layer, method for manufacturing ferroelectric memory, and method for manufacturing surface acoustic wave device |
JP2007081410A (en) * | 2005-09-15 | 2007-03-29 | Samsung Electronics Co Ltd | Ferroelectric film, ferroelectric capacitor forming method, and ferroelectric capacitor |
JP2007197804A (en) * | 2006-01-30 | 2007-08-09 | Mitsubishi Materials Corp | Raw material for metal organic chemical vapor deposition and method for producing metal-containing film using the raw material |
JP4917840B2 (en) * | 2006-06-05 | 2012-04-18 | シチズン電子株式会社 | Seat switch module |
-
2007
- 2007-05-28 JP JP2007140297A patent/JP5022777B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008294346A (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4535076B2 (en) | Ferroelectric capacitor and manufacturing method thereof | |
JP4164700B2 (en) | Ferroelectric memory and manufacturing method thereof | |
JP4124237B2 (en) | Method for manufacturing ferroelectric memory device | |
US20070042543A1 (en) | Method for manufacturing semiconductor device | |
JP4479770B2 (en) | Ferroelectric memory manufacturing method | |
JPWO2008114423A1 (en) | Semiconductor device and manufacturing method thereof | |
JP2009071144A (en) | Manufacturing method of ferroelectric memory | |
JP4943920B2 (en) | Method for manufacturing ferroelectric memory device | |
US7883961B2 (en) | Manufacturing method for ferroelectric memory device | |
JP5022777B2 (en) | Method for manufacturing ferroelectric memory device | |
JP5022757B2 (en) | Method for manufacturing ferroelectric memory device | |
JP4730541B2 (en) | Ferroelectric memory and manufacturing method thereof | |
JP2008294345A (en) | Ferroelectric memory device manufacturing method and ferroelectric memory device | |
JP2009071142A (en) | Method for manufacturing ferroelectric memory device | |
JP2008227217A (en) | Method for manufacturing ferroelectric capacitor | |
JP2008227218A (en) | Method for manufacturing ferroelectric capacitor | |
JP2009076571A (en) | Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory device | |
JP6217260B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2008235544A (en) | Method for manufacturing ferroelectric capacitor | |
JP2009224368A (en) | Ferroelectric memory, manufacturing method of the same | |
JP4802781B2 (en) | Method for manufacturing ferroelectric memory device | |
JP2007042871A (en) | Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory device | |
US20090075401A1 (en) | Method for manufacturing ferroelectric capacitor and method for manufacturing ferroelectric memory device | |
JP4702550B2 (en) | Manufacturing method of semiconductor device | |
JP2009302307A (en) | Manufacturing method of ferroelectric memory element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20081219 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100113 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5022777 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |