[go: up one dir, main page]

JP5011590B2 - Radiation position detector - Google Patents

Radiation position detector Download PDF

Info

Publication number
JP5011590B2
JP5011590B2 JP2007221441A JP2007221441A JP5011590B2 JP 5011590 B2 JP5011590 B2 JP 5011590B2 JP 2007221441 A JP2007221441 A JP 2007221441A JP 2007221441 A JP2007221441 A JP 2007221441A JP 5011590 B2 JP5011590 B2 JP 5011590B2
Authority
JP
Japan
Prior art keywords
light
light receiving
crystal
light emitting
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007221441A
Other languages
Japanese (ja)
Other versions
JP2009053104A (en
Inventor
直子 稲玉
秀雄 村山
憲悟 澁谷
文彦 錦戸
淳一 大井
倫明 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institutes For Quantum Science and Technology
Original Assignee
Shimadzu Corp
National Institutes For Quantum Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, National Institutes For Quantum Science and Technology filed Critical Shimadzu Corp
Priority to JP2007221441A priority Critical patent/JP5011590B2/en
Publication of JP2009053104A publication Critical patent/JP2009053104A/en
Application granted granted Critical
Publication of JP5011590B2 publication Critical patent/JP5011590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、放射線位置検出器に係り、特に、核医学イメージングやγ線等の放射線検出の分野で用いるのに好適な、複数の受光素子が並んだ方向である横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有し、発光素子に入射した放射線による横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器の改良に関する。 The present invention relates to a radiation position detector, and in particular, to be used in the field of radiation detection such as nuclear medicine imaging and γ-ray, and a light emitting position to be identified in the lateral direction, which is a direction in which a plurality of light receiving elements are arranged. The present invention relates to an improvement in a radiation position detector that has a plurality of light receiving elements smaller than the number of the light receiving elements and obtains the light emitting position in the lateral direction by radiation incident on the light emitting elements by calculating the center of gravity of the light receiving element output.

核医学イメージング装置など、検出器を多く備えるため、検出器単体の価格が装置全体の価格を決定するような場合や、測定範囲が広いため、多くのγ線検出器を使用する物理実験では、放射線検出器の低価格化が課題となる。空間分解能を劣化させずに放射線検出器を低価格で作成するために、受光素子を複数配列したものにシンチレーション結晶を光学結合し、各受光素子からの信号の重心演算により放射線を検出した位置の特定を行う方法が良く用いられる。その際、放射線検出位置の分解能は、重心演算の結果が区別できる2点の最短の距離として決定され、重心演算の結果の違いは、検出位置から発生したシンチレーション光の受光素子への分配率の違いによって生じる。   Since many detectors such as nuclear medicine imaging devices are provided, the price of the detector alone determines the price of the entire device, or because the measurement range is wide, in physical experiments using many γ-ray detectors, The challenge is to reduce the price of radiation detectors. In order to produce a radiation detector at a low price without degrading the spatial resolution, a scintillation crystal is optically coupled to an array of multiple light receiving elements, and the position where the radiation is detected by calculating the center of gravity of the signal from each light receiving element A method of identifying is often used. At this time, the resolution of the radiation detection position is determined as the shortest distance between two points at which the result of the center of gravity calculation can be distinguished. Caused by differences.

シンチレーション結晶を受光素子に光学結合した構造をとるγ線検出器では、シンチレーション光の拡散を操作することで、受光素子信号の位置演算により、放射線検出位置の分解能を高めることができる。信号の位置演算の結果は、各受光素子への光分配比で決まり、その光分配比をシンチレーション光の発光位置固有のものになるよう操作することで、より正確な放射線検出位置特定が可能となる。ガンマカメラなどで昔から一般的に行われている方法であり、システムとしての空間分解能を劣化させることなく受光素子数を減らし、価格を抑えることができる。また、受光素子も高価な小型のものである必要はなく、安価な汎用の受光素子を用いることができる。   In a γ-ray detector having a structure in which a scintillation crystal is optically coupled to a light receiving element, the resolution of the radiation detection position can be increased by calculating the position of the light receiving element signal by manipulating the diffusion of the scintillation light. The signal position calculation result is determined by the light distribution ratio to each light receiving element, and by operating the light distribution ratio to be unique to the light emission position of the scintillation light, it is possible to specify the radiation detection position more accurately. Become. This method has been generally used for a long time in gamma cameras and the like, and can reduce the number of light receiving elements and reduce the price without degrading the spatial resolution of the system. Further, the light receiving element does not need to be an expensive and small one, and an inexpensive general-purpose light receiving element can be used.

受光素子信号の位置演算による放射線検出位置特定の原理を図1に示す。この例では、図1の上段に示す如く、独立した2つの受光素子10A、10B上に、1塊のシンチレーション結晶12が光学結合している。簡単のため、シンチレーション結晶12は、反射率100%の反射材14で覆われていて、放射線を検出した際の発光は、全て受光素子10A、10Bに入るものとする。   The principle of specifying the radiation detection position by the position calculation of the light receiving element signal is shown in FIG. In this example, a single scintillation crystal 12 is optically coupled to two independent light receiving elements 10A and 10B as shown in the upper part of FIG. For simplicity, it is assumed that the scintillation crystal 12 is covered with a reflective material 14 having a reflectance of 100%, and all light emitted when detecting radiation enters the light receiving elements 10A and 10B.

図1(A)に示すように、あるγ線検出位置2点の識別は、発生するシンチレーション光の2つの受光素子10A、10Bへの分配が異なる場合、受光素子10Aの出力をA、受光素子10Bの出力をBとすると、位置演算(B−A)/(A+B)によって、図1の下段に示すヒストグラム上で検出位置の識別ができる。この位置特定のためのヒストグラムを、ここではポジションヒストグラムと呼ぶ。図2に示す如く、図1(A)のシンチレーション結晶12が結晶素子配列13になり、図1(C)に示す如く、ライトガイド16を使用する場合や、ライトガイド無しで結晶素子間の深さ方向の反射材(図2の18)の長さを短くして結晶配列内で光の拡散を促進する場合も、原理は同じである。   As shown in FIG. 1A, when two γ-ray detection positions are identified, when the distribution of generated scintillation light to the two light receiving elements 10A and 10B is different, the output of the light receiving element 10A is A and the light receiving element. If the output of 10B is B, the detected position can be identified on the histogram shown in the lower part of FIG. 1 by position calculation (B−A) / (A + B). This histogram for specifying the position is referred to herein as a position histogram. As shown in FIG. 2, the scintillation crystal 12 of FIG. 1A becomes a crystal element array 13, and when the light guide 16 is used as shown in FIG. The principle is the same when the length of the reflector in the vertical direction (18 in FIG. 2) is shortened to promote light diffusion in the crystal array.

しかし、図1(B)に示すように、光の拡散が不十分で、受光素子10Aに届かない領域では、位置演算の結果が全て+1となり、γ線検出位置の特定が不可能となる。   However, as shown in FIG. 1B, in the region where the light is not sufficiently diffused and does not reach the light receiving element 10A, the position calculation results are all +1, and the γ-ray detection position cannot be specified.

このように、複数の受光素子信号の位置演算による放射線検出位置判別においては、分解能に相当する間隔ごとに、各受光素子へのシンチレーション光の分配が異なっていなければならない。   Thus, in radiation detection position determination by position calculation of a plurality of light receiving element signals, the distribution of scintillation light to each light receiving element must be different for each interval corresponding to the resolution.

シンチレーション光を発光点から拡散させ、離れた受光素子へ光を分配するために、一般的には、図1(C)に示した如く、ライトガイド16を用いる。ライトガイドとしては、アクリルなどの透明な物質が用いられる。しかし、隣接する受光素子までの距離が長い場合、より光を拡散させるためにライトガイドに厚みをもたせる必要があり、それが光分配の揺らぎや光損失を引き起こし、分解能の劣化につながる。分解能の劣化を防ぎ、より細かな制御を可能にするため、ライトガイドに最適な長さのスリットをいれたものも提案されている(非特許文献1、特許文献1−4参照)。   In general, a light guide 16 is used as shown in FIG. 1C in order to diffuse the scintillation light from the light emitting point and distribute the light to the remote light receiving elements. A transparent material such as acrylic is used as the light guide. However, when the distance to the adjacent light receiving element is long, it is necessary to increase the thickness of the light guide in order to further diffuse the light, which causes fluctuations in light distribution and light loss, leading to deterioration in resolution. In order to prevent deterioration of resolution and enable finer control, a light guide having a slit having an optimal length has been proposed (see Non-Patent Document 1 and Patent Documents 1-4).

一方、図2に示した如く、ライトガイドを用いず、シンチレーション結晶部を細かな結晶素子配列13にし、結晶素子間に深さ方向に挿入する反射材18の長さを変えることで、結晶配列内部で光を拡散させる方法も提案されている。各結晶素子での発光による光分配比の最適化は、反射材18の長さの調整により行われる(非特許文献2参照)。   On the other hand, as shown in FIG. 2, the light guide is not used, the scintillation crystal part is made into a fine crystal element array 13, and the length of the reflector 18 inserted in the depth direction between the crystal elements is changed. A method of diffusing light inside has also been proposed. Optimization of the light distribution ratio by light emission in each crystal element is performed by adjusting the length of the reflector 18 (see Non-Patent Document 2).

また、図5(A)に示す如く、結晶素子配列13を多層(図では13Aと13Bの2層)に積み上げたものが受光素子10A、10Bに光学結合する構造を持つ多層型放射線検出器で、放射線を検出した結晶を特定することで、検出位置の深さ情報も得られる。結晶特定法の一つに、結晶間の深さ方向の反射材18を抜くと、そこで接する結晶に光が広がり、受光素子信号の位置演算の結果である結晶応答の分離が、両結晶で小さくなることを利用したものがある。このとき逆に反射材18で仕切られている結晶間の応答の分離は大きくなる。層ごとに反射材18を抜く位置をずらすと、結晶応答の分離の大小が層ごとに異なる結果、深さ方向に積み上げた結晶の応答が分かれ、結晶判別が可能となる(非特許文献3、特許文献5参照)。   Further, as shown in FIG. 5A, a multilayer radiation detector having a structure in which the crystal element array 13 is stacked in multiple layers (two layers of 13A and 13B in the figure) is optically coupled to the light receiving elements 10A and 10B. The depth information of the detection position can also be obtained by specifying the crystal that has detected the radiation. As one of the crystal identification methods, when the reflector 18 in the depth direction between the crystals is removed, light spreads to the crystal in contact therewith, and the separation of the crystal response as a result of the position calculation of the light receiving element signal is small in both crystals. There is something that takes advantage of. At this time, on the contrary, the response separation between the crystals partitioned by the reflector 18 becomes large. If the position where the reflecting material 18 is pulled out for each layer is shifted, the magnitude of the separation of the crystal response differs from layer to layer, so that the responses of the crystals stacked in the depth direction are separated, and crystal discrimination becomes possible (Non-Patent Document 3, (See Patent Document 5).

また、受光素子面の感度の違いや結晶配列において異なるシンチレータを用いることなどにより、全受光素子の信号の和として得られる光量が、放射線検出位置により大きく異なる場合がある。光量が異なると、ノイズである散乱線の除去や、回路系のダイナミックレンジの決定が困難になる。光量を均一にするために、黒い紙などの光吸収材やアルミニウムなどの光遮断物質のマスクを、受光素子とライトガイド間、結晶素子間に挿入したり、結晶側面に当てたりする試みもなされている(非特許文献4−7参照)。   In addition, the amount of light obtained as the sum of the signals of all the light receiving elements may vary greatly depending on the radiation detection position due to differences in the sensitivity of the light receiving element surface or using different scintillators in the crystal arrangement. If the amount of light is different, it becomes difficult to remove scattered radiation, which is noise, and to determine the dynamic range of the circuit system. In order to make the amount of light uniform, an attempt has been made to insert a light-absorbing material such as black paper or a mask of a light blocking material such as aluminum between the light receiving element and the light guide, between the crystal elements, or against the crystal side face. (See Non-Patent Documents 4-7).

特開2007−78567号公報JP 2007-78567 A 特開2004−361302号公報JP 2004-361302 A 特開2004−354343号公報JP 2004-354343 A 特開2004−233240号公報JP 2004-233240 A 特開2004−279057号公報JP 2004-279057 A M. E. Casey and R. Nutt, “A multicrystal two dimensional BGO detector system for positron emission tomography,” IEEE Trans. on Nucl. Sci., vol. 33, pp. 460 -463, 1986.M. E. Casey and R. Nutt, “A multicrystal two dimensional BGO detector system for positron emission tomography,” IEEE Trans. On Nucl. Sci., Vol. 33, pp. 460 -463, 1986. W. H. Wong, S. Yokoyama, J. Uribe, H. Baghaei, H. Li, J. Wang, and N. Zhang, “An Elongated Position Sensitive Block Detector Design Using the PMT Quadrant-sharing Configuration and Asymmetric Light Partition,”IEEE Trans. on Nucl. Sci., vol. 46, pp. 542 - 545, June 1999.WH Wong, S. Yokoyama, J. Uribe, H. Baghaei, H. Li, J. Wang, and N. Zhang, “An Elongated Position Sensitive Block Detector Design Using the PMT Quadrant-sharing Configuration and Asymmetric Light Partition,” IEEE Trans. On Nucl. Sci., Vol. 46, pp. 542-545, June 1999. T. Tsuda, H. Murayama, K. Kitamura, T. Yamaya, E. Yoshida, T. Omura, H. Kawai, N. Inadama, and N. Orita, “A Four Layer Depth of Interaction Detector Block for Small Animal PET,” IEEE Trans. on Nucl. Sci., vol. 51, pp. 2537 - 2542, October 2004.T. Tsuda, H. Murayama, K. Kitamura, T. Yamaya, E. Yoshida, T. Omura, H. Kawai, N. Inadama, and N. Orita, “A Four Layer Depth of Interaction Detector Block for Small Animal PET , ”IEEE Trans. On Nucl. Sci., Vol. 51, pp. 2537-2542, October 2004. J. H. Jung, Y. Choi, Y. H. Chung, O. Devroede, M. Krieguer, P. Bruyndonckx, and S. Tavernier, “Optimization of LSO/LuYAP phoswich detector for small animal PET,” NIM. A, 571, pp. 669 - 675, 2007.JH Jung, Y. Choi, YH Chung, O. Devroede, M. Krieguer, P. Bruyndonckx, and S. Tavernier, “Optimization of LSO / LuYAP phoswich detector for small animal PET,” NIM. A, 571, pp. 669 -675, 2007. D. Christ, A. Hollendung, H. Larue, C. Parl, M. Streun, S. Weber, K. Ziemons, and H. Halling, “Homogenization of the Multi-Channel PM Gain by Inserting Light Attenuating Masks,” in IEEE Nucl. Sci. Symp. Conf. Rec., Portland, OR, pp. 2382 - 2385, 2003.D. Christ, A. Hollendung, H. Larue, C. Parl, M. Streun, S. Weber, K. Ziemons, and H. Halling, “Homogenization of the Multi-Channel PM Gain by Inserting Light Attenuating Masks,” in IEEE Nucl. Sci. Symp. Conf. Rec., Portland, OR, pp. 2382-2385, 2003. J.-B. Mosset, O. Devroede, M. Krieguer, M. Rey, J.-M. Vieira, J. H. Jung, C. Kuntner, M. Streun, K. Ziemons, E. Auffray, P. Sempere-Roldan, P. Lecoq, P. Bruyndonckx, J.-F. Loude, S. Tavernier, and C. Morel, “Development of an Optimized LSO/LuYAP Phoswich Detector Head for the Lausanne ClearPET Demonstrator,” IEEE Trans. on Nucl. Sci., vol. 53, pp. 25 - 29, February 2006.J.-B. Mosset, O. Devroede, M. Krieguer, M. Rey, J.-M. Vieira, JH Jung, C. Kuntner, M. Streun, K. Ziemons, E. Auffray, P. Sempere-Roldan , P. Lecoq, P. Bruyndonckx, J.-F. Loude, S. Tavernier, and C. Morel, “Development of an Optimized LSO / LuYAP Phoswich Detector Head for the Lausanne ClearPET Demonstrator,” IEEE Trans. On Nucl. Sci ., vol. 53, pp. 25-29, February 2006. C. Moisan, M. S. Andreaco, J. G. Rogers, S. Paquet, and D. Vozza, “Segmented LSO Crystals for Depth-of-Interaction Encoding in PET,” IEEE Trans. on Nucl. Sci., vol. 45, pp. 3030 - 3035, December 1998.C. Moisan, MS Andreaco, JG Rogers, S. Paquet, and D. Vozza, “Segmented LSO Crystals for Depth-of-Interaction Encoding in PET,” IEEE Trans. On Nucl. Sci., Vol. 45, pp. 3030 -3035, December 1998.

結晶素子配列の場合、放射線を検出した検出素子の識別能が、検出器の検出位置分解能を決定するが、結晶素子内部で結晶素子固有の光分配を作る方法で、結晶素子間の深さ方向の反射材18を取り除いても、結晶と結晶間物質の屈折率の違いや、結晶素子の表面状態などにより、光が十分に拡散されない場合がある。例えば、結晶素子の表面が十分機械研磨されていると、結晶配列内の光の拡散は小さく、光のほとんどが結晶の深さ方向へ出てしまう。従って、図3(A)に示す如く、各結晶素子の底面で直接光学結合する受光素子(図では10B)に大半の光が入射し、他方の受光素子(10A)の信号が弱くなるため、同じ受光素子(10B)上の結晶素子の間で位置演算の結果が類似し、識別能が劣化して、γ線検出位置1と2の識別(結晶の識別)が不可能になる。   In the case of a crystal element array, the discriminating ability of the detection element that detects the radiation determines the detection position resolution of the detector. Even if the reflective material 18 is removed, the light may not be sufficiently diffused due to the difference in the refractive index between the crystal and the intercrystalline substance, the surface state of the crystal element, or the like. For example, when the surface of the crystal element is sufficiently mechanically polished, the diffusion of light within the crystal array is small, and most of the light comes out in the depth direction of the crystal. Therefore, as shown in FIG. 3A, most of the light is incident on the light receiving element (10B in the figure) directly optically coupled at the bottom surface of each crystal element, and the signal of the other light receiving element (10A) becomes weak. Position calculation results are similar between the crystal elements on the same light receiving element (10B), the discrimination ability deteriorates, and the γ-ray detection positions 1 and 2 cannot be identified (crystal identification).

又、図4(A)に示す如く受光素子10A、10Bの境界付近のγ線検出位置1では、受光素子10Aの信号が弱いため、応答はγ線検出位置2と似たようなものになり、識別(結晶の識別)が困難になる。一方、結晶が隣り合う筈のγ線検出位置3の応答とは不必要に隔たる。   Further, as shown in FIG. 4A, at the γ-ray detection position 1 near the boundary between the light-receiving elements 10A and 10B, the response is similar to that at the γ-ray detection position 2 because the signal of the light-receiving element 10A is weak. Identification (crystal identification) becomes difficult. On the other hand, it is unnecessarily separated from the response at the γ-ray detection position 3 of the adjacent ridges of crystals.

又、図5(A)の左側に示したような3次元結晶配列の多層型検出器において、結晶間の深さ方向の反射材18を一部取り除き、反射材を抜く位置を層毎にずらすことによって、深さ方向に積み上げた結晶の識別が可能になるが、反射材18を抜いたことによる光の拡散が小さい場合、図5(A)の右側に示す如く、深さ方向の結晶の識別が困難となる。   Further, in the multilayer detector having a three-dimensional crystal arrangement as shown on the left side of FIG. 5A, a part of the reflection material 18 in the depth direction between the crystals is removed, and the position where the reflection material is removed is shifted for each layer. This makes it possible to identify the crystals stacked in the depth direction. However, when the diffusion of light due to the removal of the reflector 18 is small, as shown on the right side of FIG. Identification becomes difficult.

又、図1(A)に示したような一塊のシンチレーション結晶12を用いる場合、2つの受光素子10A、10Bの境界辺り以外の部分では、放射線検出位置の分解能が劣化する。これは、中央付近では隣接する受光素子まで距離があるため、光分配の違いを作りにくいためである。   In addition, when a single scintillation crystal 12 as shown in FIG. 1A is used, the resolution of the radiation detection position deteriorates at a portion other than the boundary between the two light receiving elements 10A and 10B. This is because it is difficult to make a difference in light distribution because there is a distance to the adjacent light receiving element near the center.

なお、非特許文献4−7に記載されているように、光遮断物質のマスクを受光素子とライトガイド間や結晶素子間に挿入したり、結晶側面に当てる方法では、光量が減ってしまう。   As described in Non-Patent Documents 4-7, the amount of light is reduced when a mask of a light blocking substance is inserted between the light receiving element and the light guide or between the crystal elements, or applied to the crystal side face.

本発明は、前記従来の問題点を解消するべくなされたもので、横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有する放射線検出器において、光の横方向の分配を改善して、位置分解能を向上することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and in a radiation detector having a plurality of light receiving elements having a number smaller than the number of light emitting positions to be identified in the horizontal direction, the distribution of light in the horizontal direction is performed. The problem is to improve and improve the position resolution.

本発明は、複数の受光素子が並んだ方向である横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有し、発光素子に入射した放射線による横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器において、前記発光素子受光素子の間の一部に、受光素子の受光領域の一部を覆う反射材を挿入して、発光の横方向への拡散を促進することにより、前記課題を解決したものである。 The present invention has a plurality of light receiving elements having a number smaller than the number of light emitting positions to be identified in the lateral direction, which is the direction in which the plurality of light receiving elements are arranged, and the light emitting positions in the horizontal direction due to the radiation incident on the light emitting elements. in the radiation position detector so as to obtain a center of gravity calculation of the light-receiving element output, a portion between the light emitting element and the light receiving element, by inserting a reflective material covering a portion of the light receiving area of the light receiving element, the light emitting the Rukoto to promote diffusion in the lateral direction is obtained by solving the above problems.

ここで、反射材としては、例えば住友スリーエム社製 ESRフィルム(反射率98%の高反射)や東レ社製 ルミラー38X20(半透明で光の吸収はあまり無い)を用いることができる。 Here, the anti Ysaye, for example by Sumitomo 3M Co., Ltd. ESR film (reflectivity 98% higher reflection) and Toray Industries Ltd. Lumirror 38X20 (absorption of translucent light not much) can be used.

本発明は、又、複数の受光素子が並んだ方向である横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有し、積層された結晶素子配列でなる発光素子に入射した放射線による少なくとも横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器において、前記積層された結晶素子配列でなる発光素子の結晶素子の間の一部、及び、前記発光素子受光素子の間の一部の少なくともいずれか一方に、前記結晶素子の一部、又は、受光素子の受光領域の一部を覆う反射材を挿入して、発光の横方向への拡散を促進ることにより、前記課題を解決したものである。 The present invention also includes a plurality of light receiving elements whose number is smaller than the number of light emitting positions to be identified in the lateral direction, which is the direction in which the plurality of light receiving elements are arranged, and is incident on a light emitting element having a stacked crystal element array. In a radiation position detector that obtains at least the lateral light emission position by the emitted radiation by calculating the center of gravity of the light receiving element output, a part between the crystal elements of the light emitting elements composed of the stacked crystal element array , and in at least one portion of between the light emitting element and the light receiving element, a part of the crystal element, or, by inserting a reflective material covering a portion of the light receiving area of the light receiving element, the lateral direction of the light emitting It spreads by Rukoto to promote the is obtained by solving the above problems.

更に、深さ方向の発光位置も重心演算により求めることができる。   Furthermore, the light emission position in the depth direction can also be obtained by calculating the center of gravity.

前記発光素子は、一塊の結晶でなることができる。 The light-emitting element can be formed of a crystal of lump.

又、前記結晶素子配列の少なくとも結晶素子間を跨ぐように深さ方向に反射材を挿入することができる。   In addition, a reflective material can be inserted in the depth direction so as to straddle at least the crystal elements in the crystal element array.

又、前記発光素子と受光素子の間に、ライトガイドを設けることができる。   A light guide can be provided between the light emitting element and the light receiving element.

本発明によれば、横方向で識別すべき発光位置より数が少ない複数の受光素子を有し、発光素子に入射した放射線により横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器において、結晶内での光拡散を促進させ、位置分解能を向上することができる。   According to the present invention, a plurality of light receiving elements having a smaller number than the light emitting positions to be identified in the horizontal direction are provided, and the light emitting position in the horizontal direction is obtained by calculating the center of gravity of the light receiving element output by the radiation incident on the light emitting elements. In the radiation position detector, the light diffusion in the crystal can be promoted, and the position resolution can be improved.

検出器構造も単純で作り易く、核医学装置に必須である量産に耐え得るものである。更に、もともと安価な汎用受光素子を、なるべく少ない数用いて目的の検出器性能を達成させる可能性が拡がる。これにより、費用と効果の比率を上げるだけでなく、信号処理回路を簡潔にし、測定装置の安定した運転に貢献する。   The detector structure is simple and easy to make, and can withstand the mass production essential for nuclear medicine devices. Further, the possibility of achieving the desired detector performance by using as few general-purpose light-receiving elements as possible, which is originally inexpensive, is increased. This not only increases the cost-effectiveness ratio, but also simplifies the signal processing circuit and contributes to stable operation of the measuring device.

特に、結晶素子配列を用いた場合には、結晶配列内での光拡散を促進させ、結晶識別能を改善することができる。又、一塊の結晶を用いる場合は、2つの受光素子の境界以外でおこる放射線検出位置の分解能の劣化を防いで、位置分解能を向上することができる。   In particular, when a crystal element array is used, light diffusion within the crystal array can be promoted, and the crystal discrimination ability can be improved. In addition, when a single crystal is used, it is possible to improve the position resolution by preventing deterioration of the resolution of the radiation detection position that occurs outside the boundary between the two light receiving elements.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図3(A)に示すような放射線検出器の問題を解決するべく、図3(B)に示す如く、一方(図では右側)の結晶素子の下に反射材20を挿入することにより、受光素子10Bに入射する筈の光の一部を反射させ、受光素子10A側に拡げるようにしたものである。   In order to solve the problem of the radiation detector as shown in FIG. 3A, the first embodiment of the present invention reflects under one crystal element (right side in the figure) as shown in FIG. 3B. By inserting the material 20, a part of the light entering the light receiving element 10B is reflected and spread to the light receiving element 10A side.

これにより、それぞれの結晶素子から発生されたシンチレーション光の光分配に違いにでき、結晶識別が可能となる。   Thereby, the light distribution of the scintillation light generated from each crystal element can be made different, and the crystal can be identified.

本発明は、このように、結晶と結晶間物質の屈折率の違いや結晶素子の表面状態などにより、結晶素子間の反射材を取り除いても光が十分に拡散されない場合や、一塊のシンチレーション結晶で光拡散の微調整をしたいときなどに特に効果的であり、図3(B)に示したように、結晶と受光素子間の適切な場所に横方向に反射材20を挿入し、直接光学結合する受光素子に入射するはずの光の一部を反射させることで、結晶配列内での光拡散を促進させ、結晶識別能の改善を図ることができる。   As described above, the present invention can be applied to a case where light is not sufficiently diffused even when the reflector between the crystal elements is removed due to a difference in refractive index between the crystal and the intercrystal substance or a surface state of the crystal element, or a group of scintillation crystals. This is particularly effective when fine adjustment of the light diffusion is desired, and as shown in FIG. 3B, a reflector 20 is inserted in the lateral direction at an appropriate location between the crystal and the light receiving element to directly optically By reflecting a part of the light that should be incident on the light receiving element to be coupled, light diffusion in the crystal array can be promoted, and the crystal discrimination ability can be improved.

本発明の第2実施形態は、図4(A)に示したような放射線検出器の問題を解決するべく、図4(B)に示す如く、中央の結晶素子の下に横方向に反射材20を挿入することにより、γ線検出位置1では受光素子10Aへの光分配が増し、γ線検出位置2との識別が可能となる。又、γ線検出位置3の応答も近づく。   In the second embodiment of the present invention, in order to solve the problem of the radiation detector as shown in FIG. 4A, as shown in FIG. By inserting 20, the light distribution to the light receiving element 10A increases at the γ-ray detection position 1, and the γ-ray detection position 2 can be identified. Further, the response of the γ-ray detection position 3 also approaches.

結晶素子間での光の拡散が小さい場合、境界付近の結晶においても直接接する受光素子に大半の光が入射する結果、ポジションヒストグラム上で端の結晶との識別が困難となり、隣り合うが異なる受光素子に直接接する結晶の応答とは不必要に隔たるが、図4(B)に示したように、中央の結晶素子の下に横方向に反射材20を挿入することにより、結晶配列内の光拡散が促進し、ポジションヒストグラム上での結晶応答が均一に分布するようになり、識別能が向上する。   When the diffusion of light between crystal elements is small, most of the light is incident on the light receiving element that is in direct contact with the crystal near the boundary. Although it is unnecessarily separated from the response of the crystal directly in contact with the element, as shown in FIG. 4B, by inserting the reflector 20 laterally under the central crystal element, Light diffusion is promoted, the crystal response on the position histogram is uniformly distributed, and the discrimination ability is improved.

本発明の第3実施形態は、図5(A)に示したような多層型放射線検出器の問題を解決するべく、図5(B)に示す如く、層間の一部に横方向に反射材20を挿入することで、光の拡散を改善し、識別を可能とし、端の結晶との光分配の差異が生じるようにしたものである。   In the third embodiment of the present invention, in order to solve the problem of the multilayer radiation detector as shown in FIG. 5A, as shown in FIG. By inserting 20, light diffusion is improved, identification is possible, and a difference in light distribution from the end crystal is generated.

このように、層間の適切な位置に横方向に反射材20を挿入することで、識別が可能となり、端の結晶との光分配の差異も生じる。   In this way, by inserting the reflector 20 in the lateral direction at an appropriate position between the layers, the identification becomes possible, and a difference in light distribution from the crystal at the end also occurs.

本発明の第4実施形態を図6に示す。本実施形態は、本発明による反射材をライトガイド16と併用したものである。通常、ライトガイド16の厚みtは、図6(A)に示す如く、目的とする光の拡散の程度に比例させるが、本発明により、図6(B)に示す如く、ライトガイド16と結晶配列13間に横方向に反射材20を挿入することで、図6(C)に示す如く、結晶配列13内での光の拡散を促進させることにより、必要なライトガイド16の厚みtを減らすことができる。   A fourth embodiment of the present invention is shown in FIG. In the present embodiment, the reflector according to the present invention is used in combination with the light guide 16. Normally, the thickness t of the light guide 16 is proportional to the target degree of light diffusion as shown in FIG. 6A. However, according to the present invention, as shown in FIG. By inserting the reflector 20 in the lateral direction between the arrays 13, the required thickness t of the light guide 16 is reduced by promoting the diffusion of light within the crystal array 13 as shown in FIG. 6C. be able to.

2層の3次元結晶配列の場合に適用した本発明の第5乃至第8実施形態を、それぞれ図7〜図10に示す。図7に示す第5実施形態は、結晶配列13Aと13Bの層間に横方向に反射材20を挿入したもの、図8に示す第6実施形態は、結晶配列13Bと受光素子10A、10B間に横方向に反射材20を挿入したもの、図9に示す第7実施形態は、結晶配列13Aと13Bの層間と結晶配列13B−受光素子10A、10B間の両方に反射材20を挿入したもの、図10に示す第8実施形態は、結晶配列13Aと13Bの層間の反射材20と、切り込み16Aを入れて最適化したライトガイド16を併用したものである。   FIGS. 7 to 10 show fifth to eighth embodiments of the present invention applied to the case of a two-layer three-dimensional crystal arrangement. In the fifth embodiment shown in FIG. 7, a reflector 20 is inserted in the lateral direction between the crystal arrays 13A and 13B. In the sixth embodiment shown in FIG. 8, the crystal array 13B and the light receiving elements 10A and 10B are interposed. In the seventh embodiment shown in FIG. 9, the reflector 20 is inserted between the crystal arrays 13A and 13B and between the crystal array 13B and the light receiving elements 10A and 10B. In the eighth embodiment shown in FIG. 10, the reflective material 20 between the crystal arrangements 13A and 13B is used in combination with the light guide 16 optimized by inserting the cuts 16A.

3層の3次元結晶配列の場合に適用した本発明の第9実施形態を図11に示す。   FIG. 11 shows a ninth embodiment of the present invention applied to the case of a three-layer three-dimensional crystal arrangement.

本実施形態の各層の結晶配列13A、13B、13Cは、互いに異なるシンチレータで作られている。各層は信号の波形で識別されるため、ヒストグラム上で重なっても構わない。従って、積層型であるが反射材挿入は1層の場合と同じになる。   The crystal arrangements 13A, 13B, and 13C of each layer of the present embodiment are made of different scintillators. Since each layer is identified by the waveform of the signal, it may overlap on the histogram. Therefore, although it is a laminated type, the reflector insertion is the same as in the case of one layer.

2次元結晶配列における反射材の挿入例を、図12〜図14に示す。図において、22は、受光素子としての光電子増倍管(PMT)であり、反射材が挿入されていない所は、光学グリースが塗られるか、空気とされている。又、xとyは、いずれを横方向にとることもできる。   Examples of insertion of the reflecting material in the two-dimensional crystal array are shown in FIGS. In the figure, reference numeral 22 denotes a photomultiplier tube (PMT) as a light receiving element, and a portion where no reflecting material is inserted is coated with optical grease or air. Further, x and y can be taken in the horizontal direction.

本発明の効果を実験により実証した。結晶配列は2次元とし、図15に示すx方向の結晶識別能について最適化を行なった。受光素子としては、図15(A)に示すサイズの2チャンネル位置弁別型光電子増倍管(PS−PMT)を2つ(22A、22B)使用した。表面状態が機械研磨である、大きさ2.45mm×5.10mm×15.00mmのLYSO結晶を9×4に配列したもの(結晶配列13)を、受光素子22A、22Bに光学グリース24で結合した。反射材18は、反射率98%で厚み0.067mmのフィルム状のものを用い、結晶配列13内では、図15(B)に示す如く、x方向の端の結晶素子間にのみ挿入した。端の結晶素子以外は、結晶識別のために直接接しない受光素子にも光が分配される必要があり、ライトガイドを使用する代わりに結晶素子同士を光学グリース24で光学結合させることで光を拡散させた。結晶配列13全体は、受光素子22A、22Bとの結合面以外は反射材14で覆った。   The effect of the present invention was verified by experiments. The crystal arrangement was two-dimensional, and the x-direction crystal discrimination ability shown in FIG. 15 was optimized. As the light receiving element, two (22A, 22B) two-channel position discrimination type photomultiplier tubes (PS-PMT) having the size shown in FIG. 15A were used. A 9 × 4 array of 2.45 mm × 5.10 mm × 15.00 mm LYSO crystals (crystal array 13) whose surface condition is mechanical polishing is bonded to the light receiving elements 22A and 22B with optical grease 24. did. The reflector 18 was a film having a reflectance of 98% and a thickness of 0.067 mm, and was inserted only between the crystal elements at the end in the x direction in the crystal array 13 as shown in FIG. In addition to the crystal element at the end, the light needs to be distributed to a light receiving element that is not in direct contact for crystal identification. Instead of using a light guide, the crystal element is optically coupled with the optical grease 24 so that the light is transmitted. Diffused. The entire crystal array 13 was covered with the reflective material 14 except for the coupling surface with the light receiving elements 22A and 22B.

図16に、Cs線源からの662keVγ線を一様照射して得られた2次元(2D)ポジションヒストグラムを示す。計数値は濃淡で示される。   FIG. 16 shows a two-dimensional (2D) position histogram obtained by uniformly irradiating 662 keV γ rays from a Cs radiation source. Count values are shown in shades.

図16(A)に、一般的に行なうライトガイド16を用いた場合の結果を示す。結晶素子間全てに反射材18が挟まれ、結晶配列13は、最適化されたライトガイド16と受光素子22A、22Bに結合する。この場合、結晶の表面状態は、あまり結晶識別能に影響しない。   FIG. 16A shows the result when the light guide 16 that is generally used is used. The reflective material 18 is sandwiched between the crystal elements, and the crystal array 13 is coupled to the optimized light guide 16 and the light receiving elements 22A and 22B. In this case, the surface state of the crystal does not significantly affect the crystal discrimination ability.

図16(B)は、ライトガイドを使用する代わりに結晶配列13内で光を拡散させた例であり、図15(B)に示すように、端以外の結晶について光を拡散させるために反射材18を取り除いた結晶配列13により得られた2Dポジションヒストグラムである。結晶の配列状態が機械研磨であることが影響し、光の拡散が不十分で、図3(A)と同様に、x方向で2列分の結晶素子応答が重なり、識別不可能になっている。   FIG. 16B shows an example in which light is diffused in the crystal array 13 instead of using a light guide. As shown in FIG. 15B, reflection is performed to diffuse light for crystals other than the ends. It is a 2D position histogram obtained by the crystal arrangement 13 from which the material 18 is removed. As the crystal alignment is affected by mechanical polishing, light diffusion is insufficient, and as in FIG. 3A, the crystal element responses for two rows in the x direction overlap and become indistinguishable. Yes.

この応答の重なりは、図16(C)に示す如く、本発明により反射材20を横方向に挿入することで改善されることが確認できた。   As shown in FIG. 16C, it was confirmed that the overlap of the response was improved by inserting the reflecting material 20 in the lateral direction according to the present invention.

なお、前記実施形態においては、いずれも受光素子が2個とされていたが、受光素子の数はこれに限定されず、3個以上であっても良い。   In each of the above embodiments, the number of light receiving elements is two. However, the number of light receiving elements is not limited to this, and may be three or more.

受光素子信号の位置演算による放射線検出位置特定の原理を示す図The figure which shows the principle of radiation detection position specification by position calculation of a light receiving element signal 結晶素子間に反射材が挿入された検出器の例を示す断面図Sectional drawing which shows the example of the detector by which the reflecting material was inserted between crystal elements (A)光のほとんどが結晶の深さ方向へ出る場合の一つの問題点、及び、(B)これを解決した本発明の第1実施形態を示す図(A) One problem in the case where most of the light is emitted in the depth direction of the crystal, and (B) A diagram showing a first embodiment of the present invention that solves this problem. (A)同じく他の問題点、及び、(B)これを解決した本発明の第2実施形態を示す図(A) Another problem, and (B) A diagram showing a second embodiment of the present invention that solves this problem. (A)多層型放射線検出器における問題点、及び、(B)これを解決した本発明の第3実施形態を示す図(A) Problems in the multilayer radiation detector, and (B) A diagram showing a third embodiment of the present invention in which this is solved. (A)ライトガイドを用いた場合の問題点、及び、(B)これを解決した本発明の第4実施形態を示す断面図(A) Problems when a light guide is used, and (B) A cross-sectional view showing a fourth embodiment of the present invention that solves this problem 本発明の第5実施形態の要部構成を示す断面図Sectional drawing which shows the principal part structure of 5th Embodiment of this invention. 同じく第6実施形態の要部構成を示す断面図Sectional drawing which similarly shows the principal part structure of 6th Embodiment 同じく第7実施形態の要部構成を示す断面図Sectional drawing which similarly shows the principal part structure of 7th Embodiment 同じく第8実施形態の要部構成を示す断面図Sectional drawing which similarly shows the principal part structure of 8th Embodiment 同じく第9実施形態の要部構成を示す断面図Sectional drawing which similarly shows the principal part structure of 9th Embodiment 2次元結晶配列における本発明による反射材の挿入の一例を示す平面図Top view showing an example of insertion of a reflector according to the present invention in a two-dimensional crystal array 同じく他の例を示す平面図Plan view showing another example 同じく更に他の例を示す平面図A plan view showing still another example 実施例で用いた検出器の構成を示す図The figure which shows the structure of the detector used in the Example 同じく測定結果を示す図Figure showing the measurement results

符号の説明Explanation of symbols

10A、10B、22A、22B…受光素子
12…シンチレーション結晶
13、13A、13B、13C…結晶配列
14、18、20…反射材
16…ライトガイド
10A, 10B, 22A, 22B ... Light receiving element 12 ... Scintillation crystal 13, 13A, 13B, 13C ... Crystal arrangement 14, 18, 20 ... Reflector 16 ... Light guide

Claims (6)

複数の受光素子が並んだ方向である横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有し、発光素子に入射した放射線による横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器において、
前記発光素子受光素子の間の一部に、受光素子の受光領域の一部を覆う反射材を挿入して、発光の横方向への拡散を促進したことを特徴とする放射線位置検出器。
It has a plurality of light receiving elements whose number is smaller than the number of light emitting positions to be identified in the horizontal direction, which is the direction in which the plurality of light receiving elements are arranged. In the radiation position detector that is calculated by the center of gravity calculation,
Some between the light emitting element and the light receiving element, by inserting a reflective material covering a portion of the light receiving area of the light receiving element, light emission of diffused radiation position detection, characterized in that to facilitate the lateral direction vessel.
複数の受光素子が並んだ方向である横方向で識別すべき発光位置の数より数が少ない複数の受光素子を有し、積層された結晶素子配列でなる発光素子に入射した放射線による少なくとも横方向の発光位置を、受光素子出力の重心演算により求めるようにした放射線位置検出器において、
前記積層された結晶素子配列でなる発光素子の結晶素子の間の一部、及び、前記発光素子受光素子の間の一部の少なくともいずれか一方に、前記結晶素子の一部、又は、受光素子の受光領域の一部を覆う反射材を挿入して、発光の横方向への拡散を促進たことを特徴とする放射線位置検出器。
A plurality of light receiving elements whose number is smaller than the number of light emitting positions to be identified in the horizontal direction, which is the direction in which the plurality of light receiving elements are arranged, and at least the lateral direction due to radiation incident on the light emitting elements formed of the stacked crystal element array In the radiation position detector that calculates the light emission position by the center of gravity of the light receiving element output,
Some between crystal elements of the light emitting element formed by the stacked crystal device array, and, in at least one portion of between the light emitting element and the light receiving element, a part of the crystal element, or, insert the reflective material covering a portion of the light receiving area of the light receiving element, the radiation position detector, characterized in that to promote diffusion in the lateral direction of the light emitting.
更に、深さ方向の発光位置も重心演算により求めることを特徴とする請求項に記載の放射線位置検出器。 The radiation position detector according to claim 2 , wherein the emission position in the depth direction is also obtained by calculating the center of gravity. 前記発光素子が、一塊の結晶でなることを特徴とする請求項1に記載の放射線位置検出器。 The radiation position detector according to claim 1, wherein the light emitting element is made of a lump of crystals. 前記結晶素子配列の少なくとも結晶素子間を跨ぐように深さ方向に反射材が挿入されていることを特徴とする請求項に記載の放射線位置検出器。 The radiation position detector according to claim 2 , wherein a reflective material is inserted in a depth direction so as to straddle at least between crystal elements in the crystal element array. 前記発光素子と受光素子の間に、ライトガイドが設けられていることを特徴とする請求項1乃至のいずれかに記載の放射線位置検出器。 Between the light emitting element and the light receiving element, the radiation position detector according to any one of claims 1 to 5, characterized in that the light guide is provided.
JP2007221441A 2007-08-28 2007-08-28 Radiation position detector Expired - Fee Related JP5011590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221441A JP5011590B2 (en) 2007-08-28 2007-08-28 Radiation position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221441A JP5011590B2 (en) 2007-08-28 2007-08-28 Radiation position detector

Publications (2)

Publication Number Publication Date
JP2009053104A JP2009053104A (en) 2009-03-12
JP5011590B2 true JP5011590B2 (en) 2012-08-29

Family

ID=40504299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221441A Expired - Fee Related JP5011590B2 (en) 2007-08-28 2007-08-28 Radiation position detector

Country Status (1)

Country Link
JP (1) JP5011590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933529B2 (en) 2016-03-31 2018-04-03 National Institutes For Quantum And Radiological Science And Technology Layered three-dimensional radiation position detector

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070527B1 (en) 2009-04-24 2011-10-05 서울대학교산학협력단 Depth of interaction detector using light sharing method, measurment method and pet scanner using the same
JP5413019B2 (en) * 2009-07-27 2014-02-12 大日本印刷株式会社 Radiation image processing apparatus, radiation image processing method, and radiation image processing program
JPWO2012095981A1 (en) * 2011-01-13 2014-06-09 独立行政法人放射線医学総合研究所 Response function creation device for radiation detection position discrimination of radiation detector and radiation detection position discrimination device
JPWO2013157448A1 (en) * 2012-04-20 2015-12-21 ソニー株式会社 Semiconductor photodetection device and radiation detection device
US9602745B2 (en) * 2012-12-20 2017-03-21 Sony Semiconductor Solutions Corporation Imaging device, imaging apparatus, electronic apparatus, threshold value calculation apparatus, and imaging method
JP2016033450A (en) * 2014-07-30 2016-03-10 国立研究開発法人放射線医学総合研究所 Radiation detector
CN107728188B (en) * 2017-10-09 2019-08-16 山东麦德盈华科技有限公司 A kind of detector and signal reading method for ray position and energy measurement
CN110031884B (en) * 2018-01-11 2023-04-25 上海联影医疗科技股份有限公司 Detector, ECT system and method for determining occurrence position of scintillation instance
JP7068082B2 (en) * 2018-07-18 2022-05-16 三菱電機株式会社 Gamma camera
US11982777B2 (en) 2019-07-08 2024-05-14 National Institutes for Quantum Science and Technology Radiation position detector
US11275182B2 (en) * 2020-04-22 2022-03-15 GE Precision Healthcare LLC Systems and methods for scintillators having reflective inserts
WO2021255853A1 (en) * 2020-06-17 2021-12-23 株式会社日立ハイテク Device for detecting charged particles or radiation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143798A (en) * 1983-12-31 1985-07-30 Shimadzu Corp Scintillation detector
JPS60123683U (en) * 1984-01-31 1985-08-20 株式会社島津製作所 radiation detector
JPH0627844B2 (en) * 1987-05-14 1994-04-13 浜松ホトニクス株式会社 Radiation position detector
JP2934919B2 (en) * 1991-03-19 1999-08-16 信越化学工業株式会社 Scintillator block assembly for radiation detector
JPH04303786A (en) * 1991-03-31 1992-10-27 Shimadzu Corp radiation detector
JPH06289142A (en) * 1993-04-05 1994-10-18 Shin Etsu Chem Co Ltd Detector of radioactive ray and device therefor
JPH06337289A (en) * 1993-05-27 1994-12-06 Shimadzu Corp Radiation detector and application thereof
JP4338177B2 (en) * 2003-03-12 2009-10-07 独立行政法人放射線医学総合研究所 3D radiation position detector
JP4534006B2 (en) * 2005-09-28 2010-09-01 独立行政法人放射線医学総合研究所 Radiation position detection method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933529B2 (en) 2016-03-31 2018-04-03 National Institutes For Quantum And Radiological Science And Technology Layered three-dimensional radiation position detector

Also Published As

Publication number Publication date
JP2009053104A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5011590B2 (en) Radiation position detector
EP2751597B1 (en) Modelling of tof-doi detector arrays
CN101446644B (en) Radiation detector
US5319204A (en) Positron emission tomography camera with quadrant-sharing photomultipliers and cross-coupled scintillating crystals
JP5925452B2 (en) Positron emission tomography (PET) detector module, positron emission tomography (PET) scanner system, optical fiber plate and nuclear medicine imaging detector module
JP4803565B2 (en) DOI type radiation detector
WO2018223917A1 (en) Detector and emission imaging device having same
JPS63282681A (en) Radiation position detector
JP2013542415A (en) Interaction depth scintillation detector
US7164136B2 (en) Detector array using a continuous light guide
JP2010032214A (en) Radioactive ray detecting method and device utilizing energy and position information
US7088901B2 (en) Light guide apparatus and method for a detector array
JP2013246156A (en) Three-dimensional radiation position detector
JP4534006B2 (en) Radiation position detection method and apparatus
CN109891268B (en) Gamma radiation detector with parallax compensation
CN102879798B (en) For the scintillation detector of ray imaging device
US9933529B2 (en) Layered three-dimensional radiation position detector
JP2015075427A (en) Radiation detector
JP2003021682A (en) Radiation 3D position detector
WO2024131738A1 (en) Crystal array detector and emission imaging device
US5763887A (en) Tailored optical interface for scintillation camera detector
JP2003240857A (en) Radiation detector
JP3950964B2 (en) Actuated radiation position detector in strong magnetic field
JP2009156740A (en) Radiation detection apparatus
Inadama et al. Preliminary evaluation of four-layer BGO DOI-detector for PET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5011590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees