[go: up one dir, main page]

JP5017719B2 - Copper-based alloy plate excellent in press workability and method for producing the same - Google Patents

Copper-based alloy plate excellent in press workability and method for producing the same Download PDF

Info

Publication number
JP5017719B2
JP5017719B2 JP2007073983A JP2007073983A JP5017719B2 JP 5017719 B2 JP5017719 B2 JP 5017719B2 JP 2007073983 A JP2007073983 A JP 2007073983A JP 2007073983 A JP2007073983 A JP 2007073983A JP 5017719 B2 JP5017719 B2 JP 5017719B2
Authority
JP
Japan
Prior art keywords
diffraction intensity
cross
ray diffraction
processing direction
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007073983A
Other languages
Japanese (ja)
Other versions
JP2007186799A (en
Inventor
浩一 畠山
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2007073983A priority Critical patent/JP5017719B2/en
Publication of JP2007186799A publication Critical patent/JP2007186799A/en
Application granted granted Critical
Publication of JP5017719B2 publication Critical patent/JP5017719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、プレス加工性に優れた銅基合金およびその製造方法に関し、詳しくは民生用製品,例えば半導体用リードフレームの原板、情報・通信用の狭ピッチコネクタの原板および小型リレーの原板等を構成するプレス加工性に優れた銅基合金およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a copper-based alloy plate excellent in press workability and a method for manufacturing the same, and more particularly to consumer products such as semiconductor lead frame master plates, information / communication narrow pitch connector master plates, and small relay master plates. The present invention relates to a copper-based alloy plate excellent in press workability and a method for producing the same.

家電製品、情報通信機器や自動車用部品の高密度実装化に伴い、コネクタ、スイッチ、リレー等の小型化が進み、これらを構成する材料も薄肉化、細線化する傾向にある。
これらの部品は、金型を用いた高速のプレスにより打抜き加工されることが常であり、プレス加工の際、材料は金型のパンチによりせん断変形を生じた後に、刃先からのクラック発生によって、破断変形を生じて所定の形状に打抜かれる。
With the high-density mounting of home appliances, information communication devices, and automotive parts, connectors, switches, relays, and the like have been miniaturized, and the materials constituting them tend to be thinner and thinner.
These parts are usually stamped by a high-speed press using a mold, and during the press processing, the material undergoes shear deformation by the punch of the mold, and then, by the occurrence of cracks from the blade edge, Breaking deformation is generated and punched into a predetermined shape.

しかし、プレスのショット数が増すにつれて、金型のパンチの刃先の磨耗が進み、その結果として、刃先からのクラック発生が不均一になり、破断形状が乱れて、具体的にはせん断帯と破断帯の段差が大きくなったり、大きなバリが発生したり、破断により生じた材料の大きなカスが発生して、所定の製品形状を保てなくなる。   However, as the number of press shots increases, wear of the die punch blade edge progresses. As a result, crack generation from the blade edge becomes uneven, the fracture shape is disturbed, specifically, the shear band and fracture. The step of the band becomes large, large burrs are generated, and large waste of material generated by fracture is generated, so that a predetermined product shape cannot be maintained.

従来、金型寿命を向上させる対策として、パンチの材質の向上、プレス潤滑油による潤滑性の改善や、各々の銅基合金に適したクリアランスの設定等により対応してきたが、画期的な改善は実現できなかった。   Conventionally, as countermeasures to improve the mold life, we have responded by improving the punch material, improving the lubricity by press lubricant, and setting the clearance suitable for each copper base alloy, but it is a breakthrough improvement Could not be realized.

上記のような従来技術の問題点を解決すべく鋭意検討を行なったところ、金型を用いた高速プレス成形加工によって、所定の形状に打抜かれる小型のコネクタ,スイッチ,リレー用等の材料では、特にプレス加工性が優れていることが問題点を解決すべき特性上の重要な課題であるとの知見を得た。
すなわち、材料の結晶方位を制御することで、プレス加工性に優れた銅基合金が得られることがわかったので、本発明はその合金とその製造方法を提案するものである。
As a result of diligent studies to solve the problems of the prior art as described above, materials such as small connectors, switches, and relays that are punched into a predetermined shape by high-speed press molding using a die are used. In particular, it was found that excellent press workability is an important characteristic problem to be solved.
That is, it has been found that a copper-based alloy plate excellent in press workability can be obtained by controlling the crystal orientation of the material, and therefore the present invention proposes the alloy plate and its manufacturing method.

本発明は、銅または銅基合金材料について、特に材料のRD面(板材の圧延方向に垂直な断面。以下、RD面という。)とTD面(板材の圧延方向に平行な断面。以下、TD面という。)に着目してX線回折を行ない、得られる結晶方位のうち特定の方向の強度を制御することで、プレス加工性を向上させた銅基合金およびその製造方法を提供するものである。なおここで、X線回折強度とは、例えばX線回折法で測定される材料の結晶方位の積分強度を示すものである。
すなわち、本発明は、
The present invention relates to a copper or copper-based alloy material, in particular, the RD surface (cross section perpendicular to the rolling direction of the plate material; hereinafter referred to as the RD surface) and the TD surface (cross section parallel to the rolling direction of the plate material; hereinafter referred to as TD). A copper-based alloy plate having improved press workability by performing X-ray diffraction focusing on the surface and controlling the strength in a specific direction among the obtained crystal orientations, and a method for producing the same It is. Here, the X-ray diffraction intensity indicates, for example, the integrated intensity of the crystal orientation of the material measured by the X-ray diffraction method.
That is, the present invention

1. 1.0〜21.1mass%のZnと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上とを総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなる銅基合金で、かつ材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD×STD≧16であることを特徴とするプレス加工性に優れた銅基合金
ただし、

Figure 0005017719
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STDは材料の加工方向に平行な断面のX線回折強度について測定した値で、I{111}は{111}の回折強度、I{222}は{222}の回折強度、I{200}は{200}の回折強度である。 1.0 to 21.1 mass% of Zn, and further, one or more selected from Sn, Ni, Si, Fe, and Al are included in a total amount of 4 to 25 mass %, with the remainder being Cu and inevitable S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material, and S TD ≧ 4 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material. A copper-based alloy plate excellent in press workability, wherein S RD × S TD ≧ 16.
However,
Figure 0005017719
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111} }, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

2. 1.0〜21.1mass%のZnと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上とを総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなる銅基合金のインゴットを50%以上の圧延加工率で冷間圧延することで所定の板厚にした材料を350〜750℃の温度で熱処理を施して、材料の加工方向に垂直な断面のX線回折強度において1≦SRD≦3かつ材料の加工方向に平行な断面のX線回折強度で1≦STD≦3として、しかる後に圧延加工率30%以上の最終の冷間圧延と、再結晶温度未満の低温焼鈍を組み合わせることで、材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ材料の加工方向に平行な断面のX線回折強度でSTD≧4、SRD×STD≧16とすることを特徴とするプレス加工性に優れた銅基合金の製造方法。
ただし、

Figure 0005017719
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STDは材料の加工方向に平行な断面のX線回折強度について測定した値で、I{111}は{111}の回折強度、I{222}は{222}の回折強度、I{200}は{200}の回折強度である。 2. 1.0 to 21.1 mass% of Zn and further one or more selected from Sn, Ni, Si, Fe, and Al are included in a total amount of 4 to 25 mass% , with the remainder being Cu and inevitable specifically an ingot of a copper-based alloy consisting of impurities, heat treated materials were to a predetermined thickness by cold rolling at a rolling rate of 50% or more at a temperature of 350 to 750 ° C., in the working direction of the material The X-ray diffraction intensity of the vertical cross section is 1 ≦ S RD ≦ 3 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material is 1 ≦ S TD ≦ 3. By combining hot rolling and low temperature annealing below the recrystallization temperature, S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material and S in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material. TD4, S RD × S Method for producing a copper base alloy sheet having excellent press formability, characterized in that the D ≧ 16.
However,
Figure 0005017719
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111} }, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.

以下に、本発明の内容を具体的に説明する。
本発明は、銅基合金について、特に材料の加工方向に垂直な断面と平行な断面に着目してX線回折を行い、得られる結晶方位のうち特定の方位の強度を制御することでプレス加工性を向上させるものである。
The contents of the present invention will be specifically described below.
The present invention performs X-ray diffraction on a copper-based alloy sheet , focusing particularly on a cross section perpendicular to the processing direction of the material and controlling the strength of a specific orientation among the obtained crystal orientations. It improves workability.

まず、プレス加工に際して、材料のせん断変形を生じた時に、刃先からのクラック発生を均一にするためには、結晶方位をある一定の方位にそろえることが大切であり、特に、断面の結晶方位は{111}にそろっている方がプレス断面の形状が良好である。一方、断面に他の面、特に{200}面が多く存在すると、せん断変形を生じた時に発生したクラックの伸展方向がプレスの方向に対して20°以上の角度になってしまい、その結果として刃先の磨耗を促進してしまうこと、また、破断により発生した材料の大きなカスが刃先に付着して刃先の磨耗を促進してしまう。従って、{200}面が少ない方が、プレス断面の形状が良好であり、刃先の磨耗を抑制することができる。   First of all, it is important to align the crystal orientation to a certain orientation in order to make the crack generation from the blade uniform when the material undergoes shear deformation during press working. The shape of the press cross section is better when aligned with {111}. On the other hand, if there are many other surfaces, especially {200} planes in the cross section, the extension direction of cracks generated when shear deformation occurs is at an angle of 20 ° or more with respect to the direction of the press. The wear of the blade edge is promoted, and a large residue of material generated by the breakage adheres to the blade edge to promote the wear of the blade edge. Therefore, the smaller the {200} plane, the better the cross-sectional shape of the press, and the wear of the cutting edge can be suppressed.

材料の加工方向に垂直な断面をRD面、平行な断面をTD面と表現する。RD面およびTD面のX線回折を行い、{111}の回折強度 I{111}、{222}の回折強度 I{222}、{200}の回折強度 I{200}を測定し、

Figure 0005017719
なるパラメーターSを導入し、RD面について測定したSをSRD、TD面について測定したSをSTDとすると、SRD≧2 かつSTD≧4で、かつSRD×STD≧16のときは、プレスで打抜いた端子の形状が良好であった。 A cross section perpendicular to the processing direction of the material is expressed as an RD plane, and a parallel cross section is expressed as a TD plane. X-ray diffraction of the RD plane and the TD plane is performed, and {111} diffraction intensity I {111}, {222} diffraction intensity I {222}, {200} diffraction intensity I {200} are measured,
Figure 0005017719
When the parameter S is introduced, S measured for the RD plane is S RD , and S measured for the TD plane is S TD , when S RD ≧ 2 and S TD ≧ 4, and S RD × S TD ≧ 16 The shape of the terminal punched with a press was good.

一方、
RD≧2 かつ STD≧4 かつ SRD×STD<16のとき、
RD≧2 かつ STD<4 かつ SRD×STD<16のとき、
RD≧2 かつ STD<4 かつ SRD×STD≧16のとき、
RD<2 かつ STD≧4 かつ SRD×STD<16のとき、
RD<2 かつ STD≧4 かつ SRD×STD≧16のとき、
RD<2 かつ STD<4 かつ SRD×STD<16のときは、
プレスのショット数が増すと、刃先の磨耗が進み、打抜いた端子の形状が悪くなった。
on the other hand,
When S RD ≧ 2 and S TD ≧ 4 and S RD × S TD <16,
When S RD ≧ 2 and S TD <4 and S RD × S TD <16,
When S RD ≧ 2 and S TD <4 and S RD × S TD ≧ 16,
When S RD <2 and S TD ≧ 4 and S RD × S TD <16,
When S RD <2 and S TD ≧ 4 and S RD × S TD ≧ 16,
When S RD <2 and S TD <4 and S RD × S TD <16,
As the number of press shots increased, wear of the blade edge advanced, and the shape of the punched terminal deteriorated.

本発明の材料は、次のような工程を経て製造することができる。即ち、第1の工程は、各成分を所定量配合して溶解し、得られた液体から所定の組成のインゴットを鋳造する工程である。この工程は、大気中の溶解法でも還元雰囲気中の溶解法でも真空中の溶解法でも適用できる。   The material of the present invention can be manufactured through the following steps. That is, the first step is a step in which a predetermined amount of each component is blended and dissolved, and an ingot having a predetermined composition is cast from the obtained liquid. This step can be applied by a melting method in the air, a melting method in a reducing atmosphere, or a vacuum melting method.

第2の工程は、得られたインゴットに熱処理を施す工程で、この工程は、700℃以上の温度で熱処理することで鋳造時に生じた偏析を少なくする工程で、材料の結晶方位を均一にするためには重要な工程である。   The second step is a step of heat-treating the obtained ingot, and this step is a step of reducing the segregation generated during casting by heat-treating at a temperature of 700 ° C. or higher, and uniformizing the crystal orientation of the material. This is an important process.

第3の工程は、粗圧延工程であり、圧延加工率が50%以上であることが望ましい。この工程は、次の第5の工程で再結晶処理をするために重要な工程で、圧延加工率が50%未満の場合、再結晶粒が不均一になり、その結果、結晶方位が不均一になり、その後の工程で、材料断面の結晶方位を{111}に配向せしめることが困難になる。なお、この工程は、冷間圧延でも温間圧延でも適用できる。   The third step is a rough rolling step, and the rolling rate is preferably 50% or more. This step is an important step for recrystallization in the next fifth step. When the rolling rate is less than 50%, the recrystallized grains become non-uniform, and as a result, the crystal orientation is non-uniform. In the subsequent process, it becomes difficult to orient the crystal orientation of the material cross section to {111}. This process can be applied to both cold rolling and warm rolling.

第4の工程は、熱処理工程で、材料の結晶粒径を均一微細にする工程であり、第5の工程以降で材料の断面の結晶方位を{111}に配向せしめるために、一度無方位状態にせしめるための工程である。熱処理温度は、350〜750℃である。温度が350℃未満の場合には、上記の熱処理効果が充分に発現できず、また750℃を超えた場合は、結晶粒径が粗大になり、その後の工程をいかに工夫しても所望のプレス加工性が得られない。特に、1≦SRD 3、1≦STD 3であることが好ましい。 The fourth step is a heat treatment step in which the crystal grain size of the material is made uniform and fine, and in order to orient the crystal orientation of the cross section of the material to {111} in the fifth step and thereafter, it is once in a non-oriented state. This is a process for fading. The heat treatment temperature is 350 to 750 ° C. When the temperature is less than 350 ° C., the above heat treatment effect cannot be sufficiently exhibited. When the temperature exceeds 750 ° C., the crystal grain size becomes coarse, and a desired press can be obtained regardless of how the subsequent steps are devised. Workability cannot be obtained. In particular, it is preferable that 1 ≦ S RD 3 and 1 ≦ S TD 3.

第5の工程は、最終の冷間圧延工程、第6の工程は、低温焼鈍工程である。第5の工程で重要なことは、圧延加工率を30%以上にするということである。この工程で材料断面の結晶方位{111}の集合度合いを高め、材料断面の結晶方位{200}の集合度合いを抑えている。圧延加工率が30%未満の場合には、投入される加工歪が小さいために、材料断面の結晶方位を{111}に配向せしめることが困難である。好ましくは50%以上、さらに好ましくは80%以上である。   The fifth step is a final cold rolling step, and the sixth step is a low temperature annealing step. What is important in the fifth step is that the rolling rate is 30% or more. In this step, the degree of aggregation of the crystal orientation {111} of the material cross section is increased, and the degree of aggregation of the crystal orientation {200} of the material cross section is suppressed. When the rolling processing rate is less than 30%, since the processing strain to be input is small, it is difficult to orient the crystal orientation of the material cross section to {111}. Preferably it is 50% or more, more preferably 80% or more.

第6の工程は、熱処理により第5の工程で生じた過剰な加工歪を除去してやる工程で、材料の曲げ加工性等を向上することができる。この工程での熱処理温度は、各材料の再結晶温度未満、好ましくは熱処理温度が200〜400℃である。
本発明に関わる銅基合金としては、例えば、Cu−Zn−Sn−Ni−Si系合金、Cu−Zn−Ni−Fe−Al系合金、Cu−Zn−Sn−Fe系合金等の銅基合金が挙げられる。
The sixth step is a step of removing excessive processing strain generated in the fifth step by heat treatment, and can improve the bending workability of the material. The heat treatment temperature in this step is less than the recrystallization temperature of each material, preferably the heat treatment temperature is 200 to 400 ° C.
Examples of the copper-based alloy according to the present invention include a copper-based alloy such as a Cu—Zn—Sn—Ni—Si alloy, a Cu—Zn—Ni—Fe—Al alloy, and a Cu—Zn—Sn—Fe alloy. Is mentioned.

本発明に係る銅基合金の成分範囲を、1.0〜21.1mass%のZnと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上とを総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなると規定したのは、材料の導電率、引張強さ、ばね限界値および曲げ加工性のバランスを維持し、さらにまたプレス加工性を向上させるためである。 The component range of the copper-based alloy according to the present invention is 4 to 4 in total of 1.0 to 21.1 mass% of Zn and one or more selected from Sn, Ni, Si, Fe, and Al. It is defined that it contains ˜25 mass% , and is composed of the balance Cu and inevitable impurities, in order to maintain the balance of electrical conductivity, tensile strength, spring limit value and bending workability of the material, and to improve press workability. It is.

Znと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上との総量が4mass%未満では、導電率が高くなるが、引張強さとばね限界値およびプレス加工性、耐熱性等の特性が得られにくい。また、圧延加工率を上げて引張強さとばね限界値およびプレス加工性を向上させると、曲げ加工性が劣化する。一方、Znと、更にSn、Ni、Si、Fe、Alのうちから選ばれた1種または2種以上との総量が25mass%を越えると、引張強さとばね限界値は高くなるが、導電率が低くなり、さらにまた曲げ加工性が劣化する。 If the total amount of Zn and one or more selected from Sn, Ni, Si, Fe, and Al is less than 4 mass% , the electrical conductivity increases, but the tensile strength, spring limit value, and press workability are increased. It is difficult to obtain characteristics such as heat resistance. Further, when the rolling process rate is increased to improve the tensile strength, spring limit value, and press workability, the bending workability deteriorates. On the other hand, when the total amount of Zn and one or more selected from Sn, Ni, Si, Fe, and Al exceeds 25 mass% , the tensile strength and the spring limit value increase, The rate is lowered, and the bending workability is further deteriorated.

したがって、本発明に係る銅基合金の成分範囲について、Sn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上を総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなる銅基合金と規定した。なお、本発明で規定した添加元素以外の元素、例えば、Ag、Au、Bi、Co、Cr、In、Mn、La、Pd、Pb、Sb、Se、Te、Ti、Y、Zrの元素のうちから選ばれた1種または2種以上を総量で5mass%以下であれば、本発明で規定した添加元素に加えても得られる効果を阻害しない。 Accordingly, the content range of copper-based alloy according to the present invention, Sn, Ni, Si, Fe, comprise 4 to 25 mass% in total and one or more selected from among Al, balance Cu and unavoidable It was defined as a copper-based alloy composed of impurities. It should be noted that elements other than the additive elements defined in the present invention, for example, Ag, Au, Bi, Co, Cr, In, Mn, La, Pd, Pb, Sb, Se, Te, Ti, Y, Zr If the total amount of one or more selected from the above is 5 mass% or less, the effect obtained is not inhibited even when added to the additive element defined in the present invention.

次に本発明の実施の形態を実施例により説明する。   Next, embodiments of the present invention will be described by way of examples.

上記のように、本発明によれば、プレス加工性に優れたコネクタやスイッチ、リレー用等の銅基合金を得ることができ、近年の家電製品、情報通信機器や自動車用部品の高密度実装化に伴った材料の薄肉化、細線化と、プレスの金型寿命向上により、コストダウンを大幅に実現できるのである。   As described above, according to the present invention, it is possible to obtain copper-based alloys for connectors, switches, relays, etc. that are excellent in press workability, and high-density mounting of recent home appliances, information communication devices, and automotive parts. The cost can be greatly reduced by making the material thinner and thinner, and improving the press die life.

実施例
表1にその化学成分値(mass%)を示す銅基合金No.1〜16を高周波溶解炉を用いてAr雰囲気で溶解し、40×40×150(mm)のインゴットに鋳造した。得られたNo.1〜16のインゴットから10×40×40(mm)の試験片を切り出し、850℃で1h均質化熱処理を実施(第2の工程)した後、No.1〜3,No.9,10は冷間圧延により、板厚10mmから2.0mmまで圧延し、No.4〜8,No.11〜16は熱間圧延により板厚10mmから5mmまで圧延した後に、冷間圧延により板厚5mmから2.0mmまで圧延した(第3の工程)。
Examples Copper base alloys Nos. 1 to 16 whose chemical component values (mass%) are shown in Table 1 were melted in an Ar atmosphere using a high-frequency melting furnace and cast into 40 × 40 × 150 (mm) ingots. A test piece of 10 t × 40 w × 40 l (mm) was cut out from the obtained ingots of No. 1 to 16, and homogenized heat treatment was performed at 850 ° C. for 1 h (second step). 3, Nos. 9 and 10 are rolled from 10 mm to 2.0 mm by cold rolling, and Nos. 4 to 8 and Nos. 11 to 16 are rolled from 10 mm to 5 mm by hot rolling. The sheet thickness was rolled from 5 mm to 2.0 mm by hot rolling (third step).

Figure 0005017719
Figure 0005017719

次に、得られたNo.1〜16の試験片のうち、No.1〜11,No.13については500℃×1hの熱処理を実施し、No.12,No.14〜16については、600℃×1hの熱処理を実施した(第4の工程)。得られた試験片のRD面,TD面についてX線回折を行い、SRDとSTDを測定した。
X線回折強度の測定条件は、以下の通りである。
管球:Cu、管電圧:40KV、管電流:30mA、サンプリング幅:0.002°をクロメーター使用、試料ホルダー:AL
その結果、No.1〜11,No.13は、1≦SRD ≦3、1≦STD ≦3を満足したが、No.12,No.14〜16は、1≦SRD ≦3、1≦STD ≦3を満足しなかった。
なお、X線回折測定条件は、上記条件に限定されるものではなく、試料の種類
に応じて適宜変更される。
Next, among No. 1 to 16 obtained test pieces, No. 1 to 11 and No. 13 were subjected to heat treatment at 500 ° C. × 1 h, and No. 12 and No. 14 to 16 were A heat treatment at 600 ° C. × 1 h was performed (fourth step). X-ray diffraction was performed on the RD surface and TD surface of the obtained test piece, and SRD and STD were measured.
The measurement conditions for the X-ray diffraction intensity are as follows.
Tube: Cu, tube voltage: 40 KV, tube current: 30 mA, sampling width: 0.002 ° using chromometer, sample holder: AL
As a result, No. 1 to 11 and No. 13 satisfied 1 ≦ S RD ≦ 3 and 1 ≦ S TD ≦ 3 , while No. 12 and No. 14 to 16 were 1 ≦ S RD ≦ 3 , 1 ≦ S TD ≦ 3 was not satisfied.
Note that the X-ray diffraction measurement conditions are not limited to the above conditions, and are appropriately changed according to the type of the sample.

このようにして得られたNo.1〜16について冷間圧延(第5の工程)を、No.1〜8、No.12については、熱処理(第4の工程)後の圧延加工率が30%以上になるように、No.9〜11、No.13〜16については熱処理(第4の工程)後の圧延加工率が30%未満になるように圧延加工を実施して、0.20mmの板厚に仕上げた。   For No. 1 to 16 obtained in this way, cold rolling (fifth step) was performed, and for No. 1 to 8 and No. 12, the rolling rate after heat treatment (fourth step) was 30. % No. 9 to 11 and No. 13 to 16 were rolled so that the rolling rate after heat treatment (fourth step) was less than 30%, and 0.20 mm Finished to plate thickness.

最後に、300℃×1hの熱処理(第6の工程)を実施して、評価用のサンプルとした。
このようにして得られたサンプルについて、SRD、STD、SRD×STDを測定した。さらに、これらのサンプルについて端子形状の連続プレス加工を実施し、材料のバリ高さが25μmを越えた段階でプレス加工を止めて、ここまでのショット数を最大ショット数とした。
Finally, a heat treatment (sixth step) at 300 ° C. × 1 h was performed to obtain a sample for evaluation.
S RD , S TD , and S RD × S TD were measured for the samples thus obtained. Furthermore, the terminal-shaped continuous press processing was implemented about these samples, the press processing was stopped when the burr | flash height of material exceeded 25 micrometers, and the number of shots so far was made into the maximum number of shots.

表1の結果から、次のことが明らかである。
本発明によるNo.5,7、8の合金は、SRD≧2かつSTD≧4かつSRD×STD≧16を満足しており、最大プレスショット数で200万ショットを越えており、プレス加工性に優れた銅基合金材料である。
From the results in Table 1, the following is clear.
The alloys of Nos. 5, 7, and 8 according to the present invention satisfy S RD ≧ 2, S TD ≧ 4, and S RD × S TD ≧ 16, and the maximum number of press shots exceeds 2 million shots. It is a copper-based alloy material with excellent press workability.

一方、第4の工程で、1≦SRD 3、1≦STD 3を満足しないNo.12は、STD≧2とSRD×STD≧16を満足しておらず、150万ショットを越えるとRD面のバリが30μmになった。第5の工程で圧延加工率が30%未満であるNo.9〜11,No.13のうち、No.9,10はSTD≧4とSRD×STD≧16を満足しておらず、各最大ショット数を越えるとTD面のバリが25μmを越え、No.11,13は、SRD≧2,STD≧4,SRD×STD≧16のすべてを満足しておらず、100万ショットに満たないうちにRD面,TD面のバリが25μmを越えた。 On the other hand, No. 12 which does not satisfy 1 ≦ S RD 3 and 1 ≦ S TD 3 does not satisfy S TD ≧ 2 and S RD × S TD ≧ 16 in the fourth step, and 1.5 million Beyond the shot, the burr on the RD surface was 30 μm. Of No. 9 to 11 and No. 13 in which the rolling process rate is less than 30% in the fifth step, No. 9 and 10 do not satisfy S TD ≧ 4 and S RD × S TD ≧ 16. When the maximum number of shots is exceeded, the burr on the TD surface exceeds 25 μm, and Nos. 11 and 13 do not satisfy all of S RD ≧ 2, S TD ≧ 4, S RD × S TD ≧ 16, Before reaching 1 million shots, the burr on the RD and TD surfaces exceeded 25 μm.

第4の工程で、1≦SRD 3かつ1≦SRD 3を満足せず、なおかつ第5の工程で圧延加工率が30%未満であるNo.14〜16のうち、No.14と15は、STD≧2とSRD×STD≧16を満足しておらず、100万ショットに達したところで、RD面のバリが25μmを越えた。また、No.16は、STD≧4を満足しておらず、100万ショット程度でTD面のバリが25μmを越えて、材料のカスがパンチとダイの間に付着して、プレスの継続ができなくなった。 Among the Nos. 14 to 16 that do not satisfy 1 ≦ S RD 3 and 1 ≦ S RD 3 in the fourth step, and the rolling process rate is less than 30% in the fifth step, No. 14 And 15 did not satisfy S TD ≧ 2 and S RD × S TD ≧ 16. When 1 million shots were reached, the burr on the RD surface exceeded 25 μm. No. 16 does not satisfy S TD ≧ 4, the burr on the TD surface exceeds 25 μm in about 1 million shots, and the residue of the material adheres between the punch and the die, and the press continues. Is no longer possible.

参考例
前記の表1中に示す合金No.4と市販のりん青銅合金(C5191 質別H:6.5mass%Sn、0.2mass%P、残部Cu)及び銅基合金(C7025 質別H:3.2mass%NI、0.70mass%SI、0.15mass%Mg、残部Cu)について、ビッカース硬さ、引張強さ、ばね限界値、導電率、プレス加工性及び曲げ加工性を評価した。
Reference Example Alloy No. 4 shown in Table 1 above and a commercially available phosphor bronze alloy (C5191 grade H: 6.5 mass% Sn, 0.2 mass% P, balance Cu) and copper base alloy (C7025 grade H: 3.2 mass) % NI, 0.70 mass% SI, 0.15 mass% Mg, balance Cu) were evaluated for Vickers hardness, tensile strength, spring limit value, conductivity, press workability and bending workability.

ビッカース硬さ、引張強さ、ばね限界値、導電率の測定は、各々、JIS Z2244、JIS Z 2241、JIS H 3130、JIS H 0505に準拠して行った。プレス加工性は、実施例1と同じ方法で、最大プレスショット数を測定し、評価した。曲げ加工性は、90°W曲げ試験(JIS H 3110に準拠)にて、内曲げ半径Rを0.08mm、曲げ半径Rと板厚tの比R/tを0.4として中央部の凸部表面が良好なものに○印、シワの発生したものには△印、割れが発生したものには×印として評価した。結果を表2に示す。   The measurements of Vickers hardness, tensile strength, spring limit value, and conductivity were performed according to JIS Z2244, JIS Z2241, JIS H3130, and JIS H0505, respectively. The press workability was evaluated by measuring the maximum number of press shots in the same manner as in Example 1. The bending workability is 90 ° W bending test (conforming to JIS H 3110), the inner bending radius R is 0.08 mm, the ratio R / t of the bending radius R and the plate thickness t is 0.4, and the convex surface at the center is Evaluation was made with good marks as ◯, wrinkled marks as △ marks, and cracks as x marks. The results are shown in Table 2.

Figure 0005017719
Figure 0005017719

表2から、上記No.4の銅基合金は、従来の代表的なコネクタ、スイッチ、リレー用の銅基合金C5191、C7025と比較して、ビカース硬さ、引張強さ、ばね限界値、導電率、プレス加工性、曲げ加工性のバランスに優れていることが分かる。   From Table 2, the copper base alloy of No. 4 is Vickers hardness, tensile strength, spring limit value, electrical conductivity, compared with conventional copper base alloys C5191 and C7025 for typical connectors, switches and relays. It turns out that it is excellent in the balance of rate, press workability, and bending workability.

以上のように、本発明はプレス加工性に優れたコネクタ、スイッチ、リレー用の銅または銅基合金を得たものであり、近年の家電製品、情報通信機器や自動車用部品の高密度実装化に伴った材料の薄肉化、細線化と、プレスの金型寿命向上により、コストダウンを大幅に実現できる銅基合金を提供するものである。 As described above, the present invention has obtained copper or a copper-based alloy for connectors, switches, and relays excellent in press workability, and has achieved high-density mounting of recent home appliances, information communication equipment, and automotive parts. Accordingly, the present invention provides a copper-based alloy plate that can realize a significant cost reduction by thinning and thinning the material and improving the press die life.

Claims (3)

1.0〜21.1mass%のZnと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上とを総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなる銅基合金で、かつ材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ材料の加工方向に平行な断面のX線回折強度でSTD≧4RD×STD≧16であることを特徴とするプレス加工性に優れた銅基合金
ただし、
Figure 0005017719
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STDは材料の加工方向に平行な断面のX線回折強度について測定した値で、I{111}は{111}の回折強度、I{222}は{222}の回折強度、I{200}は{200}の回折強度である。
It contains 1.0 to 21.1 mass% of Zn and 4 to 25 mass% in total of one or more selected from Sn, Ni, Si, Fe, and Al, with the remainder being Cu and inevitable impurities S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material, and S TD ≧ 4 , S RD × S in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material. A copper-based alloy plate excellent in press workability, wherein TD ≧ 16.
However,
Figure 0005017719
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111} }, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.
1.0〜21.1mass%のZnと、更にSn、Ni、Si、Fe、Alのうちから選ばれる1種または2種以上とを総量で4〜25mass%含み、残部Cuおよび不可避的不純物からなる銅基合金のインゴットを50%以上の圧延加工率で冷間圧延することで所定の板厚にした材料を350〜750℃の温度で熱処理を施して、材料の加工方向に垂直な断面のX線回折強度において1≦SRD≦3かつ材料の加工方向に平行な断面のX線回折強度で1≦STD≦3として、しかる後に圧延加工率30%以上の最終の冷間圧延と、再結晶温度未満の低温焼鈍を組み合わせることで、材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ材料の加工方向に平行な断面のX線回折強度でSTD≧4、SRD×STD≧16とすることを特徴とするプレス加工性に優れた銅基合金の製造方法。
ただし、
Figure 0005017719
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STDは材料の加工方向に平行な断面のX線回折強度について測定した値で、I{111}は{111}の回折強度、I{222}は{222}の回折強度、I{200}は{200}の回折強度である。
It contains 1.0 to 21.1 mass% of Zn and 4 to 25 mass% in total of one or more selected from Sn, Ni, Si, Fe, and Al, with the remainder being Cu and inevitable impurities the ingot of the copper base alloy consisting of, heat treated materials were to a predetermined thickness by cold rolling at a rolling rate of 50% or more at a temperature of 350-750 ° C., perpendicular to the working direction of the material Final cold rolling with 1 ≦ S RD ≦ 3 in the X-ray diffraction intensity of the cross section and 1 ≦ S TD ≦ 3 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material. And low temperature annealing below the recrystallization temperature, S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material and S TD ≧ in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material. 4, S RD × S TD Method for producing a copper base alloy sheet having excellent press formability, characterized in that a ≧ 16.
However,
Figure 0005017719
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111} }, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.
前記最終の冷間圧延の圧延加工率を50%以上とする請求項2記載のプレス加工性に優れた銅基合金の製造方法。 The manufacturing method of the copper base alloy plate excellent in press workability of Claim 2 which makes the rolling rate of the said last cold rolling 50% or more.
JP2007073983A 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same Expired - Lifetime JP5017719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073983A JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073983A JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33806999A Division JP4009981B2 (en) 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability

Publications (2)

Publication Number Publication Date
JP2007186799A JP2007186799A (en) 2007-07-26
JP5017719B2 true JP5017719B2 (en) 2012-09-05

Family

ID=38342156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073983A Expired - Lifetime JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5017719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260992B2 (en) * 2008-03-19 2013-08-14 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP4677505B1 (en) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6050588B2 (en) * 2012-01-11 2016-12-21 住友電気工業株式会社 Copper alloy wire
JP6845885B2 (en) * 2019-03-27 2021-03-24 Jx金属株式会社 Cu-Ni-Si copper alloy strip with excellent mold wear resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
JP3748709B2 (en) * 1998-04-13 2006-02-22 株式会社神戸製鋼所 Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
JP4056175B2 (en) * 1999-05-13 2008-03-05 株式会社神戸製鋼所 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability

Also Published As

Publication number Publication date
JP2007186799A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
US10392680B2 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
TWI502084B (en) Copper alloy for electronic/electric device, component for electronic/electric device, and terminal
JP6388437B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP4177221B2 (en) Copper alloy for electronic equipment
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
EP2374907B1 (en) Copper alloy sheet for electrical/electronic components, and method for producing same
JP6464740B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
TW202449184A (en) Copper alloy material, resistor material for resistor and resistor
JP2016125092A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JPH04165034A (en) High conductivity copper alloy containing low iron and low zinc

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

R150 Certificate of patent or registration of utility model

Ref document number: 5017719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term