JP5008865B2 - Thin film having surface fine uneven structure and method for producing the same - Google Patents
Thin film having surface fine uneven structure and method for producing the same Download PDFInfo
- Publication number
- JP5008865B2 JP5008865B2 JP2005357646A JP2005357646A JP5008865B2 JP 5008865 B2 JP5008865 B2 JP 5008865B2 JP 2005357646 A JP2005357646 A JP 2005357646A JP 2005357646 A JP2005357646 A JP 2005357646A JP 5008865 B2 JP5008865 B2 JP 5008865B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- solvent
- producing
- surface fine
- fine concavo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Filtering Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Moulding By Coating Moulds (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Description
本発明は、リソグラフィー工程を経ずに自己組織化によって形成された表面微細凹凸構造を有する薄膜の製造方法、及びそれによって得られる薄膜に関する。 The present invention relates to a method for producing a thin film having a surface fine concavo-convex structure formed by self-organization without passing through a lithography process, and a thin film obtained thereby.
一般に、微細凹凸構造の形成方法として、電子線レジストやレーザーの2光束干渉露光方式による直接描画により、微細なレリーフ形状を形成するリソグラフィー方法が開発されている(例えば、非特許文献1参照)。しかし、前記方法は露光に時間がかかり、大面積、大量生産には適していないという問題がある。 In general, as a method for forming a fine concavo-convex structure, a lithography method for forming a fine relief shape by direct drawing using an electron beam resist or laser two-beam interference exposure method has been developed (for example, see Non-Patent Document 1). However, this method has a problem that it takes time for exposure and is not suitable for large area and mass production.
そこで、大面積、大量生産に適した方法として、射出成型法、プレス加工法などの形状転写法が提案されている(例えば、非特許文献1〜2参照)。この手法は、前記直接描画法によってレジスト材料に微細な凹凸形状を形成したマスターを利用し、更に電鋳加工によりマスターと相補的な微細凹凸構造を有するスタンパー(金型)を作製し、これを利用して樹脂などに転写するものである。しかし、これらの技術を使った表面設計は、非常に高度な技術が必要であり、加工寸法が1/10ミクロン程度までの加工が限界であり、加工寸法が小さくなるほど操作が煩雑になり、膨大な投資が必要であるという問題がある。 Then, shape transfer methods, such as an injection molding method and a press processing method, are proposed as a method suitable for a large area and mass production (for example, refer nonpatent literature 1-2). This method uses a master in which a fine concavo-convex shape is formed on a resist material by the direct drawing method, and further produces a stamper (die) having a fine concavo-convex structure complementary to the master by electroforming. It is used to transfer to resin. However, the surface design using these technologies requires very advanced technology, the processing size is limited to about 1/10 micron, and the operation becomes more complicated as the processing size becomes smaller. There is a problem that a large investment is necessary.
また、別の技術としては、ナノメーターオーダーのパターニングが簡便に行える方法として、ブロックコポリマーから自己発展的に形成されるミクロ相分離構造を利用する方法が報告されている。例えば、ポリスチレンとポリイソプレンとのブロックポリマーからなる海島型のミクロ相分離膜を基板上に形成し、気相反応によりポリイソプレン相に酸化オスミウムを導入してエッチング耐性を向上させ、酸化オスミウムが選択的にドープされたポリイソプレン相をマスクとしてパターンを形成する方法を報告している(例えば、非特許文献3参照)。 As another technique, a method using a microphase separation structure formed in a self-developed manner from a block copolymer has been reported as a method capable of easily performing nanometer-order patterning. For example, a sea-island micro phase separation membrane made of block polymer of polystyrene and polyisoprene is formed on a substrate, and osmium oxide is introduced into the polyisoprene phase by a gas phase reaction to improve etching resistance, and osmium oxide is selected. A method for forming a pattern using a chemically doped polyisoprene phase as a mask has been reported (for example, see Non-Patent Document 3).
こうしたブロックコポリマーのミクロ相分離構造を用いた方法は、リソグラフィー技術と比較して簡便で低コストである。しかし、オゾン酸化は煩雑である上に反応時間が比較的長く、スループットを向上させる事が困難である。また、酸化オスミウムは毒性が強いため、安全性の観点から汎用性に乏しい。 Such a method using a microphase separation structure of a block copolymer is simple and low-cost as compared with a lithography technique. However, ozone oxidation is complicated and the reaction time is relatively long, and it is difficult to improve the throughput. Moreover, since osmium oxide is highly toxic, its versatility is poor from the viewpoint of safety.
そこで、本発明の目的は、マイクロメートルオーダー、ナノメートルオーダーの微細凹凸構造が簡便な工程で効率よく得られ、種々の分野に使用可能な微細凹凸構造を有する薄膜およびその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a thin film having a fine concavo-convex structure that can be efficiently used in various fields, and a method for producing the same, in which a fine concavo-convex structure on the order of micrometers and nanometers can be efficiently obtained in a simple process It is in.
本発明者らは、上記目的を達成すべく鋭意研究したところ、結晶性ポリマーの溶液を塗布した後、溶媒を蒸発させる薄膜の形成工程において、溶媒の種類や溶液濃度を変えることによって、種々のサイズの表面微細凹凸構造を有する薄膜が形成できることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to achieve the above-mentioned object. After applying a crystalline polymer solution, in the thin film forming process for evaporating the solvent, various kinds of solvents can be used by changing the type of solvent and the solution concentration. The present inventors have found that a thin film having a surface fine concavo-convex structure having a size can be formed, and have completed the present invention.
即ち、本発明の薄膜の製造方法は、結晶性ポリマーとしてポリカプロラクトンを有機溶媒に溶解して得られた溶液を固体表面に塗布する工程と、前記溶媒を開放系又は密閉系で蒸発させて溶媒蒸発に伴うポリマー結晶化により表面微細凹凸構造を有する薄膜を形成する工程とを含むことを特徴とする。 That is, the method for producing a thin film of the present invention comprises a step of applying a solution obtained by dissolving polycaprolactone as a crystalline polymer in an organic solvent to a solid surface; And a step of forming a thin film having a surface fine concavo-convex structure by polymer crystallization accompanying evaporation.
本発明の薄膜の製造方法によると、レジストや蒸着法などの煩雑な工程を使用せずに、表面微細凹凸構造を簡易な工程で形成する事ができる。その際、結晶性ポリマーを溶解させる有機溶媒の沸点や溶液濃度を変えるという簡便な方法で、ナノメートルオーダーからマイクロメートルオーダーまでの微細構造の形成が容易に行える。さらに、溶液の自己組織化現象を利用するために、レジストや蒸着法を用いるよりも省資源、省エネルギーで微細構造を形成できるため、コスト低減に寄与する製造方法を提供する事ができる。つまり、本発明の薄膜の製造方法によると、マイクロメートルオーダー、ナノメートルオーダーの微細凹凸構造が簡便な工程で効率よく得られ、種々の分野に使用可能な微細凹凸構造を有する薄膜を製造することができる。 According to the method for producing a thin film of the present invention, the surface fine concavo-convex structure can be formed by a simple process without using a complicated process such as a resist or a vapor deposition method. At that time, a fine structure from the nanometer order to the micrometer order can be easily formed by a simple method of changing the boiling point or solution concentration of the organic solvent for dissolving the crystalline polymer. Furthermore, since a fine structure can be formed with less resources and energy than using a resist or a vapor deposition method in order to use the self-organization phenomenon of a solution, a manufacturing method that contributes to cost reduction can be provided. That is, according to the method for producing a thin film of the present invention, a fine uneven structure of micrometer order or nanometer order can be efficiently obtained by a simple process, and a thin film having a fine uneven structure usable in various fields is manufactured. Can do.
このように、本発明の薄膜の製造方法では、結晶性ポリマーを溶解させる有機溶媒の沸点や溶液濃度を変えることで、結晶化の速度などを変化させられるため、原子間力顕微鏡で観察される表面微細凹凸構造の平均凹凸周期が1nm〜100μmであるものを得ることができる。 As described above, in the thin film manufacturing method of the present invention, the crystallization speed can be changed by changing the boiling point of the organic solvent for dissolving the crystalline polymer and the solution concentration. The surface fine concavo-convex structure having an average concavo-convex period of 1 nm to 100 μm can be obtained.
本発明では、前記固体表面を回転させながら前記溶媒を蒸発させることで、溶媒の蒸発速度を制御することも可能である。 In the present invention, the evaporation rate of the solvent can be controlled by evaporating the solvent while rotating the solid surface.
一方、本発明の薄膜は、上記いずれかに記載の薄膜の製造方法で得られる、表面微細凹凸構造を有する薄膜である。本発明の薄膜は、マイクロメートルオーダー、ナノメートルオーダーの微細凹凸構造を有するため、電子的性質、導電的性質、光学的性質などの新たな機能を発揮しうる機能性材料として用いることができる。あるいは、上記微細凹凸パターンが細胞接着面を提供し、細胞支持基板へのアクセス、栄養供給ルートとなる細胞培養基材として用いることができる。 On the other hand, the thin film of the present invention is a thin film having a surface fine concavo-convex structure obtained by any of the thin film production methods described above. Since the thin film of the present invention has a micro uneven structure of micrometer order or nanometer order, it can be used as a functional material capable of exhibiting new functions such as electronic properties, conductive properties, and optical properties. Alternatively, the fine concavo-convex pattern provides a cell adhesion surface and can be used as a cell culture substrate serving as a cell support substrate and a nutrient supply route.
以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
本発明の薄膜の製造方法は、結晶性ポリマーを有機溶媒に溶解して得られた溶液を固体表面に塗布する工程を含むものである。本発明で用いるポリマーは結晶性ポリマーであれば特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアミド、ポリアセタール、ポリビニルアルコールなどのエンジニアリングプラスチックおよび汎用ポリマーが挙げられる。一般工業用多孔質膜として用いる場合、エンジニアリングプラスチックを用いることが、高強度、高弾性率、柔軟性の観点から望ましい。 The method for producing a thin film of the present invention includes a step of applying a solution obtained by dissolving a crystalline polymer in an organic solvent to a solid surface. The polymer used in the present invention is not particularly limited as long as it is a crystalline polymer, and examples thereof include engineering plastics such as polyethylene, polypropylene, polyester, polycarbonate, polyamide, polyacetal, and polyvinyl alcohol, and general-purpose polymers. When used as a general industrial porous membrane, it is desirable to use an engineering plastic from the viewpoint of high strength, high elastic modulus, and flexibility.
また、結晶性ポリマーとしては、ポリ乳酸、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリエチレンアジペート、ポリブチレンカーボネートなどの生分解性ポリマーが挙げられ、医療用途として用いる場合、生体内に吸収されるという観点から望ましい。中でもポリブチレンカーボネート、ポリエチレンカーボネート等が有機溶媒への溶解性の観点から好ましい。また、ポリ乳酸、ポリカプロラクトンが入手の容易さ、価格等の観点から望ましい。 In addition, examples of the crystalline polymer include biodegradable polymers such as polylactic acid, polyhydroxybutyric acid, polycaprolactone, polyethylene adipate, and polybutylene carbonate, which are desirable from the viewpoint of being absorbed in the living body when used for medical purposes. . Of these, polybutylene carbonate, polyethylene carbonate and the like are preferable from the viewpoint of solubility in an organic solvent. Polylactic acid and polycaprolactone are desirable from the viewpoints of availability, price, and the like.
本発明で用いることができる溶媒としては、使用するポリマーを溶解させるものであれば特に限定されない。有機溶媒の例としては、クロロホルム、塩化メチレン等のハロゲン系有機溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、酢酸エチル、酢酸ブチルなどのエステル類、アセトン、メチルイソブチルケトンなどのケトン類、テトラヒドロフランなどのエーテル類、二硫化炭素などが挙げられる。これらの有機溶媒は単独で使用しても、また、組み合わせた混合溶媒として使用してもよい。 The solvent that can be used in the present invention is not particularly limited as long as it dissolves the polymer to be used. Examples of organic solvents include halogenated organic solvents such as chloroform and methylene chloride, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl isobutyl ketone, Examples include ethers such as tetrahydrofuran, carbon disulfide and the like. These organic solvents may be used alone or in combination as a mixed solvent.
結晶性ポリマーの溶液は、ポリマー濃度が0.01〜200g/Lであることが好ましく、より好ましくは0.1〜100g/Lである。ポリマー濃度が0.01g/Lより低いと、得られる薄膜の力学的強度が不足する傾向がある。また、ポリマー濃度が200g/Lより大きいと、濃度が高くなりすぎて、周期構造が崩壊し易くなる傾向がある。 The crystalline polymer solution preferably has a polymer concentration of 0.01 to 200 g / L, more preferably 0.1 to 100 g / L. If the polymer concentration is lower than 0.01 g / L, the resulting thin film tends to have insufficient mechanical strength. On the other hand, if the polymer concentration is higher than 200 g / L, the concentration tends to be too high and the periodic structure tends to collapse.
固体表面をなす基材としては、ガラス、金属、シリコンウエハー等の無機材料、あるいはポリプロピレン、ポリエチレン、ポリエーテルケトンなどの耐有機溶剤性に優れた高分子が使用できるが、基材となる表面の平滑性の観点から基材は無機材料を用いる方が望ましい。 As a base material that forms a solid surface, inorganic materials such as glass, metal, silicon wafers, or polymers having excellent organic solvent resistance such as polypropylene, polyethylene, and polyetherketone can be used. From the viewpoint of smoothness, it is desirable to use an inorganic material for the substrate.
ポリマー溶液を塗布する方法は、何れの塗布方法でもよく、例えばスプレー塗布、浸漬塗布、滴下塗布、流延塗布(キャスト)、スピンコートなどが挙げられる。塗布する際の溶液の温度は、室温でもよいが、30℃〜用いるポリマーのガラス転移温度に加熱してもよい。 The method for applying the polymer solution may be any coating method, and examples thereof include spray coating, dip coating, drop coating, cast coating (cast), and spin coating. Although the temperature of the solution at the time of application | coating may be room temperature, you may heat to the glass transition temperature of the polymer used from 30 degreeC.
塗布する際の溶液の厚みは、溶媒蒸発後の薄膜の厚みが50nm〜100μmとなるように、設定するのが好ましい。 The thickness of the solution at the time of application is preferably set so that the thickness of the thin film after evaporation of the solvent is 50 nm to 100 μm.
本発明の薄膜の製造方法は、前記溶媒を開放系又は密閉系で蒸発させて表面微細凹凸構造を有する薄膜を形成する工程を含むものである。上記基板上に、高分子溶液を塗布して溶媒を蒸発させる事により、溶媒蒸発に伴うポリマー結晶化により微細凹凸構造を形成する事ができる。 The method for producing a thin film of the present invention includes a step of forming a thin film having a fine surface relief structure by evaporating the solvent in an open system or a closed system. By applying a polymer solution and evaporating the solvent on the substrate, a fine concavo-convex structure can be formed by polymer crystallization accompanying the evaporation of the solvent.
この時、溶媒蒸発速度を、溶媒の沸点あるいは蒸発条件により制御することで、微細凹凸サイズを制御可能となる。より具体的には、一般的に溶媒の沸点が低いほど、溶媒蒸発速度は速くなるため、微細凹凸サイズは小さくなる。 At this time, the fine unevenness size can be controlled by controlling the solvent evaporation rate according to the boiling point of the solvent or the evaporation conditions. More specifically, the lower the boiling point of the solvent, the faster the solvent evaporation rate, and the smaller the fine unevenness size.
また、蒸発環境については、塗布雰囲気を大気下開放系で行う場合と密閉系で行う場合とで溶媒蒸発速度を制御する方法や、塗布基材を回転体上に設置して、その上に高分子溶液を滴下した後、基材を回転させながら溶媒を蒸発させる方法などがある。 As for the evaporation environment, there is a method for controlling the solvent evaporation rate depending on whether the application atmosphere is an open system in the atmosphere or a closed system, and a coating substrate is installed on a rotating body and a high There is a method of evaporating the solvent while rotating the substrate after dropping the molecular solution.
蒸発の際の溶液の温度は、室温でもよいが、溶媒蒸発速度を速くするために、30℃〜用いるポリマーのガラス転移温度に加熱してもよい。また、基材を回転させながら溶媒を蒸発させる場合、回転数500〜3000rpmにすることによって、大気下の開放系より、溶媒蒸発速度を速くすることができる。 The temperature of the solution during evaporation may be room temperature, but in order to increase the solvent evaporation rate, it may be heated to 30 ° C. to the glass transition temperature of the polymer used. When the solvent is evaporated while rotating the base material, the solvent evaporation rate can be made faster than the open system in the atmosphere by setting the rotation speed to 500 to 3000 rpm.
本発明の薄膜は、以上のような本発明の製造方法によって好適に得られるものであり、表面微細凹凸構造を有する薄膜である。表面微細凹凸構造としては、原子間力顕微鏡で観察される平均凹凸周期が1nm〜100μmであるものが挙げられる。 The thin film of the present invention is preferably obtained by the production method of the present invention as described above, and is a thin film having a surface fine concavo-convex structure. Examples of the surface fine concavo-convex structure include those having an average concavo-convex period of 1 nm to 100 μm observed with an atomic force microscope.
得られる薄膜の表面微細凹凸構造は、原子間力顕微鏡(AFM)写真によってより明確に観察することができるが、複数の球晶が成長してその境界線が凹部となる構造、微細粒子が連結してその間に孔が形成された構造、フィブリル化した結晶が集合した構造などが挙げられる。 The surface fine concavo-convex structure of the obtained thin film can be observed more clearly with an atomic force microscope (AFM) photograph, but a structure in which a plurality of spherulites grow and their boundary lines become concave portions, and fine particles are connected. And a structure in which pores are formed therebetween, a structure in which fibrillated crystals are aggregated, and the like.
本発明の薄膜は、精密濾過、食品の清浄化処理等に使用される分離膜、電池用セパレータ等の産業用材料、包帯、紙オムツ等の医療材料の素材、雨天用衣類、手袋等の医療用材料、孔部に薬剤を収容することができるフィルム等の製剤材料、細胞の培養や、細胞から3次元組織体を形成するときの足場材料、光学材料及び電子材料に好適に使用することができる。 The thin film of the present invention is a separation membrane used for microfiltration, food cleaning treatment, etc., industrial materials such as battery separators, medical materials such as bandages and paper diapers, rainy clothing, gloves, etc. It can be suitably used for preparation materials, pharmaceutical materials such as films that can contain a drug in the pores, cell culture, scaffolding materials, optical materials, and electronic materials for forming three-dimensional tissue bodies from cells. it can.
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、原子間力顕微鏡で観察される表面微細凹凸構造の平均凹凸周期は、次のようにして測定した。 Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the average uneven | corrugated period of the surface fine uneven structure observed with an atomic force microscope was measured as follows.
原子間力顕微鏡(日本ビーコ社製、Nano Scope 3A−MMAFM)を用いて薄膜の表面を観察し、その際の微小探針と試料表面間に働く原子間力をカンチレバーの変位で検出し、その変位量をレーザー光の変位量として検出して平均凹凸周期を解析し、表面凹凸を解析した。 The surface of the thin film was observed using an atomic force microscope (Nano Scope 3A-MMAFM manufactured by Nippon Bico Co., Ltd.), and the atomic force acting between the microprobe and the sample surface at that time was detected by the displacement of the cantilever. The amount of displacement was detected as the amount of laser beam displacement, the average unevenness period was analyzed, and the surface unevenness was analyzed.
実施例1
ポリε‐カプロラクトン(和光純薬社製、重量平均分子量:70,000〜100,000)をクロロホルム、酢酸エチル、テトラヒドロフラン(以下THF)、又はアセトンの4種類の溶媒に溶解させ、濃度が1g/L、10g/L、50g/Lとなるように調製した。これらの溶液をガラスシャーレ上にキャストし、開放系と密閉系の状態で溶媒を蒸発させ、その後2日間室温で真空乾燥して薄膜(厚み100nm〜1μm)を得た。用いた溶媒についての詳細は表1に示す。
Poly ε-caprolactone (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 70,000 to 100,000) is dissolved in four solvents such as chloroform, ethyl acetate, tetrahydrofuran (hereinafter THF), or acetone, and the concentration is 1 g / L, 10 g / L, and 50 g / L. These solutions were cast on a glass petri dish, the solvent was evaporated in an open system and a closed system, and then vacuum dried at room temperature for 2 days to obtain a thin film (thickness: 100 nm to 1 μm). Details about the solvents used are given in Table 1.
こうして得られた薄膜の走査型電子顕微鏡(SEM)写真を図1〜図2に示し、同薄膜の原子間力顕微鏡(AFM)写真を図3〜図4に示す。また、AFM観察の結果から、表面凹凸を解析した結果を表2〜表3に示す。
実施例2
ポリε‐カプロラクトン(和光純薬社製、重量平均分子量:70,000〜100,000)をクロロホルムに溶解させ、濃度が10g/Lとなるように調製した。この溶液を回転体上に設置したガラス基板上に滴下して、回転数1000rpm×10秒の条件で回転させて溶媒を蒸発させ薄膜を得た。こうして得られた薄膜(厚み200nm)のSEM写真、AFM写真並びに表面凹凸の解析結果を図5に示す。
Example 2
Polyε-caprolactone (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 70,000 to 100,000) was dissolved in chloroform to prepare a concentration of 10 g / L. This solution was dropped on a glass substrate placed on a rotating body and rotated under the condition of a rotational speed of 1000 rpm × 10 seconds to evaporate the solvent and obtain a thin film. FIG. 5 shows the SEM photograph, AFM photograph, and surface roughness analysis result of the thin film (thickness 200 nm) thus obtained.
Claims (4)
The thin film which has the surface fine concavo-convex structure obtained by the manufacturing method of the thin film in any one of Claims 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357646A JP5008865B2 (en) | 2005-12-12 | 2005-12-12 | Thin film having surface fine uneven structure and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357646A JP5008865B2 (en) | 2005-12-12 | 2005-12-12 | Thin film having surface fine uneven structure and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007161809A JP2007161809A (en) | 2007-06-28 |
JP5008865B2 true JP5008865B2 (en) | 2012-08-22 |
Family
ID=38245085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005357646A Expired - Fee Related JP5008865B2 (en) | 2005-12-12 | 2005-12-12 | Thin film having surface fine uneven structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5008865B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6089298B2 (en) * | 2012-04-10 | 2017-03-08 | 裕司 清野 | Pattern forming method, substrate with styrene polymer thin film, surface water-repellent material, password generating device, incubator, pattern forming agent, and reverse pattern forming method. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001048994A (en) * | 1999-08-11 | 2001-02-20 | Toray Ind Inc | Gas barrier film |
JP2001353776A (en) * | 2000-06-14 | 2001-12-25 | Toray Ind Inc | Aromatic polyamide film and magnetic recording medium |
JP4377578B2 (en) * | 2001-12-17 | 2009-12-02 | ダイセル化学工業株式会社 | Antiglare film, optical member using the same, and liquid crystal display device |
JP2004272995A (en) * | 2003-03-07 | 2004-09-30 | Tdk Corp | Optical disk and its manufacturing method |
JP2006111696A (en) * | 2004-10-13 | 2006-04-27 | Keio Gijuku | Adhesive film |
-
2005
- 2005-12-12 JP JP2005357646A patent/JP5008865B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007161809A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers | |
US9018649B2 (en) | Method of producing nanopatterned articles, and articles produced thereby | |
Krishnamoorthy et al. | Tuning the dimensions and periodicities of nanostructures starting from the same polystyrene‐block‐poly (2‐vinylpyridine) diblock copolymer | |
Li et al. | What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces | |
US8247033B2 (en) | Self-assembly of block copolymers on topographically patterned polymeric substrates | |
Ding et al. | Breath figure in non-aqueous vapor | |
TWI404753B (en) | Fabrication method of nanomaterials using block copolymer templates | |
CN107090087B (en) | Preparation of PLA Superhydrophobic Films with Controllable Adhesion by Solvent-Nonsolvent Assisted Microphase Separation | |
Roland et al. | Morphology evolution in slowly dip-coated supramolecular PS-b-P4VP thin films | |
Yabu et al. | Mesoscale pincushions, microrings, and microdots prepared by heating and peeling of self-organized honeycomb-patterned films deposited on a solid substrate | |
JP6618546B2 (en) | Process for making conductive polymer free-standing film | |
CN102123941A (en) | Microfine structure and process for producing same | |
Wang et al. | Micropatterned polymer surfaces induced by nonsolvent | |
CN101481461B (en) | Preparation and use of phenylethylene block copolymer micro-nano microsphere | |
Li et al. | Formation of ceramic microstructures: honeycomb patterned polymer films as structure-directing agent | |
JP5008865B2 (en) | Thin film having surface fine uneven structure and method for producing the same | |
Wang et al. | Phase‐separation‐induced micropatterned polymer surfaces and their applications | |
Pilati et al. | Design of surface properties of PET films: Effect of fluorinated block copolymers | |
Chu et al. | Wetting in nanopores of cylindrical anodic aluminum oxide templates: Production of gradient polymer nanorod arrays on large-area curved surfaces | |
CN104370274A (en) | Guide assembling method for nanometer structure | |
CN101190400A (en) | Preparation method of conjugated polymer porous membrane and obtained conjugated polymer porous membrane | |
KR101720665B1 (en) | Method for Preparation of Polymer Layer with Micro Patterns on Different Substrates | |
Kang et al. | Fabrication of ordered honeycomb structures and microspheres using polystyrene-block-poly (tert-butyl acrylate) star polymers | |
Wang et al. | A simple route to micropatterned polymer surfaces | |
KR101720666B1 (en) | Method for micro polymer patterns on different substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120530 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |