[go: up one dir, main page]

JP5016872B2 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP5016872B2
JP5016872B2 JP2006233039A JP2006233039A JP5016872B2 JP 5016872 B2 JP5016872 B2 JP 5016872B2 JP 2006233039 A JP2006233039 A JP 2006233039A JP 2006233039 A JP2006233039 A JP 2006233039A JP 5016872 B2 JP5016872 B2 JP 5016872B2
Authority
JP
Japan
Prior art keywords
film
filter
layer
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006233039A
Other languages
Japanese (ja)
Other versions
JP2008058438A (en
Inventor
真志 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2006233039A priority Critical patent/JP5016872B2/en
Priority to CN2007101471238A priority patent/CN101135743B/en
Priority to US11/847,576 priority patent/US8665520B2/en
Priority to CN201210195796.1A priority patent/CN102692662B/en
Publication of JP2008058438A publication Critical patent/JP2008058438A/en
Application granted granted Critical
Publication of JP5016872B2 publication Critical patent/JP5016872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diaphragms For Cameras (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Description

本発明は、ビデオカメラ或いはスチルカメラ等の撮影光学系に使用する光学フィルタに関するものである。   The present invention relates to an optical filter used in a photographing optical system such as a video camera or a still camera.

従来から、ビデオカメラ或いはデジタルスチルカメラ等の撮影系には、CCDやCMOSセンサ等から成る固体撮像素子への入射光量を制御するための光量絞り装置が設けられている。この光量絞り装置は被写界が明るくなるに従い、より小さく絞り込まれる構造になっている。   2. Description of the Related Art Conventionally, a photographing system such as a video camera or a digital still camera has been provided with a light amount diaphragm device for controlling the amount of light incident on a solid-state imaging device such as a CCD or CMOS sensor. This light amount diaphragm device has a structure in which the aperture is narrowed down as the field becomes brighter.

従って、快晴時や高輝度の被写体を撮影する際には、絞りは所謂小絞り状態となり、絞りのハンチング現象や光の回折現象等の影響を受け易く、像性能に劣化を生じさせる虞れがある。   Therefore, when shooting a clear or high-brightness subject, the aperture is in a so-called small aperture state, which is easily affected by the hunting phenomenon of the aperture, the light diffraction phenomenon, etc. is there.

これに対する対策として、絞りの近傍にND(Neutral Density)フィルタを配置したり、絞り羽根に直接NDフィルタを貼り付けることにより光量の制御を行っている。これにより被写界の明るさが同一であっても、絞りの開口をより大きくできるような工夫をしている。   As countermeasures against this, the amount of light is controlled by disposing an ND (Neutral Density) filter in the vicinity of the stop, or by directly attaching an ND filter to the stop blade. In this way, even if the brightness of the object scene is the same, a contrivance is made so that the aperture of the diaphragm can be made larger.

近年では、撮像素子の感度が向上し、NDフィルタの濃度を濃くすることにより、光の透過率を更に低下させ、高感度の撮像素子を使用しても、明るい被写界に対して絞りの開口が小さくなり過ぎないようにする改善がなされている。また、NDフィルタを形成する基板には、ガラス等の透明基板も用いられるが、任意形状への加工性や、小型化・軽量化等の要望に伴い、近年ではプラスチック材料から成る基板も用いられてきている。   In recent years, the sensitivity of the image sensor has improved, and the density of the ND filter has been increased to further reduce the light transmittance. Improvements have been made to prevent the opening from becoming too small. A transparent substrate such as glass is also used as a substrate for forming the ND filter. However, in recent years, a substrate made of a plastic material has been used due to demands for processing into an arbitrary shape, miniaturization, and weight reduction. It is coming.

NDフィルタの一般的な作製方法としては、真空蒸着法やスパッタ法等により、プラスチックやガラス等の透明基板上に多層膜を生成することにより作製している。   As a general manufacturing method of the ND filter, a multi-layer film is formed on a transparent substrate such as plastic or glass by a vacuum deposition method, a sputtering method, or the like.

また、NDフィルタにおいても様々な理由から高精度化への要求が強まっており、その中でも概ねλ=400〜700nmまでの可視光波長領域全域における分光反射率を低減することが1つの大きな課題となっている。これは、最近の固体撮像素子の更なる高感度化、高精細化等に伴い、従来と同程度の反射率の低減を図ったとしても、撮影画像にゴーストやフレア等の不具合が生ずる可能性が高まってきたからである。   In addition, there is an increasing demand for higher accuracy in ND filters for various reasons. Among them, reducing the spectral reflectance in the entire visible light wavelength region of approximately λ = 400 to 700 nm is one major issue. It has become. This is because with the recent increase in sensitivity and resolution of solid-state image sensors, there is a possibility that defects such as ghosts and flares may occur in the captured image even if the reflectance is reduced to the same level as before. This is because of the increase.

NDフィルタの反射を低減させる方法としては、一般に真空蒸着法等によりNDフィルタの基板表面に反射防止膜を成膜している。ただし、基板表面に単層膜から成る反射防止膜を成膜させた場合においては、特定の波長では表面反射を低く抑制することも可能であるが、その波長以外の波長領域においては、反射が大きくなってしまう欠点がある。そこで、例えばSiO2、MgF2、Nb25、TiO2、Ta25、ZrO2等の屈折率の異なる数種類の薄膜を積層し、特許文献1に示すような多層膜を形成することにより、任意の波長領域の反射を抑制することが広く行われている。 As a method of reducing the reflection of the ND filter, an antireflection film is generally formed on the substrate surface of the ND filter by a vacuum vapor deposition method or the like. However, when an antireflection film consisting of a single layer film is formed on the surface of the substrate, it is possible to suppress the surface reflection at a specific wavelength, but in a wavelength region other than that wavelength, reflection is not possible. There is a drawback that becomes larger. Therefore, for example, several types of thin films having different refractive indexes such as SiO 2 , MgF 2 , Nb 2 O 5 , TiO 2 , Ta 2 O 5 , and ZrO 2 are stacked to form a multilayer film as shown in Patent Document 1. Therefore, suppression of reflection in an arbitrary wavelength region is widely performed.

特開平8−075902号公報JP-A-8-0795902

しかしながら、上述のような多層膜で形成した反射防止膜の場合には、単層膜で形成した反射防止膜よりは広い波長域の反射を低減することができるが、やはり特定の波長領域でしか反射を抑制することができないことには変わりはない。より広い波長領域の反射低減を実現するには、多層膜を構成する薄膜材料が限定されている理由から、相当の層数を必要としたり、任意の光学特性を得るには膜設計値が複雑になってしまう等の問題がある。更には、光の入射角の変化や偏光状態の変化により、光学特性が大きく変化してしまう等の多くの欠点がある。   However, in the case of an antireflection film formed of a multilayer film as described above, reflection in a wider wavelength range can be reduced than in the case of an antireflection film formed of a single layer film, but again only in a specific wavelength region. The fact that reflection cannot be suppressed remains the same. In order to reduce reflection in a wider wavelength range, the number of layers is limited and the film design values are complicated to obtain arbitrary optical characteristics because the thin film materials that make up the multilayer film are limited. There are problems such as becoming. Furthermore, there are many drawbacks such as a large change in optical characteristics due to a change in incident angle of light and a change in polarization state.

カメラの光量調節装置を含めた撮像光学系を通過した光線が、固体撮像素子の表面に結像するとき、一部の光線が素子表面や後群レンズの表面や鏡筒壁面で反射し、光量絞り装置側に戻って来る場合がある。この反射光がNDフィルタで再反射して固体撮像素子に再入射することにより、上述の不具合が発生する。これを防止するために、通常は反射防止膜を施してあるND膜面を固体撮像素子側になるように配置するが、上述したNDフィルタ単体の時のように、ND膜を透過し反対側の基板と大気の境界面での反射は防止できない。   When light rays that have passed through the imaging optical system including the camera's light intensity adjustment device form an image on the surface of the solid-state image sensor, some of the light rays are reflected on the element surface, the surface of the rear lens group, and the lens barrel wall surface. There is a case of returning to the diaphragm side. The reflected light is re-reflected by the ND filter and re-enters the solid-state imaging device, thereby causing the above-described problem. In order to prevent this, the ND film surface to which the antireflection film is applied is usually arranged so as to be on the solid-state image sensor side. However, as in the case of the ND filter alone described above, the ND film is transmitted to the opposite side. Reflection at the interface between the substrate and the atmosphere cannot be prevented.

また、上述したような反射防止膜は、片面側にのみ形成されたNDフィルタのような光学フィルタの形成時に同時に形成された場合において、反射防止膜を施した面の反射は抑制することができる。しかし、基板を透過して反対側の面での反射を防止することはできない。つまり、光学フィルタ層を透過し更に基板を透過した光は、再度大気中に接する面において反射し、入射側に戻ることになる。これにより、基板の屈折率等によって多少異なるが、大気中で反射を測定した場合には、最適な膜設計であったとしても、概ね4%程度の反射は理論的にも残ってしまう。   Further, when the antireflection film as described above is formed simultaneously with the formation of an optical filter such as an ND filter formed only on one side, reflection of the surface provided with the antireflection film can be suppressed. . However, it is not possible to prevent reflection on the opposite surface through the substrate. That is, the light that has passed through the optical filter layer and further passed through the substrate is reflected again on the surface in contact with the atmosphere and returns to the incident side. As a result, although reflection varies slightly depending on the refractive index of the substrate and the like, when reflection is measured in the atmosphere, even if it is an optimum film design, reflection of approximately 4% remains theoretically.

従って、表面側に設けた反射防止膜だけでは抑制できる反射には限界がある。そこで、基板の両面に反射防止膜を成膜する手段も考えられるが、NDフィルタのような光学フィルタの場合には、本来の目的である機能と並行して反射防止を考慮するための膜構成が複雑になり、層数が増大し膜厚が厚くなる。結果として、成膜工程上で発生する熱の負荷が大きくなったり、積層された膜そのものにより発生する応力が大きくなり、反りやクラックなどの別の不具合が生ずる可能性がある。   Therefore, there is a limit to the reflection that can be suppressed only by the antireflection film provided on the surface side. Therefore, a means for forming an antireflection film on both sides of the substrate is also conceivable. However, in the case of an optical filter such as an ND filter, a film configuration for considering antireflection in parallel with the function originally intended. Becomes complicated, the number of layers increases, and the film thickness increases. As a result, there is a possibility that the heat load generated in the film forming process becomes large, or the stress generated by the laminated film itself becomes large, thereby causing other problems such as warpage and cracks.

これらの問題を解決するには、基板の材質や厚さ等を検討する必要があり、使用できる基板が非常に限定されたものになってしまう。   In order to solve these problems, it is necessary to examine the material, thickness, etc. of the substrate, and the substrates that can be used are very limited.

本発明の目的は、上述の課題を解消し、分光反射率を低減し、フレアやゴースト等の画像への不具合の発生を低減した光学フィルタを提供することにある。   An object of the present invention is to provide an optical filter that solves the above-described problems, reduces the spectral reflectance, and reduces the occurrence of defects such as flare and ghost.

また、所望の波長領域全域での反射を低減することで、反射光に起因した不具合を低減することができる光学フィルタを提供することにある。   Another object of the present invention is to provide an optical filter that can reduce defects caused by reflected light by reducing reflection in the entire desired wavelength region.

上記目的を達成するための本発明に係る光学フィルタの技術的特徴は、透明基板の一方の面にND層を設け、その表層に反射防止膜を成膜し、更に前記反射防止膜の上層及び前記透明基板の他方の面に、多数の反射防止構造体から成る無反射周期層をそれぞれ形成し、前記無反射周期層は反射防止の対象とする光の波長よりも短い周期の間隔で前記反射防止構造体を配列したことにある。 The technical feature of the optical filter according to the present invention for achieving the above object is that an ND layer is provided on one surface of a transparent substrate, an antireflection film is formed on the surface layer, and an upper layer of the antireflection film is provided. A non-reflective periodic layer made up of a number of anti-reflection structures is formed on the other surface of the transparent substrate, and the non-reflective periodic layer is reflected at intervals of a period shorter than the wavelength of light targeted for anti-reflection. The prevention structure is arranged.

本発明に係る光学フィルタによれば、可視波長領域全域で分光反射率を低減し、反射光に起因したフレアやゴースト等の画像への悪影響を低減することができる。   According to the optical filter of the present invention, the spectral reflectance can be reduced over the entire visible wavelength region, and adverse effects on images such as flare and ghost caused by reflected light can be reduced.

本発明を図示の実施例を基に詳細に説明する。
図1は撮影光学系の構成図を示し、レンズ1、光量絞り装置2、レンズ3〜5、ローパスフィルタ6、CCD等から成る固体撮像素子7が順次に配列されている。光量絞り装置2においては、絞り羽根支持板8に一対の絞り羽根9a、9bが可動に取り付けられている。絞り羽根9aには、絞り羽根9a、9bにより形成される略菱形形状の開口部を通過する光量を減光するためのNDフィルタ10が接着されている。
The present invention will be described in detail with reference to the illustrated embodiments.
FIG. 1 is a configuration diagram of a photographing optical system, in which a solid-state image pickup device 7 including a lens 1, a light amount diaphragm device 2, lenses 3 to 5, a low-pass filter 6, a CCD, and the like are sequentially arranged. In the light quantity diaphragm device 2, a pair of diaphragm blades 9 a and 9 b are movably attached to the diaphragm blade support plate 8. An ND filter 10 for reducing the amount of light passing through the substantially rhombus-shaped opening formed by the diaphragm blades 9a and 9b is bonded to the diaphragm blade 9a.

しかし、濃度が薄いNDフィルタ10の場合には、濃度が薄くなるに従い反射率が高くなる傾向が強く、反射光に起因した様々な不具合が発生する可能性が高まる。   However, in the case of the ND filter 10 having a low density, the reflectance tends to increase as the density decreases, and the possibility of various problems due to reflected light increases.

経験的には、概ね濃度が1.0以下、透過率に換算すると10%以上のNDフィルタ10であると、反射に起因する不具合を発生させてしまうことになる。更には、濃度が0.5以下、透過率換算で約31.6%以上になると、その可能性が著しく高くなる傾向がある。なお、濃度(D)と透過率(T)との相関式は D=Log10(1/T)である。 Empirically, if the ND filter 10 has a density of approximately 1.0 or less and a transmittance of 10% or more, a defect due to reflection is caused. Furthermore, when the concentration is 0.5 or less and the transmittance is about 31.6% or more, the possibility tends to be remarkably increased. The correlation equation between the density (D) and the transmittance (T) is D = Log 10 (1 / T).

このような理由から、濃度1.0以下の濃度のNDフィルタ10においては、ND膜の他に反射防止膜をND膜の裏面に成膜する等の何らかの反射抑制手段が必要となる場合が多い。   For this reason, the ND filter 10 having a concentration of 1.0 or less often requires some reflection suppressing means such as forming an antireflection film on the back surface of the ND film in addition to the ND film. .

図2はNDフィルタ10のND膜の膜構成図を示している。透明プラスチック材から成る基板11上の第1、3、5、7、9層にAl23膜12、第2、4、6、8、10層にTixOy膜13が交互に積層され、最表層である第11層にMgF2膜14を成膜した計11層のND膜15が成膜されている。 FIG. 2 shows a film configuration diagram of the ND film of the ND filter 10. Al 2 O 3 films 12 are laminated on the first, third , fifth, seventh and ninth layers on the substrate 11 made of a transparent plastic material, and TixOy films 13 are alternately laminated on the second , fourth, sixth, eighth and tenth layers. A total of eleven ND films 15 each having a MgF 2 film 14 formed on the eleventh surface layer are formed.

このND膜15は可視光波長領域における分光透過率の直線性や、基板11にプラスチックフィルムを使用していることから懸念される膜応力、成膜工程全体として発生する熱応力の問題等を十分に考慮して設計されている。各層の膜厚等の設計値は異なるが、Al23膜12の任意の数層又は全てのAl23膜12をSiO2膜に置換してもよい。そして、SiO2膜又はAl23膜12とTixOy膜13とを相互に積層する構成であっても、ほぼ同様の光学特性を有するND膜15を作製することが可能である。 This ND film 15 has sufficient problems such as the linearity of spectral transmittance in the visible light wavelength region, the film stress which is a concern due to the use of a plastic film for the substrate 11, and the problem of thermal stress generated as a whole film forming process. It is designed in consideration of. Design values such as the film thickness of each layer is different, any number layers or all of the Al 2 O 3 film 12 of the Al 2 O 3 film 12 may be replaced with the SiO 2 film. Even when the SiO 2 film or the Al 2 O 3 film 12 and the TixOy film 13 are stacked on each other, it is possible to produce the ND film 15 having substantially the same optical characteristics.

最表層のMgF2膜14は光学膜厚n×d(n:屈折率、d:物理膜厚)で、λ=540nmとしてλ/4の厚さに成膜する。この最表層のMgF2膜14は、ND膜15面の反射率低減を目的として構成された反射防止膜であり、屈折率nが可視域の波長域で1.5以下のものとして選択されている。本実施例においては、反射防止膜にMgF2膜14を使用しているが、反射率低減を主目的としているため、屈折率の小さい材料であれば良く、例えばSiO2膜等を使用した場合であっても、ほぼ同様のND膜15を作製することができる。 The outermost MgF 2 film 14 has an optical film thickness of n × d (n: refractive index, d: physical film thickness), and is formed to a thickness of λ / 4 with λ = 540 nm. This outermost MgF 2 film 14 is an antireflection film configured for the purpose of reducing the reflectivity of the ND film 15, and is selected as having a refractive index n of 1.5 or less in the visible wavelength range. Yes. In this embodiment, the MgF 2 film 14 is used as the antireflection film. However, since the main purpose is to reduce the reflectance, any material having a low refractive index may be used. For example, a SiO 2 film or the like is used. Even so, a substantially similar ND film 15 can be produced.

本実施例における基板11としては、任意形状への加工性等の理由から透明プラスチック材を使用している。具体的には、耐熱性、柔軟性、更にはコスト的に基板材料として優れているノルボルネン系樹脂であるArton(JSR社製)を使用し、後述する無反射周期構造体を含まない部分の厚さが、200μmのフィルムを選択している。   As the substrate 11 in this embodiment, a transparent plastic material is used for reasons such as workability into an arbitrary shape. Specifically, Arton (manufactured by JSR), which is a norbornene-based resin that is excellent as a substrate material in terms of heat resistance, flexibility, and cost, has a thickness that does not include a non-reflective periodic structure described later. However, a 200 μm film is selected.

なお、本実施例においては基板11にArton(JSR社製)を選択したが、これに限らずZeonex、Zeonor(日本ゼオン社製、商品名)等の他のノルボルネン系樹脂を使用してもよい。更には、ノルボルネン系樹脂以外のPMMA、ポリカーボネート、PET、PEN、PC、POポリイミド系樹脂等の様々なプラスチック基板を使用することも可能である。   In this embodiment, Arton (manufactured by JSR) is selected as the substrate 11, but the present invention is not limited to this, and other norbornene resins such as Zeonex and Zeonor (manufactured by ZEON Corporation, trade name) may be used. . Furthermore, various plastic substrates such as PMMA, polycarbonate, PET, PEN, PC, and PO polyimide resin other than norbornene resin can be used.

一般的には、本実施例のようなNDフィルタ10として使用される基板11の材質としては、耐熱性(ガラス転移点Tg)が高く、曲げ弾性が大きく、更には可視光波長域において透明性が高く、吸水率が低い材料がより好ましい。本実施例のNDフィルタ10のように、薄いプラスチックフィルムから成る基板11上に成膜する場合には、上述した耐熱性や曲げ弾性、更にはコスト的な要因等を考慮すると、ノルボルネン系樹脂が最も適している材料の1つである。   In general, the material of the substrate 11 used as the ND filter 10 as in this embodiment has high heat resistance (glass transition point Tg), high bending elasticity, and further transparency in the visible light wavelength range. A material having a high water absorption rate is preferable. When the film is formed on the substrate 11 made of a thin plastic film like the ND filter 10 of the present embodiment, the norbornene-based resin is formed in consideration of the above-described heat resistance, bending elasticity, and cost factors. One of the most suitable materials.

近年では、光の波長よりも短い周期構造を有する「Moth eye」と呼ばれるSWS(サブ波長格子)が、半導体やMEMS(Micro Electro Mechanical System)等に用いられている微細加工技術の向上と共に作製可能になっている。例えば、蛾の目を肉眼で観察した場合に黒く見える現象は、反射が抑制されていることを示唆しており、SWSにより表面反射が抑制されているためである。このことは、1967年にC.G.Bernhardによって蛾の目の表面に形成された数100nm単位の凹凸構造の反射率を測定することにより発見された。このSWSは入射する光の強度の殆どが0次回折光として物質内に透過し、0次以外の回折光を殆ど生じさせることがなく、任意形状への生成が可能となっている。 In recent years, SWS (sub-wavelength grating) called “ Moth eye”, which has a periodic structure shorter than the wavelength of light, can be manufactured along with improvements in microfabrication technology used in semiconductors, MEMS (Micro Electro Mechanical System), etc. It has become. For example, when the eyelids are observed with the naked eye, the phenomenon of appearing black suggests that the reflection is suppressed, and the surface reflection is suppressed by SWS. This is because CG. It was discovered by measuring the reflectance of the concavo-convex structure of several hundred nm unit formed on the surface of the eye of Bernhard by Bernhard. In this SWS, most of the intensity of incident light is transmitted into the substance as 0th-order diffracted light, and hardly generates diffracted light other than the 0th-order, and can be generated into an arbitrary shape.

図3はSWSの1つである円錐型の微細凹凸周期構造体21の斜視図を示し、上述したSWSの特徴を応用しフレネル反射を小さくする目的で表面に生成されている。また、微細凹凸周期構造体21の代りに、図4に示すような角錐型の微細凹凸周期構造体22を用いてもよい。図5は多数の円錐型の微細凹凸周期構造体21から成る無反射周期層23を、基板11の反射を抑制したい面に構成した場合の斜視図を示している。   FIG. 3 is a perspective view of a conical fine uneven periodic structure 21 which is one of SWS, and is generated on the surface for the purpose of reducing Fresnel reflection by applying the above-described features of SWS. Further, instead of the fine uneven periodic structure 21, a pyramid-shaped fine uneven periodic structure 22 as shown in FIG. 4 may be used. FIG. 5 shows a perspective view in the case where the non-reflective periodic layer 23 composed of a large number of conical fine uneven periodic structures 21 is formed on the surface on which the reflection of the substrate 11 is desired to be suppressed.

また、図6に示すような多数の逆円錐型の微細凹凸周期構造体24を用い、図7に示すように、基板11の反射を抑制したい面に無反射周期層25を構成してもよい。これにより、光が入射する前の媒質と後の媒質との光屈折率を人工的に滑らかに接続する分布とし反射を低減することもできる。   In addition, as shown in FIG. 7, a non-reflective periodic layer 25 may be formed on the surface on which the reflection of the substrate 11 is to be suppressed, using a large number of inverted conical fine irregular periodic structures 24 as shown in FIG. . Thereby, it is possible to reduce reflection by using a distribution in which the refractive indices of the medium before and after the incident light are smoothly connected artificially.

これらの微細凹凸周期構造体21、22、24の作製に関しては、射出成型法や熱硬化樹脂成型法、UV硬化樹脂を使用した2P成型法等の様々な方法が考えられるが、本実施例では射出成型法により作製している。射出成型法は雄型と雌型とから構成される金型のキャビティ部に、溶融したプラスチック材料をスクリュにより高速・高圧で充填し、急冷させ金型から取り出すことにより、所望の形状を有した成型品を得る方法である。   Various methods such as an injection molding method, a thermosetting resin molding method, and a 2P molding method using a UV curable resin can be considered for the production of these fine uneven periodic structures 21, 22, 24. It is made by injection molding. The injection molding method had a desired shape by filling the mold cavity composed of male and female molds with molten plastic material at high speed and high pressure with a screw, rapidly cooling and taking out from the mold. This is a method for obtaining a molded product.

本実施例においては、図3に示すような円錐型形状の微細凹凸周期構造体21から成る無反射周期層23を採用している。NDフィルタ10の用途を考慮し、概略λ=400〜700nmまでの可視光波長領域の反射率を低減することを目的とし、高さ250nm、周期220nmで高さと周期の比(アスペクト比)が1以上となるように設計している。   In the present embodiment, a non-reflective periodic layer 23 made of a conical fine uneven periodic structure 21 as shown in FIG. 3 is employed. Considering the application of the ND filter 10, the objective is to reduce the reflectance in the visible light wavelength region of approximately λ = 400 to 700 nm, and the ratio of height to period (aspect ratio) is 1 at a height of 250 nm and a period of 220 nm. It is designed to be the above.

図4に示す角錐型の微細凹凸周期構造体22や、図6に示す逆円錐型の微細凹凸周期構造体24においても、設計値は微妙に異なるが、ほぼ同様の反射低減効果を得ることができる。従って、周期やアスペクト比等のターゲット値に対して一定の条件を満足していれば、何らかの拘束条件や、微細凹凸周期構造体の作製の難易度等の様々な要因から最適な形状を選択することが可能である。   The pyramid-shaped fine uneven periodic structure 22 shown in FIG. 4 and the inverted conical fine uneven periodic structure 24 shown in FIG. 6 also have substantially the same reflection reduction effect although the design values are slightly different. it can. Therefore, if a certain condition is satisfied with respect to a target value such as a period and an aspect ratio, an optimum shape is selected based on various factors such as a certain constraint condition and the difficulty of manufacturing a fine uneven periodic structure. It is possible.

図3に示す微細凹凸周期構造体21の場合には、その配列は図8(a)で示す正方配列や、図8(b)で示す六方配列等が考えられるが、六方配列の方が基板11の材料の露出面が少ないため、反射防止効果が高いと云われている。しかし、本実施例においては、微細凹凸周期構造体21の作製上の都合から、図8(a)に示す正方配列を使用している。   In the case of the fine uneven periodic structure 21 shown in FIG. 3, the arrangement may be the square arrangement shown in FIG. 8 (a), the hexagonal arrangement shown in FIG. 8 (b), or the like. Since the exposed surface of the material 11 is small, it is said that the antireflection effect is high. However, in this embodiment, the square arrangement shown in FIG. 8A is used for the convenience of manufacturing the fine uneven periodic structure 21.

図9は本実施例におけるNDフィルタ10の断面図を示し、基板11上に上述したような無反射周期層23が形成され、基板11の他面には真空蒸着法によりND膜15が成膜されている。そして、成膜区域の何れの領域においても濃度が0.6となる単濃度タイプのND膜15を成膜しても、反射防止機能を向上させることができる。また、図10に示すNDフィルタ10のように、基板11の両面に無反射周期層23を形成することもできる。   FIG. 9 is a cross-sectional view of the ND filter 10 in the present embodiment. The non-reflective periodic layer 23 is formed on the substrate 11 as described above, and the ND film 15 is formed on the other surface of the substrate 11 by vacuum evaporation. Has been. The antireflection function can be improved even if the single-concentration type ND film 15 having a concentration of 0.6 is formed in any region of the film formation area. Further, like the ND filter 10 shown in FIG. 10, the non-reflective periodic layer 23 can be formed on both surfaces of the substrate 11.

本実施例においては、面上にND膜15を形成しているが、これに限定されずNDフィルタ10以外の光学フィルタを生成する場合においては、目的とする薄膜を図2に示すND膜15の代りに積層すればよい。   In this embodiment, the ND film 15 is formed on the surface. However, the present invention is not limited to this, and when an optical filter other than the ND filter 10 is generated, the target thin film is the ND film 15 shown in FIG. What is necessary is just to laminate instead of.

本実施例においてND膜15の成膜に使用した真空蒸着法は、膜厚を比較的に容易に制御でき、かつ可視光波長領域において散乱が非常に小さく、分光透過率の波長依存性を小さい値に制御することが可能な利点を有している。しかし、真空蒸着法に限定されず、スパッタリング法、IAD法、IBS法、イオンプレーティング法、クラスタ蒸着法等の成膜方法においても成膜が可能であり、目的や条件等を考慮し、最も適当な成膜方法を選択すればよい。   In the present embodiment, the vacuum deposition method used for forming the ND film 15 can control the film thickness relatively easily, has very little scattering in the visible light wavelength region, and has less wavelength dependence of the spectral transmittance. It has the advantage that it can be controlled to a value. However, it is not limited to the vacuum deposition method, and it is possible to form a film by a film formation method such as sputtering method, IAD method, IBS method, ion plating method, cluster vapor deposition method, etc. An appropriate film forming method may be selected.

図11は作製したNDフィルタ10のND膜15面の可視光波長領域の分光反射率のグラフ図を示し、可視光波長領域全域において分光反射率が0.5%以下となっている。例えば、本実施例のNDフィルタ10と同様の膜構成で、無反射周期層23を有していないNDフィルタを比較すると、ND膜15面の可視光波長領域における分光反射率は最大で3%程度となる。このように、本実施例による無反射周期層23を備えたNDフィルタ10では反射率が大幅に低減される。   FIG. 11 is a graph showing the spectral reflectance in the visible wavelength region of the surface of the ND film 15 of the manufactured ND filter 10, and the spectral reflectance is 0.5% or less in the entire visible wavelength region. For example, when an ND filter having the same film configuration as that of the ND filter 10 of the present embodiment and not including the non-reflective periodic layer 23 is compared, the spectral reflectance in the visible light wavelength region of the ND film 15 surface is 3% at the maximum. It will be about. Thus, in the ND filter 10 provided with the non-reflective periodic layer 23 according to the present embodiment, the reflectance is significantly reduced.

これはNDフィルタ10に入射する光線のうち、大気とND膜15の境界、及びND膜15と基板11の境界における分光反射率が、積層されたND膜15のMgF2膜14により低く抑制される。そして、基板11と大気の境界、つまり光線の射出面での反射率は、無反射周期層23により低減されている。 This is because the spectral reflectance at the boundary between the atmosphere and the ND film 15 and the boundary between the ND film 15 and the substrate 11 among the light rays incident on the ND filter 10 is suppressed by the MgF 2 film 14 of the stacked ND film 15. The The reflectance at the boundary between the substrate 11 and the atmosphere, that is, the light exit surface, is reduced by the non-reflective periodic layer 23.

なお、本実施例はND膜15の面側を光線の入射側、無反射周期層23が形成されている面を射出側としたが、無反射周期層23を形成した場合に、この面を入射側としても同様の効果が得られる。外観においても、皺やクラック等の発生がなく、良好なNDフィルタ10が得られる。   In this embodiment, the surface side of the ND film 15 is the light incident side, and the surface on which the non-reflective periodic layer 23 is formed is the exit side. However, when the non-reflective periodic layer 23 is formed, this surface is Similar effects can be obtained on the incident side. Even in appearance, there is no occurrence of wrinkles or cracks, and a good ND filter 10 can be obtained.

図12はこのような特性を有するNDフィルタ10を使用した光量絞り装置の斜視図を示し、NDフィルタ10は絞り駆動部31により絞り羽根9a、9bの移動と共に、絞り地板開口部32内に出入り自在とされている。   FIG. 12 is a perspective view of a light quantity diaphragm device using the ND filter 10 having such characteristics. The ND filter 10 moves in and out of the diaphragm base plate opening 32 as the diaphragm blades 9a and 9b are moved by the diaphragm driving unit 31. It is supposed to be free.

この光量絞り装置をビデオカメラ又はデジタルスチルカメラに、図1のように適用することにより、ゴーストやフレアといったNDフィルタ10の反射光による不具合を低減することができる。   By applying this light quantity diaphragm device to a video camera or digital still camera as shown in FIG. 1, it is possible to reduce problems caused by reflected light of the ND filter 10 such as ghost and flare.

この本実施例に示すように、無反射周期層23をND膜15の反対側の面に形成することにより、全ての面での反射を低減でき、ゴーストやフレアといったNDフィルタ10の反射光による不具合を低減することができるようになる。   As shown in this embodiment, by forming the non-reflective periodic layer 23 on the surface on the opposite side of the ND film 15, reflection on all surfaces can be reduced, and the reflected light of the ND filter 10 such as ghost and flare is used. Defects can be reduced.

また、通常はNDフィルタ10に形成された反射防止膜であるMgF2膜14の分光反射率よりも、無反射周期層23の分光反射率の方が低いので、従来とは逆に無反射周期層23側を固体撮像素子7に向けて取り付けることにより、更に良好な分光反射率特性を得ることもできる。 Further, since the spectral reflectance of the non-reflective periodic layer 23 is usually lower than the spectral reflectance of the MgF 2 film 14 that is an antireflection film formed on the ND filter 10, the non-reflective period is contrary to the conventional case. By attaching the layer 23 side toward the solid-state imaging device 7, even better spectral reflectance characteristics can be obtained.

撮影光学系の構成図である。It is a block diagram of an imaging optical system. ND膜の膜構成図である。It is a film | membrane structure figure of ND film | membrane. 微細凹凸周期構造体の斜視図である。It is a perspective view of a fine uneven | corrugated periodic structure. 変形例の微細凹凸周期構造体の斜視図である。It is a perspective view of the fine uneven | corrugated periodic structure of a modification. 微細凹凸周期構造体を設けた基板の斜視図である。It is a perspective view of the board | substrate which provided the fine uneven | corrugated periodic structure. 変形例の微細凹凸周期構造体の斜視図である。It is a perspective view of the fine uneven | corrugated periodic structure of a modification. 微細凹凸周期構造体を設けた基板の斜視図である。It is a perspective view of the board | substrate which provided the fine uneven | corrugated periodic structure. 微細凹凸周期構造体の配列例の説明図である。It is explanatory drawing of the example of arrangement | sequence of a fine uneven | corrugated periodic structure. 微細凹凸周期構造体を有するNDフィルタの断面図である。It is sectional drawing of ND filter which has a fine uneven | corrugated periodic structure. 他の微細凹凸周期構造体を有するNDフィルタの断面図である。It is sectional drawing of the ND filter which has another fine uneven | corrugated periodic structure. NDフィルタの分光反射率のグラフ図である。It is a graph of the spectral reflectance of an ND filter. NDフィルタを使用した光量絞り装置の分解斜視図である。It is a disassembled perspective view of the light quantity aperture apparatus which uses ND filter.

符号の説明Explanation of symbols

10 NDフィルタ
11 基板
12 Al23
13 TixOy膜
14 MgF2
15 ND膜
21、22、24 微細凹凸周期構造体
23、25 無反射周期層
10 ND filter 11 substrate 12 Al 2 O 3 film 13 TixOy film 14 MgF 2 film 15 ND film 21, 22, 24 fine uneven periodic structure 23 and 25 non-reflective periodic layer

Claims (4)

透明基板の一方の面にND層を設け、その表層に反射防止膜を成膜し、更に前記反射防止膜の上層及び前記透明基板の他方の面に、多数の反射防止構造体から成る無反射周期層をそれぞれ形成し、前記無反射周期層は反射防止の対象とする光の波長よりも短い周期の間隔で前記反射防止構造体を配列したことを特徴とする光学フィルタ。 An ND layer is provided on one surface of the transparent substrate, an antireflection film is formed on the surface layer thereof, and an antireflection film comprising a number of antireflection structures on the upper layer of the antireflection film and the other surface of the transparent substrate. An optical filter characterized in that a periodic layer is formed, and the antireflective periodic layer is arranged at intervals of a period shorter than the wavelength of light to be antireflected. 前記透明基板は透明プラスチック基板としたことを特徴とする請求項1に記載の光学フィルタ。   The optical filter according to claim 1, wherein the transparent substrate is a transparent plastic substrate. 前記NDの濃度の最大値は可視波長領域で1.0以下としたことを特徴とする請求項1又は2に記載の光学フィルタ。 3. The optical filter according to claim 1, wherein the maximum value of the concentration of the ND layer is 1.0 or less in a visible wavelength region. 固体撮像素子と光量絞り装置を有する撮像光学系であって、請求項1〜3の何れか1つの請求項に記載の光学フィルタを前記光量絞り装置に備え、前記光学フィルタの前記無反射周期層を前記固体撮像素子に向けて取付けたことを特徴とする撮像光学系。   An imaging optical system having a solid-state imaging device and a light quantity diaphragm device, wherein the optical filter according to any one of claims 1 to 3 is provided in the light quantity diaphragm device, and the non-reflective periodic layer of the optical filter. An imaging optical system, wherein the imaging optical system is attached toward the solid-state imaging device.
JP2006233039A 2006-08-30 2006-08-30 Optical filter Expired - Fee Related JP5016872B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006233039A JP5016872B2 (en) 2006-08-30 2006-08-30 Optical filter
CN2007101471238A CN101135743B (en) 2006-08-30 2007-08-30 Optical filter and camera device
US11/847,576 US8665520B2 (en) 2006-08-30 2007-08-30 Neutral density optical filter and image pickup apparatus
CN201210195796.1A CN102692662B (en) 2006-08-30 2007-08-30 Optical filter and image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233039A JP5016872B2 (en) 2006-08-30 2006-08-30 Optical filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012069250A Division JP5543515B2 (en) 2012-03-26 2012-03-26 camera

Publications (2)

Publication Number Publication Date
JP2008058438A JP2008058438A (en) 2008-03-13
JP5016872B2 true JP5016872B2 (en) 2012-09-05

Family

ID=39159920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233039A Expired - Fee Related JP5016872B2 (en) 2006-08-30 2006-08-30 Optical filter

Country Status (2)

Country Link
JP (1) JP5016872B2 (en)
CN (1) CN101135743B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12238398B2 (en) 2022-05-13 2025-02-25 Largan Precision Co., Ltd. Imaging lens assembly, camera module and electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065227A (en) * 2006-09-11 2008-03-21 Canon Electronics Inc Nd filter
US9588259B2 (en) * 2008-07-16 2017-03-07 Sony Corporation Optical element including primary and secondary structures arranged in a plurality of tracks
JP5600396B2 (en) * 2009-04-23 2014-10-01 キヤノン電子株式会社 Optical filter
JP2011002759A (en) * 2009-06-22 2011-01-06 Dnp Fine Chemicals Co Ltd Antireflection film
DE102010000878B4 (en) * 2010-01-14 2022-04-28 Robert Bosch Gmbh Micromechanical component, optical device, manufacturing method for a micromechanical component and manufacturing method for an optical device
JP6053352B2 (en) * 2011-06-29 2016-12-27 キヤノン電子株式会社 Optical filter, optical device, and optical filter manufacturing method.
JP5543515B2 (en) * 2012-03-26 2014-07-09 キヤノン電子株式会社 camera
JP5885595B2 (en) 2012-06-12 2016-03-15 キヤノン株式会社 Antireflection film, and optical element, optical system, and optical apparatus having the same
JP2014010217A (en) * 2012-06-28 2014-01-20 Dainippon Printing Co Ltd Antireflective laminate
JP6162947B2 (en) * 2012-11-16 2017-07-12 キヤノン電子株式会社 Optical filter, optical device, electronic device
JP6336806B2 (en) * 2014-04-09 2018-06-06 キヤノン電子株式会社 ND filter, light quantity diaphragm device, and imaging device
WO2016125219A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Antireflection film, optical member, optical device, and method for producing antireflection film
JP6761231B2 (en) * 2015-08-28 2020-09-23 キヤノン電子株式会社 Antireflection microstructures, optical filters, optics, and methods for manufacturing antireflection microstructures
TWI616697B (en) * 2016-10-13 2018-03-01 大立光電股份有限公司 Annular optical element, imaging lens assembly, imaging apparatus and electronic device
CN110231694A (en) * 2018-03-05 2019-09-13 株式会社理光 Camera optical system, camera system and photographic device
FR3102565B1 (en) * 2019-10-24 2024-01-05 Hydromecanique & Frottement Optical device with surface texturing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182003A (en) * 2000-12-14 2002-06-26 Canon Inc Antireflection functional element, optical element, optical system and optical appliance
WO2002071705A1 (en) * 2001-03-01 2002-09-12 Jacobsen Joern B A multi communication platform
JP4637383B2 (en) * 2001-03-15 2011-02-23 キヤノン電子株式会社 ND filter, ND filter manufacturing method, light amount adjusting device, and photographing device
JP2003240903A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2004012720A (en) * 2002-06-05 2004-01-15 Fujitsu Ltd Optical filter
JP3692096B2 (en) * 2002-06-28 2005-09-07 ニスカ株式会社 ND filter, manufacturing method thereof, and diaphragm device incorporating the ND filter
JP4599025B2 (en) * 2002-08-08 2010-12-15 キヤノン株式会社 Imaging device
JP2004177806A (en) * 2002-11-28 2004-06-24 Alps Electric Co Ltd Anti-reflection structure, lighting device, liquid crystal display device, and anti-reflection coating molding die
JP4345962B2 (en) * 2003-06-30 2009-10-14 キヤノン電子株式会社 Light amount diaphragm device and camera with ND filter
JP4182236B2 (en) * 2004-02-23 2008-11-19 キヤノン株式会社 Optical member and optical member manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12238398B2 (en) 2022-05-13 2025-02-25 Largan Precision Co., Ltd. Imaging lens assembly, camera module and electronic device

Also Published As

Publication number Publication date
CN101135743A (en) 2008-03-05
JP2008058438A (en) 2008-03-13
CN101135743B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5016872B2 (en) Optical filter
JP2008276059A (en) Optical element and optical system having the same
JP4988282B2 (en) Optical filter
KR101058992B1 (en) Optical elements and optical instruments
US8665520B2 (en) Neutral density optical filter and image pickup apparatus
JP2012137648A (en) Imaging optical unit
US8279526B2 (en) Optical system and image pickup apparatus having same
CN103069309A (en) Optical functional element and imaging device
JP5879021B2 (en) ND filter
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP5543515B2 (en) camera
JP2016071278A (en) Optical filter and light quantity adjusting device, and imaging apparatus
JP2018185394A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP5554012B2 (en) Optical filter and imaging apparatus using the optical filter
JP2018005139A (en) Antireflection film and optical element, optical system and optical instrument having the same
JP5909523B2 (en) ND filter, light quantity diaphragm device, and imaging device
TWI847291B (en) Catadioptric optical membrane, imaging optical lens assembly, imaging apparatus and electronic device
US20240118462A1 (en) Bokeh filter membrane, imaging optical lens assembly, imaging apparatus and electronic device
JP2017219653A (en) Antireflection film and optical element, optical system and optical apparatus having the same
TW202434912A (en) Catadioptric optical membrane, imaging optical lens assembly, imaging apparatus and electronic device
JP5449459B2 (en) Optical system, interchangeable lens, and imaging apparatus having the same
JP5711921B2 (en) Optical filter and gradation ND filter
TW202409612A (en) Optical lens assembly, imaging apparatus and electronic device
JP2015219338A (en) Optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees