[go: up one dir, main page]

JP5005239B2 - Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment - Google Patents

Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment Download PDF

Info

Publication number
JP5005239B2
JP5005239B2 JP2006078139A JP2006078139A JP5005239B2 JP 5005239 B2 JP5005239 B2 JP 5005239B2 JP 2006078139 A JP2006078139 A JP 2006078139A JP 2006078139 A JP2006078139 A JP 2006078139A JP 5005239 B2 JP5005239 B2 JP 5005239B2
Authority
JP
Japan
Prior art keywords
phosphorus
sewage
concentration
collection container
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078139A
Other languages
Japanese (ja)
Other versions
JP2007253003A (en
Inventor
淳司 高橋
克巳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2006078139A priority Critical patent/JP5005239B2/en
Publication of JP2007253003A publication Critical patent/JP2007253003A/en
Application granted granted Critical
Publication of JP5005239B2 publication Critical patent/JP5005239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、標準活性汚泥法では十分に除去することができないりんを除去することができるAO,AO等の下水高度処理における下水処理技術に関し、流入下水中のりん除去に係わるりん蓄積菌の栄養源物質(例えば、酢酸等)の濃度を推定し、下水高度処理装置におけるりん蓄積菌の活動を高めるべく栄養源物質量を調整して脱りん処理を行うべく、下水高度処理による活性汚泥中からのりん溶出による流入下水の水質推定方法、下水高度処理装置における栄養源添加装置、及び下水高度処理装置に関するものである。 TECHNICAL FIELD The present invention relates to a sewage treatment technique in advanced sewage treatment such as AO and A 2 O that can remove phosphorus that cannot be sufficiently removed by a standard activated sludge method, and relates to phosphorus accumulating bacteria related to phosphorus removal in influent sewage. Activated sludge by advanced sewage treatment to estimate the concentration of nutrient source materials (for example, acetic acid, etc.) and adjust the amount of nutrient source materials to increase the activity of phosphorus accumulating bacteria in the advanced sewage treatment equipment. The present invention relates to a method for estimating the quality of influent sewage by elution of phosphorus from the inside, a nutrient source addition device in an advanced sewage treatment device, and an advanced sewage treatment device.

従来の高度処理装置には、図6,図7に示すものがある。先ず、図6は、汚水(下水)が調整槽1に流入し、調整槽1の汚水が調整ポンプ2により嫌気槽3に送られ、嫌気槽3の越流水が好気槽4に流入し曝気装置5により活性汚泥とともに好気処理した後、その越流水を沈殿槽6に送り、この流入水の上澄水を処理水として外部に排水する。沈殿槽6に沈殿した余剰汚泥は汚泥濃縮貯留槽7に送られ、その上澄水が調整槽1に返送されている。(例えば、特許文献1参照)   The conventional advanced processing apparatuses include those shown in FIGS. First, in FIG. 6, sewage (sewage) flows into the adjustment tank 1, sewage in the adjustment tank 1 is sent to the anaerobic tank 3 by the adjustment pump 2, and overflow water from the anaerobic tank 3 flows into the aerobic tank 4. After aerobic treatment with activated sludge by the apparatus 5, the overflow water is sent to the settling tank 6, and the supernatant water of the inflow water is discharged to the outside as treated water. Excess sludge precipitated in the settling tank 6 is sent to the sludge concentration storage tank 7, and the supernatant water is returned to the adjustment tank 1. (For example, see Patent Document 1)

また、図7の高度処理装置は生物学的脱りん装置であって、下水流入水が嫌気槽3に流入し、嫌気槽3の液が好気槽4に送られ、その越流水が最終沈殿池6に送られ、最終沈殿池6からの返送汚泥が嫌気槽3に流入し、最終沈殿池6の越流水が処理水として排水されている。この装置にはりん濃度計測系、流量計測系、凝集剤注入系が設けられ、りん濃度計測系は好気槽4の液をポンプ4aで採水し、固液分離器4bに送り、固形分が除去された液をりん濃度計4cで測定し、また、好気槽4からの越流水の流量を流量計8で計測している。この高度処理装置には凝集剤貯留槽9が設けられ、ポンプ9aを操作して凝集剤(アルミニウム,鉄系の無機質凝集剤:ポリ塩化アルミニウム(PAC))を好気槽4に供給している。凝集剤注入量制御装置8aは、りん濃度計4cと流量計8との計測値に基づいて、ポンプ9aが制御され、凝集剤の注入量が設定されている。(例えば、特許文献2参照)   7 is a biological dephosphorization apparatus, in which sewage inflow water flows into the anaerobic tank 3, the liquid in the anaerobic tank 3 is sent to the aerobic tank 4, and the overflow water is finally settled. The return sludge from the final sedimentation basin 6 flows into the anaerobic tank 3 and the overflow water from the final sedimentation basin 6 is drained as treated water. This apparatus is provided with a phosphorus concentration measurement system, a flow rate measurement system, and a flocculant injection system. The phosphorus concentration measurement system takes the liquid in the aerobic tank 4 with a pump 4a and sends it to a solid-liquid separator 4b for solid content. The liquid from which the water is removed is measured by the phosphorus concentration meter 4 c, and the flow rate of the overflow water from the aerobic tank 4 is measured by the flow meter 8. This advanced processing apparatus is provided with a flocculant storage tank 9 and supplies the flocculant (aluminum, iron-based inorganic flocculant: polyaluminum chloride (PAC)) to the aerobic tank 4 by operating the pump 9a. . In the flocculant injection amount control device 8a, the pump 9a is controlled based on the measurement values of the phosphorus concentration meter 4c and the flow meter 8, and the flocculant injection amount is set. (For example, see Patent Document 2)

特開平06−126296号(明細書段落〔0006〕,〔0007〕、図2)Japanese Patent Laid-Open No. 06-126296 (paragraphs [0006], [0007], FIG. 2) 特開平09−174086号(明細書全文,図1)Japanese Patent Laid-Open No. 09-174086 (the whole specification, FIG. 1)

下水や汚水の高度処理における生物学的りん除去では、りん除去に係わるりん蓄積菌が嫌気槽では菌体外にりんを吐き出して有機酸を取り込み、好気槽では嫌気槽で菌体内に取り込んだ有機酸を消費して吐き出した以上のりんを菌体内に取り込むことにより、りんを除去している。しかし、従来例の下水高度処理装置では、嫌気槽において流入下水中に含まれる有機酸の量がりん蓄積菌の活動量に見合った量を有するか否かは考慮されていなかった。   In biological phosphorus removal in advanced treatment of sewage and sewage, phosphorus accumulating bacteria involved in phosphorus removal exhale phosphorus outside the cells in the anaerobic tank and take in organic acids, and in the aerobic tank in the cells in the anaerobic tank Phosphorus is removed by taking in more phosphorus than was consumed by consuming organic acid. However, in the conventional sewage advanced treatment apparatus, it was not considered whether the amount of organic acid contained in the inflowing sewage in the anaerobic tank had an amount commensurate with the amount of activity of the phosphorus accumulating bacteria.

また、後者従来例は凝集剤添加活性汚泥法であり、好気槽におけるりん濃度と好気槽からの越流水の流量とを検出し最適な量の凝集剤を注入してりんを除去しており、このような凝集剤(PAC)によるりん除去方法は、りん蓄積菌の活動を把握して凝集剤を供給するものではない。従って、従来例では処理水の水質を維持するために、必要以上に凝集剤(PAC)を好気槽に注入し、りん蓄積菌の活動量を阻害するおそれもあった。また、凝集剤を含めた汚泥が大量に発生することになり、汚泥処理のコストが高騰し必ずしも好ましいりん除去方法ではなく、改善の余地があった。   Moreover, the latter conventional example is a flocculant-added activated sludge method, which detects the phosphorus concentration in the aerobic tank and the flow rate of the overflow water from the aerobic tank and injects an optimal amount of flocculant to remove phosphorus. However, the phosphorus removal method using such a flocculant (PAC) does not supply the flocculant by grasping the activity of the phosphorus accumulating bacteria. Therefore, in the conventional example, in order to maintain the quality of the treated water, a flocculant (PAC) was injected more than necessary into the aerobic tank, and the activity amount of phosphorus accumulating bacteria might be inhibited. In addition, a large amount of sludge including a flocculant is generated, and the cost of sludge treatment increases, which is not necessarily a preferable phosphorus removal method, and there is room for improvement.


本発明は、上述の課題に鑑みなされたものであって、流入下水中に含まれるりん蓄積菌の活動に必要な栄養源物質の濃度を推定し、嫌気槽におけるりん蓄積菌の活動量を高めて効率良くりん除去を行うことにあり、濃縮活性汚泥を利用し流入下水中に含まれるりん蓄積菌の活動に必要な栄養源物質量を推定するに当たり、活性汚泥中からのりん溶出により流入下水中の有機酸濃度を推定する流入下水の水質推定方法を提供し、この水質推定方法を利用し、栄養源物質量を調整する下水高度処理装置における栄養源添加装置を提供することを目的とするものである。

The present invention has been made in view of the above-described problems, and estimates the concentration of a nutrient source material necessary for the activity of the phosphorus accumulating bacteria contained in the inflowing sewage, thereby increasing the activity amount of the phosphorus accumulating bacteria in the anaerobic tank. In order to estimate the amount of nutrients necessary for the activities of phosphorus accumulating bacteria contained in the inflowing sewage using concentrated activated sludge, the influent sewage is extracted by phosphorus elution from the activated sludge. It provides a quality estimation method of the inflow sewage to estimate the organic acid concentration in the aim of this quality estimation method using, providing nutrients added equipment in sewage advanced treatment apparatus for adjusting the nutrient source material weight To do.

本発明は、上記課題を達成するためになされ、請求項1の発明は、りん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮工程と、
採取容器に測定試料である流入下水の所定量を容れて前記濃縮汚泥を投入し、それぞれの採取容器の内溶液を嫌気状態とする嫌気工程と、
前記採取容器内の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定するりん酸濃度測定工程と、
前記りん酸濃度から流入下水中に含まれるりん蓄積菌反応性有機酸類濃度を求める演算処理工程とを有することを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法である。
The present invention was made in order to achieve the above-mentioned problems, and the invention of claim 1 is a sludge concentration step in which activated sludge containing phosphorus-accumulating bacteria is denitrified to obtain a concentrated sludge;
An anaerobic process in which a predetermined amount of inflowing sewage that is a measurement sample is placed in a collection container and the concentrated sludge is introduced, and an inner solution of each collection container is anaerobic,
A phosphoric acid concentration measuring step for measuring a phosphoric acid concentration in a filtered solution obtained by filtering the inner solution in the collection container;
A method for estimating the water quality of influent sewage by elution of phosphorus from activated sludge, comprising an arithmetic processing step for obtaining a concentration of reactive organic acids of phosphorus accumulating bacteria contained in the influent sewage from the phosphoric acid concentration.

また、請求項2の発明は、りん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮工程と、
所定容量の第1から第3の採取容器を用意し、第1の採取容器に前記濃縮工程で得られたりん蓄積菌を含有する前記濃縮汚泥を投入し、第2の採取容器に栄養源物質を所定量を容れて前記濃縮汚泥を投入し、第3の採取容器に測定試料である流入下水の所定量を容れて前記濃縮汚泥を投入し、それぞれの採取容器の内溶液を撹拌し嫌気状態とする嫌気工程と、
前記嫌気工程が所定時間経過した後、前記各採取容器の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定する測定工程と、
前記測定工程における第1と第2の採取容器から得られた濾過溶液中のりん酸濃度と、第3の採取容器に対応する濾過液中の試料のりん酸濃度とを演算処理してりん蓄積菌反応性有機酸類濃度を求める演算処理工程とを有することを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法である。
In addition, the invention of claim 2 is a sludge concentration step in which the activated sludge containing phosphorus accumulating bacteria is denitrified into a concentrated sludge,
First to third collection containers having a predetermined capacity are prepared, the concentrated sludge containing the phosphorus accumulating bacteria obtained in the concentration step is introduced into the first collection container, and a nutrient source material is introduced into the second collection container The concentrated sludge is charged in a predetermined amount, and the concentrated sludge is charged in a third sampling container with a predetermined amount of inflowing sewage, and the inner solution in each sampling container is stirred and anaerobic. An anaerobic process and
After the anaerobic step has elapsed for a predetermined time, a measurement step of measuring the phosphoric acid concentration in the filtered solution obtained by filtering the inner solution of each of the collection containers;
The phosphoric acid concentration in the filtrate obtained from the first and second collection containers in the measurement step and the phosphoric acid concentration of the sample in the filtrate corresponding to the third collection container are processed to calculate phosphorus accumulation. It is a method for estimating the water quality of influent sewage by elution of phosphorus from activated sludge, comprising an arithmetic processing step for determining the concentration of fungi-reactive organic acids.

また、請求項3の発明は、前記栄養源物質が酢酸等の有機酸およびその塩類であることを特徴とする請求項2に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法である。   The invention according to claim 3 is the method for estimating the quality of influent sewage by phosphorus elution from activated sludge according to claim 2, wherein the nutrient source material is an organic acid such as acetic acid and salts thereof. is there.

また、請求項4の発明は、前記演算処理工程が、下記演算式〔数4〕によることを特徴とする請求項3に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法である。

Figure 0005005239
The invention according to claim 4 is the water quality estimation method for influent sewage by phosphorus elution from activated sludge according to claim 3, wherein the calculation processing step is based on the following calculation formula [Equation 4]. .

Figure 0005005239

また、請求項5の発明は、前記りん蓄積菌反応性有機酸類が、嫌気状態にてりん蓄積菌が菌体外にりんを放出する過程で取り込まれる有機酸であることを特徴とする請求項1,2,3または4に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法である。   The invention of claim 5 is characterized in that the phosphorus-accumulating bacterium-reactive organic acid is an organic acid that is incorporated in a process in which the phosphorus-accumulating bacterium releases phosphorus outside the cell in an anaerobic state. The water quality estimation method for influent sewage by elution of phosphorus from activated sludge as described in 1, 2, 3 or 4.

また、請求項6の発明は、請求項2に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、
前記りん酸濃度測定工程における第1と第2の採取容器から得られた濾過溶液中のりん酸濃度からりん溶出量/吸収有機酸量の比率であるYpo4を下記演算式〔数5〕により求めることを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法である。

Figure 0005005239
Further, the invention of claim 6 is a method for estimating the quality of influent sewage by phosphorus elution from the activated sludge according to claim 2,
Ypo4, which is the ratio of phosphorus elution amount / absorbed organic acid amount, is obtained from the phosphoric acid concentration in the filtered solution obtained from the first and second collection containers in the phosphoric acid concentration measuring step by the following equation [Equation 5]. This is a method for estimating the water quality of influent sewage by elution of phosphorus from activated sludge.

Figure 0005005239

また、請求項7の発明は、請求項6に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、
前記第1〜3の採取容器に加えて第4の採取容器を設け、第4の採取容器には栄養源物質を過剰に添加し、第4の採取容器に濃縮汚泥が満水に供給され、第4の採取容器の内溶液を撹拌しながら所定時間嫌気状態とし、濾過工程を経て、第4の採取容器の内溶液を固形分と濾過液とに分離し、第4の採取容器から得られる濾過液中のりん酸濃度を測定するとともに、前記濃縮汚泥の初期りん酸性りん濃度をりん酸濃度測定工程により測定し、各りん酸濃度と前記Ypo4とを下記演算式〔数6〕によりりん蓄積菌量を求めることを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。

Figure 0005005239
The invention of claim 7 is the water quality estimation method of influent sewage by phosphorus elution from the activated sludge according to claim 6,
A fourth collection container is provided in addition to the first to third collection containers, the nutrient substance is excessively added to the fourth collection container, and concentrated sludge is supplied to the fourth collection container to fill the water. The solution in the 4 collection container is made anaerobic for a predetermined time while stirring, and after the filtration process, the solution in the 4th collection container is separated into solids and filtrate, and the filtration obtained from the 4th collection container In addition to measuring the phosphoric acid concentration in the liquid, the initial phosphoric acid phosphorus concentration of the concentrated sludge was measured by a phosphoric acid concentration measuring step, and each phosphoric acid concentration and the Ypo4 were calculated according to the following equation [Equation 6]. A method for estimating the quality of influent sewage by elution of phosphorus from activated sludge, characterized by determining the amount.

Figure 0005005239

また、請求項8の発明は、請求項7に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、第4の採取容器に代えて第2の採取容器を用いてりん蓄積菌量を求めることを特徴とする請求項7に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法である。   The invention according to claim 8 is the method for estimating the quality of influent sewage by elution of phosphorus from the activated sludge according to claim 7, wherein a phosphorus-accumulating bacterium is obtained using a second collection container instead of the fourth collection container. 8. The method for estimating the quality of influent sewage by elution of phosphorus from activated sludge according to claim 7, wherein the amount is determined.

また、請求項9の発明は、下水高度処理装置に流入する流入下水に含有するりん蓄積菌反応性有機酸類を推定して嫌気槽に栄養源物質を添加する添加装置において、
下水高度処理装置後段の最終沈殿池にて沈降した最終余剰汚泥をサンプリングする採取手段と、
前記採取手段により採取したりん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮手段と、
所定容量の第1から第3の採取容器と、
前記汚泥濃縮工程から得られた前記濃縮汚泥を、前記第1の採取容器と、栄養源物質を所定量を投入した前記第2の採取容器と、測定試料である流入下水を所定量を投入した前記第3の採取容器に投入し、それぞれの採取容器の内溶液を嫌気状態とする嫌気手段と、
前記嫌気手段が所定時間経過した後、前記各容器の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定する光学的測定手段と、
前記光学的測定手段により、前記第1と第2の採取容器から得られた濾過溶液中のりん酸濃度と、前記第3の採取容器に対応する濾過液中のりん酸濃度とを演算処理してりん蓄積菌反応性有機酸類濃度を求める演算処理手段と、
前記演算処理手段により得られたりん蓄積菌反応性有機酸類濃度に応じて栄養源物質を前記下水高度処理装置の嫌気槽に注入する酢酸注入手段と
を有することを特徴とする下水高度処理装置における栄養源添加装置である。
The invention of claim 9 is an addition device for estimating phosphorus-accumulating bacteria reactive organic acids contained in the inflowing sewage flowing into the advanced sewage treatment device and adding a nutrient source material to the anaerobic tank,
Sampling means for sampling the final excess sludge that has settled in the final sedimentation basin after the sewage advanced treatment device;
Sludge concentrating means to deconcentrate activated sludge containing phosphorus accumulating bacteria collected by the collecting means;
First to third collection containers of a predetermined capacity;
The concentrated sludge obtained from the sludge concentration step is charged with the first collection container, the second collection container with a predetermined amount of nutrient source material, and a predetermined amount of inflow sewage as a measurement sample. Anaerobic means for charging the third collection container and making the solution in each collection container anaerobic;
An optical measuring means for measuring a phosphoric acid concentration in a filtered solution obtained by filtering the inner solution of each container after the anaerobic means has passed for a predetermined time;
The optical measuring means computes the phosphoric acid concentration in the filtrate obtained from the first and second collection containers and the phosphoric acid concentration in the filtrate corresponding to the third collection container. Arithmetic processing means for determining the concentration of reactive organic acids of the phosphorus-accumulating bacteria,
An acetic acid injecting means for injecting a nutrient source material into the anaerobic tank of the advanced sewage treatment apparatus according to the phosphorus accumulating bacteria reactive organic acid concentration obtained by the arithmetic processing means. It is a nutrient source addition device.

また、請求項10の発明は、前記酢酸注入手段がりん蓄積菌反応性有機酸類濃度に応じて注入される栄養源物質量を記録したデータテーブルであることを特徴とする請求項9に記載の下水高度処理装置における栄養源添加装置である。   The invention of claim 10 is a data table in which the acetic acid injecting means records a nutrient source substance amount to be injected according to the concentration of phosphorus accumulating bacteria reactive organic acids. It is a nutrient source addition device in an advanced sewage treatment device.

また、請求項11の発明は、前記栄養源物質が酢酸等の有機酸およびその塩類であることを特徴とする請求項9又は10に記載の下水高度処理装置における栄養源添加装置である。   The invention according to claim 11 is the nutrient source addition apparatus in the advanced sewage treatment apparatus according to claim 9 or 10, wherein the nutrient source material is an organic acid such as acetic acid and salts thereof.

また、請求項12の発明は、前記りん蓄積菌反応性有機酸類が、嫌気状態のりん蓄積菌が菌体外にりんを放出する過程で取り込まれる有機酸であることを特徴とする請求項9,10または11に記載の下水高度処理装置における栄養源添加装置である。   The invention of claim 12 is characterized in that the phosphorus-accumulating bacteria-reactive organic acids are organic acids taken in the process of anaerobic phosphorus-accumulating bacteria releasing phosphorus outside the cells. , 10 or 11 is a nutrient source addition device in the advanced sewage treatment apparatus.

請求項1〜5の発明によれば、下水高度処理装置において、流入下水中に混入するりん蓄積菌の栄養源物質の濃度を下水高度処理装置の最終余剰汚泥から得られる活性汚泥を利用し、この活性汚泥を濃縮し、流入下水と濃縮汚泥とを嫌気状態として活性汚泥中から溶出されるりん濃度を測定し、りん濃度を演算処理して流入下水中の有機酸の総体としてのりん蓄積菌反応性有機酸類量(PRA量)を求めることが可能であり、従来のように、流入下水中の酢酸等を高価なクロマトグラフィで検出することなく、PRA量を測定して流入下水中の栄養源物質量を推定することが可能であり、しかも測定に要する時間も短縮することが可能な利点がある。また、PRA測定はりん蓄積菌の活動量を推測することも可能である利点がある。また、流入下水中のPRA量の測定にあたり、定量分析に例えると、ブランク、標準液、試料となる第1〜第3の採取容器を用意して測定することによって、精度良く測定することができる。   According to the inventions of claims 1 to 5, in the sewage advanced treatment apparatus, the concentration of the nutrient source substance of the phosphorus accumulating bacteria mixed in the inflowing sewage is utilized using the activated sludge obtained from the final surplus sludge of the sewage advanced treatment apparatus, The activated sludge is concentrated, the inflowing sewage and the concentrated sludge are anaerobically measured, the phosphorus concentration eluted from the activated sludge is measured, the phosphorus concentration is calculated, and the phosphorus accumulating bacteria as the total organic acid in the influent sewage It is possible to determine the amount of reactive organic acids (PRA amount), and as in the past, without detecting acetic acid etc. in the influent sewage by expensive chromatography, the PRA amount is measured and the nutrient source in the influent sewage There is an advantage that the amount of substance can be estimated and the time required for measurement can be shortened. In addition, the PRA measurement has an advantage that it is possible to estimate the activity amount of the phosphorus accumulating bacteria. Moreover, when measuring the amount of PRA in the inflowing sewage, it is possible to measure with high accuracy by preparing and measuring a blank, a standard solution, and first to third collection containers that are samples when compared to quantitative analysis. .

また、請求項6の発明によれば、Ypo4 が簡単に求められ、Ypo4 はりん溶出量(mgP)/吸収有機酸(mgCODcr)であり、Ypo4 の値が0.4より低い値であれば、りん蓄積菌量(Xpao)が低い可能性があり、PRAの測定に支障が生じるおそれがあり、Ypo4 の値は高度処理装置におけるりん蓄積菌量を把握するのに有効である。   According to the invention of claim 6, Ypo4 is easily obtained, Ypo4 is phosphorus elution amount (mgP) / absorbing organic acid (mgCODcr), and if Ypo4 is lower than 0.4, There is a possibility that the amount of phosphorus accumulating bacteria (Xpao) may be low, which may interfere with the measurement of PRA, and the value of Ypo4 is effective for grasping the amount of phosphorus accumulating bacteria in the advanced processing apparatus.

また、請求項7,8の発明によれば、請求項2の処理過程に第4の採取容器を設けるか、または第2の採取容器を利用して栄養源物質を過剰に添加した濃縮汚泥のりん酸濃度と、この濃縮汚泥の初期りん酸性りん濃度と、前記Ypo4の値とからりん蓄積菌量(Xpao)が簡単に求められ、Xpaoの値は高度処理装置におけるりん蓄積菌の活動量を把握するのに有効であり、汚泥の脱りん処理が十分になされるか否かを把握するのに有効な数値である。   Moreover, according to the invention of Claims 7 and 8, the 4th collection container is provided in the process of Claim 2, or the concentrated sludge which added the nutrient substance excessively using the 2nd collection container is used. The amount of phosphorus accumulating bacteria (Xpao) can be easily determined from the phosphoric acid concentration, the initial phosphoric acid phosphorus concentration of this concentrated sludge, and the value of Ypo4. The value of Xpao represents the amount of activity of phosphorus accumulating bacteria in the advanced treatment equipment. It is effective for grasping and is a numerical value effective for grasping whether or not sludge is sufficiently dephosphorized.

また、請求項9〜12の発明によれば、下水高度処理装置において、流入下水中に混入するりん蓄積菌の栄養源物質の濃度を下水高度処理装置から得られる活性汚泥中から溶出されるりん濃度を測定し、りん濃度を演算処理して流入下水中の有機酸の総体としてのPRA量を求めることが可能であり、流入下水中の栄養源物質である酢酸等を高価なクロマトグラフィで検出することなく、推定することが可能であり、この推定したPRA値から栄養源物質である酢酸の供給量を決定し、栄養源添加装置から下水高度処理装置の嫌気槽に供給することが可能であり、下水高度処理装置におけるりん蓄積菌のりん蓄積菌活動量を活発にし、りん凝集剤を使用することなく、脱りんを効果的に行うことができる利点がある。   Further, according to the inventions of claims 9 to 12, in the sewage advanced treatment apparatus, the concentration of the nutrient source substance of the phosphorus accumulating bacteria mixed in the inflowing sewage is determined by the phosphorus eluted from the activated sludge obtained from the sewage advanced treatment apparatus. It is possible to measure the concentration and calculate the concentration of phosphorus to calculate the amount of PRA as the total amount of organic acid in the influent sewage, and to detect acetic acid, etc., which are nutrients in the influent sewage, by expensive chromatography Without being able to estimate, it is possible to determine the supply amount of acetic acid, which is a nutrient source material, from this estimated PRA value and supply it from the nutrient source addition device to the anaerobic tank of the advanced sewage treatment device There is an advantage that the phosphorus accumulating bacterium activity amount of the phosphorus accumulating bacterium in the advanced sewage treatment apparatus is increased, and dephosphorization can be effectively performed without using a phosphorus flocculant.

以下、本発明に係る活性汚泥中からのりん溶出による流入下水の水質推定方法、下水高度処理装置における栄養源添加装置の実施の形態について、図面を参照して説明する。
Hereinafter, the water quality estimation method of the inflow sewage by phosphorus elution from activated sludge according to the present invention, embodiments of the nutrients added equipment in sewage advanced treatment apparatus will be described with reference to the drawings.

先ず、本発明の理解を容易とするためにりん蓄積菌とりん蓄積菌反応性有機酸類とについて説明し、りん蓄積菌反応性有機酸類の推定の原理について説明する。りん蓄積菌は、嫌気状態でりんを菌体外に放出し、下水中の有機酸を取り込み、好気槽においては取り込んだ有機酸を栄養源として嫌気槽にて吐き出したりん以上のりんを吸収し、りん除去を行う有用な細菌である。りん蓄積菌が取り込む有機酸の総称をりん蓄積菌反応性有機酸類(以下、PRA:PAOs reactive organic acids )と称するものとし、PRAには下水中に含まれる酢酸、プロピオン酸等の有機酸である。   First, in order to facilitate understanding of the present invention, phosphorus accumulating bacteria and phosphorus accumulating bacteria reactive organic acids will be described, and the principle of estimating phosphorus accumulating bacteria reactive organic acids will be described. Phosphorus-accumulating bacteria release phosphorus out of the cell in an anaerobic state, take up organic acids in sewage, and absorb more phosphorus in the aerobic tank than the phosphorus exhaled in the anaerobic tank using the incorporated organic acid as a nutrient source. It is a useful bacterium that removes phosphorus. The generic name of organic acids taken up by phosphorus accumulating bacteria is referred to as phosphorus accumulating bacteria reactive organic acids (hereinafter referred to as PRA), and PRA is an organic acid such as acetic acid and propionic acid contained in sewage. .

また、りん蓄積菌の性質について、図3,図4を参照して説明する。図3,図4は横軸を嫌気状態とした経時時間(分)を示し、縦軸がりん溶出濃度(mg/l)を示している。図3,図4に示すように、りん蓄積菌は、下水を嫌気状態にした時、りん蓄積菌から下水中にりんが溶出し、経時変化とともにりん濃度が一定値になる特性がある。図3では概ね100分経過後、りん濃度が一定になっている。要するに下水中の有機酸等またはりん蓄積菌中のポリりん酸の何れかが枯渇すると、りん蓄積菌によるりん溶出反応は停止し、りん濃度が一定になると考えられる。   Moreover, the property of phosphorus accumulation bacteria is demonstrated with reference to FIG. 3, FIG. 3 and 4 show the elapsed time (minutes) in which the horizontal axis is in an anaerobic state, and the vertical axis shows the phosphorus elution concentration (mg / l). As shown in FIGS. 3 and 4, the phosphorus accumulating bacteria have a characteristic that when the sewage is anaerobic, phosphorus is eluted from the phosphorus accumulating bacteria into the sewage, and the phosphorus concentration becomes a constant value with time. In FIG. 3, the phosphorus concentration is constant after approximately 100 minutes. In short, when either organic acid in sewage or polyphosphoric acid in phosphorus accumulating bacteria is depleted, the phosphorus elution reaction by phosphorus accumulating bacteria is stopped, and the phosphorus concentration is considered to be constant.

図4では、活性汚泥濃度(MLSS1000)では、概ね80分で一定値になっているのに対して、活性汚泥濃度(MLSS2000)では、概ね40分で一定値に達している。この結果から明らかなように、嫌気状態とした下水中の汚泥濃度を高濃度にすることによって、濃縮汚泥に含まれるりん蓄積菌が取り込んでいる菌体内のポリりん酸欠乏の心配はなく、従って、りん溶出反応の停止要因は、下水中の有機酸等の枯渇に絞られるものと考えられ、りん溶出濃度が一定となる最終りん放出濃度は、下水中の有機酸量に比例関係にあると考えられる。即ち、りん放出濃度から定量的な有機酸濃度の測定が可能となる。また、図4から明らかなように、活性汚泥濃度を高濃度にすれば、短時間でりん溶出濃度が一定になるので、短い時間で迅速に下水中のPRA濃度の推定が可能になる。   In FIG. 4, the activated sludge concentration (MLSS1000) reaches a constant value in approximately 80 minutes, whereas the activated sludge concentration (MLSS2000) reaches a constant value in approximately 40 minutes. As is clear from this result, by increasing the sludge concentration in the anaerobic sewage, there is no concern about the deficiency of polyphosphate in the cells taken up by the phosphorus accumulating bacteria contained in the concentrated sludge. The reason for stopping the phosphorus elution reaction is thought to be limited to the depletion of organic acids, etc. in the sewage, and the final phosphorus release concentration at which the phosphorus elution concentration is constant is proportional to the amount of organic acid in the sewage. Conceivable. That is, it is possible to measure the organic acid concentration quantitatively from the phosphorus release concentration. Further, as apparent from FIG. 4, if the activated sludge concentration is made high, the phosphorus elution concentration becomes constant in a short time, so that the PRA concentration in the sewage can be quickly estimated in a short time.

本発明の一実施形態は、原理的な下水中のPRA濃度の推定方法とし、りん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮工程と、採取容器に測定試料である流入下水の所定量を容れて前記濃縮汚泥を投入し、それぞれの採取容器の内溶液を嫌気状態とする嫌気工程と、前記採取容器内の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定するりん酸濃度測定工程と、前記りん酸濃度から流入下水中に含まれるりん蓄積菌反応性有機酸類濃度を求める演算処理工程とを有する活性汚泥中からのりん溶出による流入下水の水質推定方法がある。   One embodiment of the present invention is a method for estimating a PRA concentration in sewage in principle, a sludge concentration step in which activated sludge containing phosphorus-accumulating bacteria is denitrified, and an inflow that is a measurement sample into a collection container An anaerobic process in which a predetermined amount of sewage is filled and the concentrated sludge is introduced to make the inner solution of each collection container anaerobic, and the phosphoric acid in the filtered solution obtained by filtering the inner solution in the collection container Water quality of influent sewage due to phosphorus elution from activated sludge having a phosphoric acid concentration measuring step for measuring the concentration and an arithmetic processing step for obtaining the concentration of reactive organic acids in the influent sewage contained in the influent sewage from the phosphoric acid concentration There is an estimation method.

続いて、本発明の主要な実施形態である活性汚泥中からのりん溶出による流入下水の水質推定方法について、図1を参照し説明する。なお、図1では、流入下水中のPRA濃度を推定する工程と、PRA濃度に応じて下水中に栄養源物質である酢酸を注入する工程までが示され、これらの工程によって、流入下水中のりん除去を効率良く実施することができる。図1の各ステップはコンピュータの制御によって実効される。なお、栄養源物質は酢酸等の有機酸およびその塩類であり、本実施形態では酢酸ナトリウムが使用されているがこれに限定するものではない。   Next, a method for estimating the quality of influent sewage by elution of phosphorus from activated sludge, which is a main embodiment of the present invention, will be described with reference to FIG. FIG. 1 shows a process for estimating the PRA concentration in the inflowing sewage and a process for injecting acetic acid as a nutrient source into the sewage according to the PRA concentration. Phosphorus removal can be performed efficiently. Each step in FIG. 1 is executed by computer control. The nutrient material is an organic acid such as acetic acid and salts thereof. In this embodiment, sodium acetate is used, but the present invention is not limited to this.

先ず、ステップS1は、AO等の高度処理装置の最終沈殿池から得られる活性汚泥を嫌気槽に送り込む返送汚泥(活性汚泥)を採取する返送汚泥採取工程である。返送汚泥採取工程の後、ステップS2に進む。ステップS2は、採取された活性汚泥を、脱窒した濃縮汚泥とする返送汚泥濃縮工程である。一方、ステップS3の下水流入水採取工程にて、高度処理装置に流入する流入下水が採取する。なお、ステップS2では、濃縮汚泥とした後、所定時間(約30分)程度経過することにより、汚泥中の硝酸・亜硝酸を脱窒処理しても良いし、脱窒処理後、濃縮汚泥としても良い。 First, step S1 is a return sludge collection step of collecting return sludge (activated sludge) that sends activated sludge obtained from the final sedimentation basin of an advanced treatment apparatus such as A 2 O to an anaerobic tank. It progresses to step S2 after a return sludge collection process. Step S2 is a return sludge concentration step in which the collected activated sludge is denitrified concentrated sludge. On the other hand, in the sewage inflow water collecting step in step S3, the inflow sewage flowing into the advanced processing apparatus is collected. It should be noted that in step S2, after making the concentrated sludge, the nitric acid and nitrous acid in the sludge may be denitrified by elapse of a predetermined time (about 30 minutes). Also good.

次いで、所定容積の第1〜第3の採取容器が用意されており、便宜上、第1〜第3の採取容器の容積を100mlとする。ステップS4にて、第2の採取容器に所定容量の栄養源(酢酸ナトリウムsmg/ml)を1ml供給される。酢酸に換算すると、0.74s(mg/ml)に相当する。また、第3の採取容器にはステップS3にて採取された測定試料である下水流入水が所定容量(Vml)が供給される。続いて、ステップS5〜S7にて、各第1〜第3の採取容器に濃縮汚泥が満水まで供給して撹拌され、各第1〜第3の採取容器は嫌気状態に設定される。所定時間(約30分)が経過した後、それぞれステップS8,S10,S12の濾過工程を行う。   Next, first to third collection containers having a predetermined volume are prepared. For convenience, the volume of the first to third collection containers is set to 100 ml. In step S4, 1 ml of a predetermined volume of nutrient source (sodium acetate smg / ml) is supplied to the second collection container. In terms of acetic acid, this corresponds to 0.74 s (mg / ml). The third collection container is supplied with a predetermined volume (Vml) of sewage inflow water as a measurement sample collected in step S3. Subsequently, in steps S5 to S7, the concentrated sludge is supplied to the first to third collection containers until they are full and stirred, and the first to third collection containers are set in an anaerobic state. After a predetermined time (about 30 minutes) has elapsed, the filtering steps of steps S8, S10, and S12 are performed.

ステップS8,S10,S12の濾過工程による濾過液は所定容器に供給され、りん濃度測定工程であるステップS9,S11,S13にて、りん濃度の測定が行われる。りん濃度測定には、吸光光度方式または比色分析法により同時に測定することが可能である。濾過液が収容される所定容器は光透過性の容器が使用される。ステップS9ではりん濃度がAmgP/lであり、ステップS11ではりん濃度がBmgP/lであり、ステップS13ではりん濃度がCmgP/lであるとする。ステップS9,S11,S13のりん濃度値A,B,C(mgP/l)は、ステップS14にて、下記演算式〔数7〕によりりん濃度演算工程が行われ、PRA量が算出される。なお、定量分析に例えると、第1の容器はブランク、第2の容器は標準液に相当し、第3の容器が試料となる。PRA量の算出は、コンピュータに〔数7〕の演算処理を行うりん蓄積菌反応性有機酸類濃度測定手段により得られる。   The filtrate from the filtration process of steps S8, S10, and S12 is supplied to a predetermined container, and the phosphorus concentration is measured in steps S9, S11, and S13, which are phosphorus concentration measurement processes. Phosphorus concentration can be measured simultaneously by an absorptiometric method or a colorimetric analysis method. As the predetermined container for storing the filtrate, a light transmissive container is used. It is assumed that the phosphorus concentration is AmgP / l in step S9, the phosphorus concentration is BmgP / l in step S11, and the phosphorus concentration is CmgP / l in step S13. The phosphorus concentration values A, B, and C (mgP / l) in steps S9, S11, and S13 are subjected to a phosphorus concentration calculation process in accordance with the following calculation formula [Equation 7] in step S14, and the PRA amount is calculated. In a quantitative analysis, the first container corresponds to a blank, the second container corresponds to a standard solution, and the third container serves as a sample. The calculation of the amount of PRA is obtained by a phosphorus accumulating bacterium reactive organic acid concentration measuring means that performs the arithmetic processing of [Equation 7] on a computer.


Figure 0005005239
Figure 0005005239

ここで、〔数7〕の演算式について説明すると、B−Aは酢酸0.74s(mg)添加によるりん溶出濃度を示し、0.74s/(B−A)はりん溶出濃度に対する酢酸濃度の比を求めている。この値に試料(第3の採取容器)から得られるりん濃度溶出濃度C(mgP/l)を乗算することによって、PRA値が求められる。試料からのりん溶出濃度は、試料中のりん蓄積菌が取り込んだりん酸性りんと濃縮汚泥(りん蓄積菌)自身に由来する溶出りん酸性りんを試料のりん溶出Cから補正した値であり、(C−D・V/100)−A・(100−V)/100となる。なお、Dの測定は、別採取容器を用いても良いが、例えば、第1の採取容器を用い前記濃縮汚泥を投入することなく試料のみを投入し、嫌気状態とせずに濾過を行い、そのろ液のりん酸濃度(mgP/l)を測定することによって得られる値であり、試料自体のりん酸濃度である。また、試料の量は、V(ml)なのでmg/Lに換算することによって、〔数7〕の演算式が得られる。例えば、s=1、A=7、B=15、C=10、D=2、V=30とすると、PRA量は13.9(mgCOD/l)となる。   Here, the equation of [Equation 7] will be explained. B-A represents the phosphorus elution concentration by adding 0.74 s (mg) of acetic acid, and 0.74 s / (B-A) represents the acetic acid concentration relative to the phosphorus elution concentration. Seeking the ratio. By multiplying this value by the phosphorus concentration elution concentration C (mgP / l) obtained from the sample (third collection container), the PRA value is obtained. The phosphorus elution concentration from the sample is a value obtained by correcting the phosphoric acid phosphorus taken from the phosphorus accumulating bacteria in the sample and the elution phosphoric acid phosphorus derived from the concentrated sludge (phosphorus accumulating bacteria) itself from the phosphorus elution C of the sample. −D · V / 100) −A · (100−V) / 100. In addition, although a separate collection container may be used for the measurement of D, for example, the first collection container is used and only the sample is introduced without introducing the concentrated sludge, and the filtration is performed without anaerobic conditions. This is a value obtained by measuring the phosphoric acid concentration (mgP / l) of the filtrate, and is the phosphoric acid concentration of the sample itself. Further, since the amount of the sample is V (ml), the arithmetic expression of [Equation 7] is obtained by converting to mg / L. For example, if s = 1, A = 7, B = 15, C = 10, D = 2, and V = 30, the PRA amount is 13.9 (mgCOD / l).

なお、ステップS14のりん濃度測定工程にて、流入下水のPRA量が算出され、その後、ステップS15にて、図5のPRA対添加量変換直線Lを記憶されたデーターテーブルからPRA量に対応する栄養源物質(有機物:酢酸等)の必要添加量が読み出され、所定添加量が高度処理装置の嫌気槽に供給される。栄養源物質の供給によって、高度処理装置におけるりん蓄積菌の活動が活発化し、流入下水からりん除去が効率良く行われる。   In step S14, the inflowing sewage PRA amount is calculated in the phosphorus concentration measurement step, and in step S15, the PRA to addition amount conversion straight line L in FIG. 5 corresponds to the PRA amount from the stored data table. A necessary addition amount of a nutrient material (organic matter: acetic acid or the like) is read out, and a predetermined addition amount is supplied to the anaerobic tank of the advanced processing apparatus. By supplying nutrient source materials, the activity of phosphorus accumulating bacteria in the advanced treatment apparatus is activated, and phosphorus is efficiently removed from the inflowing sewage.

図5を参照し、栄養源物質の必要添加量の算出について説明する。図5は横軸がPRA量を示し、縦軸が酢酸(有機物)の必要添加量或いは添加不要を表している。図5にはPRA対添加量変換直線Lが図示され、流入下水中のPRA値に対する添加必要量が変換直線Lから読み出される。PRA量の測定値が、必要量(a)であれば、必要量(a)と変換直線Lとの交点Laが添加必要量であり、この場合、添加必要量が境界点であることを示している。測定したPRA量と必要量(a)とが、必要量(a)<(測定したPRA量)の関係にあれば、流入下水中に十分な栄養源物質が含有していることを示し、酢酸(有機物)の添加が不要であり、必要量(a)>(測定したPRA量)の関係にあれば、酢酸(有機物)の添加が必要であることを示している。例えば、測定したPRA量が(b)であれば、必要量(a)に対して不足量は、必要量(a)から(測定したPRA量)(b)を比較演算して不足量(c)が算出され、これを補う必要添加量(d)を算出することができる。   With reference to FIG. 5, calculation of the necessary addition amount of the nutrient material will be described. In FIG. 5, the horizontal axis represents the amount of PRA, and the vertical axis represents the necessary addition amount or no addition requirement of acetic acid (organic substance). FIG. 5 shows a PRA vs. addition amount conversion line L, and the required addition amount for the PRA value in the inflowing sewage is read from the conversion line L. If the measured value of the PRA amount is the required amount (a), the intersection La of the required amount (a) and the conversion line L is the required addition amount. In this case, the required addition amount is a boundary point. ing. If the measured PRA amount and the required amount (a) are in the relationship of required amount (a) <(measured PRA amount), it indicates that sufficient nutrient source substances are contained in the inflowing sewage, and acetic acid The addition of (organic matter) is unnecessary, and if the relationship of required amount (a)> (measured PRA amount) is satisfied, it indicates that addition of acetic acid (organic matter) is necessary. For example, if the measured PRA amount is (b), the deficient amount relative to the required amount (a) is calculated by comparing the required amount (a) with the (measured PRA amount) (b). ) Is calculated, and the necessary addition amount (d) to compensate for this can be calculated.

また、りん蓄積菌によるりん溶出量と吸収有機酸とには、りん溶出量(mgP)/吸収有機酸量(mgCODcr)の関係があり、0.4(Ypo4という)であることがIWA(International Water Association)モデルでは理論上与えられ、この比率(Ypo4)は季節や水温などの諸条件で変動する値であるが、りん溶出量から有機酸濃度を算出することができる。Ypo4は、Ypo4=(B−A)/0.74s/10=(B−A)/7.4sの関係式によるYpo4演算手段から求めることができる。なお、この関係式のA,Bは、図1の処理フローと上記演算式〔数7〕に示したように、りん濃度値A,B(mgP/l)である。Ypo4の単位はmgP/mgCODである。また、Ypo4の関係式では、採取容器の容積が100mlであるので、1Lに換算している。この図1の処理フローのステップS9,S11から得られるりん濃度値A,Bを、上記Ypo4演算手段に導入することにより求めることができる。この演算処理はコンピュータの演算処理を利用して自動的に算出して表示することができる。このYpo4が0.4より低い値である場合は、りん蓄積菌量(以下、Xpaoと称する)が低いことが疑われる。PRA量の測定には、第2の採取容器に添加した酢酸が短時間で全量反応し得る濃度のりん蓄積菌を添加するのを条件とする。例えば、Xpaoが低い場合、酢酸全量が反応しないためB−Aの値が低くなり、Ypo4も真値より低下する。この場合、正しいPRAは測定することができない。   Further, the phosphorus elution amount by the phosphorus accumulating bacteria and the absorbed organic acid have a relationship of phosphorus elution amount (mgP) / absorbed organic acid amount (mgCODcr), and it is 0.4 (referred to as Ypo4) to be IWA (International The water association model is theoretically given, and this ratio (Ypo4) varies depending on various conditions such as season and water temperature, but the organic acid concentration can be calculated from the phosphorus elution amount. Ypo4 can be obtained from Ypo4 calculation means according to the relational expression of Ypo4 = (BA) /0.74 s / 10 = (BA) /7.4 s. A and B in this relational expression are phosphorus concentration values A and B (mgP / l) as shown in the processing flow of FIG. The unit of Ypo4 is mgP / mgCOD. In the relational expression of Ypo4, since the volume of the collection container is 100 ml, it is converted to 1L. The phosphorus concentration values A and B obtained from steps S9 and S11 in the processing flow of FIG. 1 can be obtained by introducing them into the Ypo4 calculating means. This calculation process can be automatically calculated and displayed using the calculation process of the computer. If this Ypo4 is lower than 0.4, it is suspected that the amount of phosphorus accumulating bacteria (hereinafter referred to as Xpao) is low. The measurement of the amount of PRA is performed under the condition that a phosphorus accumulating bacterium having a concentration capable of reacting the entire amount of acetic acid added to the second collection container in a short time is added. For example, when Xpao is low, the total amount of acetic acid does not react, so the value of B-A is low, and Ypo4 is also lower than the true value. In this case, the correct PRA cannot be measured.

また、PRA測定は、りん蓄積菌活動量を算出する方法としても効果的である。PRAの測定とは逆に、酢酸ナトリウムを過剰に添加(100mlの第2の採取容器に対し約50mg程度)し、t時間後のりん酸性をP1(mgP/L)とし、余剰汚泥のりん酸性りん初期値をPO(mgP/L)とした場合、IWA活性汚泥モデルを利用すると、下記演算式〔数8〕が成り立ち、演算式〔数8〕からXpaoを算出することができる。高度下水処理には、PRAの導入がりん蓄積菌量の把握に効果的である。PRA測定は、図1の処理フローにおける第1〜第3の採取容器に加えて第4の採取容器を用意し、次のような処理を行う。先ず、第4の採取容器には栄養源物質(例えば、酢酸)が第2の採取容器に加えられる量より過剰に添加し、他の第1〜第3の採取容器と同様な条件で処理が行われる。即ち、第4の採取容器に濃縮汚泥が満水に供給され、第4の採取容器の内溶液を撹拌しながら嫌気状態とし、濾過工程を経て、第4の採取容器の内溶液を固形分と濾過液とに分離し、第4の採取容器から得られる濾過液中のりん濃度を測定する。この工程を経ることにより、第4の採取容器における一定時間でのりん蓄積菌によるりん酸性りん放出量は、りん蓄積菌量に依存することになる。これにより測定した時間tでのりん酸性りん量(P1)を用いて、下記演算式〔数8〕により、りん蓄積菌の量を推定することができる。演算式〔数8〕のXpao 演算手段はコンピュータに組み込まれ、各データを取り込んで演算処理することができる。なお、初期りん酸性りん量(P0)は、例えば予め濃縮汚泥を濾過してその濾過液中のりん酸性りん濃度を計測して得られる。このようにりん蓄積菌量Xpaoを数値として把握することは、高度処理装置におけるりん除去に重要である。また、本実施形態において、第4の採取容器を用いたが、例えば第2の採取容器を用いて添加量の条件を調整することによって、第4の採取容器を用意することなく、第1〜第3の採取容器を利用し、処理ステップを制御することによって、測定することも可能である。   The PRA measurement is also effective as a method for calculating the amount of phosphorus accumulating bacteria activity. Contrary to the measurement of PRA, sodium acetate was added in excess (about 50 mg for a 100 ml second collection container), and phosphoric acid after t hours was defined as P1 (mgP / L), and the excess sludge was phosphoric acid. When the initial phosphorus value is PO (mgP / L), using the IWA activated sludge model, the following equation [Equation 8] is established, and Xpao can be calculated from the equation [Equation 8]. For advanced sewage treatment, introduction of PRA is effective for grasping the amount of phosphorus accumulating bacteria. In the PRA measurement, a fourth collection container is prepared in addition to the first to third collection containers in the processing flow of FIG. 1, and the following processing is performed. First, a nutrient substance (for example, acetic acid) is added to the fourth collection container in an excess amount than the amount added to the second collection container, and the treatment is performed under the same conditions as the other first to third collection containers. Done. That is, the concentrated sludge is supplied to the fourth collection container in full water, and the solution in the fourth collection container is made anaerobic while stirring, and after passing through the filtration step, the solution in the fourth collection container is filtered with the solid content. And the concentration of phosphorus in the filtrate obtained from the fourth collection container is measured. Through this step, the amount of phosphoric acid phosphorus released by the phosphorus accumulating bacteria in the fourth collection container in a certain time depends on the amount of phosphorus accumulating bacteria. Using the phosphoric acid phosphorus amount (P1) at time t measured in this way, the amount of phosphorus accumulating bacteria can be estimated by the following arithmetic expression [Equation 8]. The Xpao calculation means of the calculation formula [Equation 8] is incorporated in a computer and can take in and process each data. The initial amount of phosphoric acid phosphorus (P0) is obtained, for example, by previously filtering concentrated sludge and measuring the concentration of phosphoric acid phosphorus in the filtrate. Thus, grasping the amount of phosphorus accumulating bacteria Xpao as a numerical value is important for removing phosphorus in the advanced processing apparatus. Moreover, in this embodiment, although the 4th collection container was used, without adjusting a 4th collection container, for example by adjusting the conditions of addition amount using a 2nd collection container, it is 1st-1st. It is also possible to measure by using a third collection container and controlling the processing steps.


Figure 0005005239
Figure 0005005239

次に、図2を参照し、本発明の一実施形態である下水高度処理装置における栄養源添加装置について説明する。下水高度処理装置10は、A2 O法による生物学的りん除去を行う処理装置であり、嫌気槽10a、無酸素槽10b、好気槽10cが順次処理槽として設けられ、好気槽10cの処理水が循環液として無酸素槽10bに送られ、下水高度処理装置10により下水中の有機物が脱窒処理及びりん除去が行われて最終沈殿池11に送られ、その上澄水が処理水として排出される。また、最終沈殿池11にて沈降した活性汚泥は、返送汚泥(活性汚泥)として嫌気槽10aに返送される。下水高度処理装置10の前段には栄養源添加装置20が設置されている。

Next, with reference to FIG. 2, it will be explained in nutrients added equipment in sewage advanced treatment apparatus according to an embodiment of the present invention. The sewage advanced treatment apparatus 10 is a treatment apparatus that performs biological phosphorus removal by the A2O method. An anaerobic tank 10a, an anaerobic tank 10b, and an aerobic tank 10c are sequentially provided as treatment tanks, and the treatment of the aerobic tank 10c is performed. Water is sent to the anoxic tank 10b as a circulating liquid, and organic matter in the sewage is denitrified and phosphorus removed by the advanced sewage treatment device 10 and sent to the final sedimentation basin 11, and the supernatant water is discharged as treated water. Is done. The activated sludge settled in the final sedimentation tank 11 is returned to the anaerobic tank 10a as return sludge (activated sludge). A nutrient source addition device 20 is installed in the preceding stage of the sewage advanced treatment device 10.

この栄養源添加装置20は、コンピュータによるりん濃度演算手段25及びりん濃度対栄養源量読み出し手段(データテーブル)26が備えられている。栄養源添加装置20は、活性汚泥をサンプリングして濃縮し濃縮汚泥とする活性汚泥濃縮装置21と、容積が等しい第1〜第3の採取容器22〜24とが備えられ、第1の採取容器には濃縮汚泥が満水に供給され、第2の採取容器23には栄養源物質である、例えば酢酸ナトリウムが供給され、さらに濃縮汚泥が満水に供給され、第3の採取容器24には試料である流入下水が供給され、さらに濃縮汚泥が満水に供給される。第1〜第3の採取容器22〜24は内溶液が撹拌され、嫌気状態に維持される。第1〜第3の採取容器22〜24には、内溶液の濃縮汚泥等を約30分程度嫌気状態にした後、これらの内溶液を濾過する濾過装置22a〜24aが設けられている。所定時間嫌気状態とした濃縮汚泥等は濾過装置22a〜24aにより濾過され、濾過装置22a〜24aの底部に濾過液が得られる。濾過後に濾過装置22a〜24a内の固形物は系外に排出される。   The nutrient source addition apparatus 20 is provided with a phosphorus concentration calculating means 25 and a phosphorus concentration / nutrient source amount reading means (data table) 26 by a computer. The nutrient source addition apparatus 20 includes an activated sludge concentrator 21 that samples and concentrates activated sludge to obtain concentrated sludge, and first to third collection containers 22 to 24 having the same volume, and the first collection container. The concentrated sludge is supplied to the full water, the nutrient container material such as sodium acetate is supplied to the second collection container 23, the concentrated sludge is supplied to the full water, and the third collection container 24 is supplied with the sample. Some influent sewage is supplied, and concentrated sludge is supplied to full water. The first to third collection containers 22 to 24 are maintained in an anaerobic state by stirring the inner solution. The first to third collection containers 22 to 24 are provided with filtration devices 22a to 24a for filtering the inner solution after the concentrated sludge and the like of the inner solution is anaerobic for about 30 minutes. Concentrated sludge or the like that has been in an anaerobic state for a predetermined time is filtered by the filtering devices 22a to 24a, and a filtrate is obtained at the bottom of the filtering devices 22a to 24a. After filtration, the solid matter in the filtration devices 22a to 24a is discharged out of the system.

濾過装置22a〜24aの底部は光が透過する窓が設けられ、この窓を通して所定の波長の光がこれらの濾過液に照射され、吸光光度方式または比色分析法によって、りん濃度が測定される。測定機からは各りん濃度A,B,Cが得られる。これらのりん濃度値A,B,Cは、コンピュータによるりん濃度演算手段25に入力されて演算処理されることによって、PRA値が算出される。PRA値は、りん濃度対栄養源量読み出し手段26により、PRA値に対応する栄養源量が算出される。りん濃度演算手段25は上記〔数7〕の演算処理が行われる。栄養源量は、例えば直流電圧レベルとして出力され、添加装置27に入力され、所定量の栄養源物質である、例えば酢酸が嫌気槽10aに供給される。嫌気槽10a内では、りん蓄積菌の栄養源物質が十分供給され、りん蓄積菌の活動が活発になり、流入水中の供給された酢酸を含む有機酸が菌体内に取り込まれ、好気槽10cにて、有機酸を消費しりんを菌体内に取り込み、流入下水中のりんが除去される。最終沈殿池11からは脱りん処理された処理水が排水される。りん凝集剤を使用することなく、流入下水を処理することができる。   The bottoms of the filtration devices 22a to 24a are provided with a window through which light is transmitted. Light of a predetermined wavelength is irradiated through these windows to the filtrate, and the phosphorus concentration is measured by an absorptiometric method or a colorimetric analysis method. . The phosphorus concentration A, B, C is obtained from the measuring machine. These phosphorus concentration values A, B, and C are input to a phosphorus concentration calculation means 25 by a computer and are processed to calculate a PRA value. As for the PRA value, the nutrient concentration corresponding to the PRA value is calculated by the phosphorus concentration / nutrient source reading means 26. The phosphorus concentration calculation means 25 performs the calculation processing of the above [Equation 7]. The nutrient source amount is output, for example, as a DC voltage level, and is input to the adding device 27, and a predetermined amount of nutrient source material, for example, acetic acid, is supplied to the anaerobic tank 10a. In the anaerobic tank 10a, the nutrient substance of the phosphorus accumulating bacteria is sufficiently supplied, the activity of the phosphorus accumulating bacteria becomes active, and the organic acid containing acetic acid supplied in the inflow water is taken into the cells, and the aerobic tank 10c. The organic acid is consumed, phosphorus is taken up into the microbial cells, and phosphorus in the inflowing sewage is removed. From the final sedimentation basin 11, treated water that has been dephosphorized is drained. Influent sewage can be treated without the use of phosphorus flocculants.

また、本発明では、下水高度処理装置の前段に栄養源添加装置20が備えられたものであり、りん濃度演算手段25とりん濃度対栄養源量読み出し手段(データテーブル)26とを有するコンピュータを備えることによって、栄養源添加装置20が制御され、下水高度処理装置内のりん蓄積菌の栄養源物質を最適な量に設定し、流入下水中のりんを除去することができる。   Further, according to the present invention, a nutrient source addition device 20 is provided in front of the advanced sewage treatment apparatus, and a computer having a phosphorus concentration calculating means 25 and a phosphorus concentration / nutrient source reading means (data table) 26 is provided. By providing, the nutrient source addition apparatus 20 is controlled, and the nutrient source substance of the phosphorus accumulating bacteria in the advanced sewage treatment apparatus can be set to an optimum amount, and phosphorus in the inflowing sewage can be removed.

なお、図5に示した必要量(a)は、流入下水の処理すべきりん濃度により算出されるが、流入下水中のりん濃度は、直近の測定値、或いは経験値等により適切に決定されて栄養源物質の補う添加量が決定されている。この添加の際、それを取り込むりん蓄積菌の活動量(りん蓄積菌量Xpao)を算出する演算式〔数8〕を必要に応じて組み合わせてりん処理に必要なPRA量(a)や不足量(c)を決定し、必要な添加量(d)を算出することによって、一層効果的なりん除去が可能である。これらの演算処理は、各測定データをコンピュータに入力して演算式〔数8〕を実効することによって、最適な処理条件でりん除去を行うことが可能である。また、りん蓄積菌量Xpaoを算出する過程で、上述に示したYpo4=(B−A)/7.4sのYpo4演算手段を有するコンピュータに各値(A,B,0.74s)を取り込み実効し、Ypo4の値を得ることができる。Ypo4及びりん蓄積菌量Xpaoの各値は、コンピュータの表示装置に表示して高度処理装置のりん除去能力を指し示すようにしてもよい。また、コンピュータがりん除去の処理条件を設定する際に、Ypo4及びりん蓄積菌量Xpaoを栄養源物質供給の処理条件としてもよいし、さらに、槽内の処理液の温度或いは流入量等を処理条件に組み込むことも可能である。   The required amount (a) shown in FIG. 5 is calculated based on the phosphorus concentration to be treated in the inflowing sewage, but the phosphorus concentration in the inflowing sewage is appropriately determined based on the latest measured value or empirical value. The amount of supplemental nutrient material has been determined. In this addition, the PRA amount (a) and the deficiency necessary for the phosphorus treatment are combined with the arithmetic expression [Equation 8] for calculating the active amount of the phosphorus accumulating bacterium (phosphorus accumulating bacterium amount Xpao) taking it in as necessary. By determining (c) and calculating the required addition amount (d), more effective phosphorus removal is possible. In these arithmetic processes, phosphorus can be removed under optimum processing conditions by inputting each measurement data to a computer and executing the arithmetic expression [Equation 8]. Further, in the process of calculating the amount of phosphorus-accumulating bacteria Xpao, each value (A, B, 0.74 s) is taken into the computer having the Ypo4 calculation means of Ypo4 = (BA) /7.4 s shown above. Then, the value of Ypo4 can be obtained. Each value of Ypo4 and the amount of phosphorus accumulating bacteria Xpao may be displayed on a display device of a computer to indicate the phosphorus removal ability of the advanced processing device. In addition, when the computer sets the processing conditions for removing phosphorus, Ypo4 and the amount of phosphorus accumulating bacteria Xpao may be used as the processing conditions for supplying the nutrient source material, and further, the temperature or inflow amount of the processing solution in the tank is processed. It is also possible to incorporate in conditions.

無論、本実施形態の下水高度処理装置では、下水中の有機性窒素やアンモニア性窒素は、凝集剤を使用することなく、嫌気槽10a及び無酸素槽10bを通過して好気槽10cに送り込まれ、酸素や硝化菌の働きで硝化性窒素(NO )に変えられ、さらに脱窒菌の働きによって無害な窒素ガスに変えられ大気中に放出される。 Of course, in the advanced sewage treatment apparatus of the present embodiment, organic nitrogen and ammonia nitrogen in the sewage are fed into the aerobic tank 10c through the anaerobic tank 10a and the oxygen-free tank 10b without using a flocculant. It is changed to nitrifying nitrogen (NO 3 ) by the action of oxygen and nitrifying bacteria, and further changed to harmless nitrogen gas by the action of denitrifying bacteria and released into the atmosphere.

また、上記下水高度処理装置はAO処理装置について説明したが、AO処理装置であっても本発明を利用することができる。さらに、凝集剤によるりん除去工程を組み合わせてもよい。 Further, the above-mentioned advanced sewage treatment apparatus has been described A 2 O processor, even AO processing apparatus can utilize the present invention. Furthermore, you may combine the phosphorus removal process by a flocculant.

本発明の活用例としては、下水、汚水或いはし尿などの高度処理装置に利用することができる。   As an application example of the present invention, it can be used for an advanced treatment apparatus such as sewage, sewage or human waste.

本発明に係る活性汚泥中からのりん溶出による流入下水の水質推定方法の一実施形態の処理フローを示す図である。It is a figure which shows the processing flow of one Embodiment of the water quality estimation method of inflow sewage by the phosphorus elution from the activated sludge which concerns on this invention. 本発明の一実施形態を示す下水高度処理装置における栄養源添加装置及び下水高度処理装置を示す図である。It is a figure which shows the nutrient source addition apparatus and sewage advanced treatment apparatus in the advanced sewage treatment apparatus which shows one Embodiment of this invention. 本発明における嫌気状態の汚泥からのりん溶出を示した説明図である。It is explanatory drawing which showed phosphorus elution from the anaerobic sludge in this invention. 本発明における濃度の異なる汚泥水を嫌気状態としてりん溶出濃度の差異を示した説明図である。It is explanatory drawing which showed the difference in phosphorus elution density | concentration by making sludge water from which the density | concentration in this invention differs in an anaerobic state. 本発明の下水高度処理装置における嫌気槽に栄養源物質を供給するメカニズを説明する説明図である。It is explanatory drawing explaining the mechanism which supplies a nutrient source substance to the anaerobic tank in the sewage advanced treatment apparatus of this invention. 従来の高度処理による汚水処理装置の説明図である。It is explanatory drawing of the sewage treatment apparatus by the conventional advanced treatment. 従来の高度処理による生物学的脱りん装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the biological dephosphorization apparatus by the conventional advanced process.

符号の説明Explanation of symbols

10 下水高度処理装置
10a 嫌気槽
10b 無酸素槽
10c 好気槽
11 最終沈殿池
20 栄養源添加装置
21 活性汚泥濃縮装置
22 第1の採取容器
23 第2の採取容器
24 第3の採取容器
22a〜24a 濾過装置
25 りん濃度演算手段
26 りん濃度対栄養源量読み出し手段(データテーブル)
DESCRIPTION OF SYMBOLS 10 Sewage advanced processing apparatus 10a Anaerobic tank 10b Anoxic tank 10c Aerobic tank 11 Final sedimentation tank 20 Nutrient source addition apparatus 21 Activated sludge concentrator 22 First collection container 23 Second collection container 24 Third collection container 22a 24a Filtration device 25 Phosphorus concentration calculation means 26 Phosphorus concentration vs. nutrient source reading means (data table)

Claims (12)

りん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮工程と、
採取容器に測定試料である流入下水の所定量を容れて前記濃縮汚泥を投入し、それぞれの採取容器の内溶液を嫌気状態とする嫌気工程と、
前記採取容器の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定するりん酸濃度測定工程と、
前記りん酸濃度から流入下水中に含まれるりん蓄積菌反応性有機酸類濃度を求める演算処理工程とを有することを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。
A sludge concentration step for denitrifying activated sludge containing phosphorus accumulating bacteria,
An anaerobic process in which a predetermined amount of inflowing sewage that is a measurement sample is placed in a collection container and the concentrated sludge is introduced, and an inner solution of each collection container is anaerobic,
A phosphoric acid concentration measuring step for measuring a phosphoric acid concentration in a filtered solution obtained by filtering the solution in the collection container;
A method for estimating the water quality of influent sewage by elution of phosphorus from activated sludge, comprising an arithmetic processing step for obtaining the concentration of reactive organic acids in the influent sewage contained in the influent sewage from the phosphoric acid concentration.
りん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮工程と、
所定容量の第1から第3の採取容器を用意し、第1の採取容器に前記濃縮工程で得られたりん蓄積菌を含有する前記濃縮汚泥を投入し、第2の採取容器に栄養源物質を所定量を容れて前記濃縮汚泥を投入し、第3の採取容器に測定試料である流入下水の所定量を容れて前記濃縮汚泥を投入し、それぞれの採取容器の内溶液を撹拌して嫌気状態とする嫌気工程と、
前記嫌気工程が所定時間経過した後、前記各採取容器の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定するりん酸濃度測定工程と、
前記りん酸濃度測定工程における第1と第2の採取容器から得られた濾過溶液中のりん酸濃度と、第3の採取容器に対応する濾過液中の試料のりん酸濃度とを演算処理してりん蓄積菌反応性有機酸類濃度を求める演算処理工程とを有することを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。
A sludge concentration step for denitrifying activated sludge containing phosphorus accumulating bacteria,
First to third collection containers having a predetermined capacity are prepared, the concentrated sludge containing the phosphorus accumulating bacteria obtained in the concentration step is introduced into the first collection container, and a nutrient source material is introduced into the second collection container The concentrated sludge is charged in a predetermined amount, and the concentrated sludge is charged in a third sampling container with a predetermined amount of inflowing sewage, and the solution in each sampling container is stirred and anaerobic. An anaerobic process to state,
After the anaerobic step has passed for a predetermined time, a phosphoric acid concentration measuring step for measuring the phosphoric acid concentration in the filtered solution obtained by filtering the inner solution of each sampling container;
The phosphoric acid concentration in the filtrate obtained from the first and second sampling containers in the phosphoric acid concentration measuring step and the phosphoric acid concentration of the sample in the filtrate corresponding to the third sampling container are processed. A method for estimating the water quality of influent sewage by elution of phosphorus from activated sludge, comprising an arithmetic processing step for determining the concentration of reactive organic acids with phosphorus-accumulating bacteria.
前記栄養源物質が酢酸等の有機酸およびその塩類であることを特徴とする請求項2に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法。   The method for estimating the quality of influent sewage by phosphorus elution from activated sludge according to claim 2, wherein the nutrient material is an organic acid such as acetic acid or a salt thereof. 前記演算処理工程が、下記演算式〔数1〕によることを特徴とする請求項3に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法。

Figure 0005005239

4. The method for estimating the quality of influent sewage by phosphorus elution from activated sludge according to claim 3, wherein the arithmetic processing step is based on the following arithmetic expression [Equation 1].

Figure 0005005239

前記りん蓄積菌反応性有機酸類は、嫌気状態のりん蓄積菌が菌体外にりんを放出する過程で取り込まれる有機酸であることを特徴とする請求項1,2,3または4に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法。   5. The phosphorus-accumulating bacterium-reactive organic acid is an organic acid that is incorporated in a process in which an anaerobic phosphorus-accumulating bacterium releases phosphorus out of the microbial cell. Estimating water quality of influent sewage by elution of phosphorus from activated sludge. 請求項2に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、
前記りん酸濃度測定工程における第1と第2の採取容器から得られた濾過溶液中のりん酸濃度からりん溶出量/吸収有機酸量の比率であるYpo4を下記演算式〔数2〕により求めることを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。

Figure 0005005239

In the method for estimating the quality of influent sewage by elution of phosphorus from the activated sludge according to claim 2,
Ypo4, which is the ratio of phosphorus elution amount / absorbed organic acid amount, is determined from the phosphoric acid concentrations in the filtered solutions obtained from the first and second collection containers in the phosphoric acid concentration measuring step by the following equation [Equation 2]. A method for estimating water quality of influent sewage by elution of phosphorus from activated sludge.

Figure 0005005239

請求項6に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、
前記第1〜3の採取容器に加えて第4の採取容器を設け、第4の採取容器には栄養源物質を過剰に添加し、第4の採取容器に濃縮汚泥が満水に供給され、第4の採取容器の内溶液を撹拌しながら所定時間嫌気状態とし、濾過工程を経て、第4の採取容器の内溶液を固形分と濾過液とに分離し、第4の採取容器から得られる濾過液中のりん酸濃度を測定するとともに、前記濃縮汚泥の初期りん酸性りん濃度をりん酸濃度測定工程により測定し、各りん酸濃度と前記Ypo4とを下記演算式〔数3〕によりりん蓄積菌量を求めることを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。

Figure 0005005239

In the method for estimating the quality of influent sewage by phosphorus elution from the activated sludge according to claim 6,
A fourth collection container is provided in addition to the first to third collection containers, the nutrient substance is excessively added to the fourth collection container, and concentrated sludge is supplied to the fourth collection container to fill the water. The solution in the 4 collection container is made anaerobic for a predetermined time while stirring, and after the filtration process, the solution in the 4th collection container is separated into solids and filtrate, and the filtration obtained from the 4th collection container In addition to measuring the phosphoric acid concentration in the liquid, the initial phosphoric acid phosphorus concentration of the concentrated sludge was measured by the phosphoric acid concentration measuring step, and each phosphoric acid concentration and the Ypo4 were calculated according to the following equation [Equation 3]. A method for estimating the quality of influent sewage by elution of phosphorus from activated sludge, characterized by determining the amount.

Figure 0005005239

請求項7に記載の活性汚泥中からのりん溶出による流入下水の水質推定方法において、前記第4の採取容器に代えて前記第2の採取容器を用いてりん蓄積菌量を求めることを特徴とする活性汚泥中からのりん溶出による流入下水の水質推定方法。   The method for estimating the quality of influent sewage by elution of phosphorus from activated sludge according to claim 7, wherein the amount of phosphorus accumulating bacteria is determined using the second collection container instead of the fourth collection container. Of water quality of influent sewage by phosphorus elution from activated sludge. 下水高度処理装置に流入する流入下水に含有するりん蓄積菌反応性有機酸類を推定して嫌気槽に栄養源物質を添加する添加装置において、
下水高度処理装置後段の最終沈殿池にて沈降した活性汚泥をサンプリングする採取手段と、
前記採取手段により採取したりん蓄積菌を含有する活性汚泥を脱窒した濃縮汚泥とする汚泥濃縮手段と、
所定容量の第1から第3の採取容器と、
前記汚泥濃縮工程から得られた前記濃縮汚泥を、前記第1の採取容器と、栄養源物質を所定量を投入した前記第2の採取容器と、測定試料である流入下水を所定量を投入した前記第3の採取容器に投入し、それぞれの採取容器の内溶液を嫌気状態とする嫌気手段と、
前記嫌気手段が所定時間経過した後、前記各容器の内溶液を濾過して得られた濾過溶液中のりん酸濃度を測定する光学的測定手段と、
前記光学的測定手段により、前記第1と第2の採取容器から得られた濾過溶液中のりん酸濃度と、前記第3の採取容器に対応する濾過液中のりん酸濃度とを演算処理してりん蓄積菌反応性有機酸類濃度を求める演算処理手段と、
前記演算処理手段により得られたりん蓄積菌反応性有機酸類濃度に応じて栄養源物質を前記下水高度処理装置の嫌気槽に注入する酢酸注入手段と
を有することを特徴とする下水高度処理装置における栄養源添加装置。
In the addition device that estimates the phosphorus-accumulating bacteria reactive organic acids contained in the inflow sewage flowing into the advanced sewage treatment device and adds the nutrient source material to the anaerobic tank,
Sampling means for sampling activated sludge settled in the final sedimentation basin after the advanced sewage treatment device,
Sludge concentrating means to deconcentrate activated sludge containing phosphorus accumulating bacteria collected by the collecting means;
First to third collection containers of a predetermined capacity;
The concentrated sludge obtained from the sludge concentration step is charged with the first collection container, the second collection container with a predetermined amount of nutrient source material, and a predetermined amount of inflow sewage as a measurement sample. Anaerobic means for charging the third collection container and making the solution in each collection container anaerobic;
An optical measuring means for measuring a phosphoric acid concentration in a filtered solution obtained by filtering the inner solution of each container after the anaerobic means has passed for a predetermined time; and
The optical measuring means computes the phosphoric acid concentration in the filtrate obtained from the first and second collection containers and the phosphoric acid concentration in the filtrate corresponding to the third collection container. Arithmetic processing means for determining the concentration of reactive organic acids of the phosphorus-accumulating bacteria,
An acetic acid injecting means for injecting a nutrient source material into the anaerobic tank of the advanced sewage treatment apparatus according to the phosphorus accumulating bacteria reactive organic acid concentration obtained by the arithmetic processing means. Nutrient source addition equipment.
前記酢酸注入手段がりん蓄積菌反応性有機酸類濃度に応じて注入される栄養源物質量を記録したデータテーブルであることを特徴とする請求項9に記載の下水高度処理装置における栄養源添加装置。   10. The nutrient source addition apparatus in the advanced sewage treatment apparatus according to claim 9, wherein the acetic acid injecting means is a data table in which the amount of nutrient source substances to be injected according to the concentration of phosphorus-accumulating bacteria-reactive organic acids is recorded. . 前記栄養源物質が酢酸等の有機酸およびその塩類であることを特徴とする請求項9又は10に記載の下水高度処理装置における栄養源添加装置。   The nutrient source addition apparatus in the sewage advanced treatment apparatus according to claim 9 or 10, wherein the nutrient source substance is an organic acid such as acetic acid and salts thereof. 前記りん蓄積菌反応性有機酸類は、嫌気状態のりん蓄積菌が菌体外にりんを放出する過程で取り込む有機酸であることを特徴とする請求項9,10または11に記載の下水高度処理装置における栄養源添加装置。

The sewage advanced treatment according to claim 9, 10 or 11, wherein the phosphorus-accumulating bacteria-reactive organic acids are organic acids taken up in the process of anaerobic phosphorus-accumulating bacteria releasing phosphorus outside the cells. Nutrient source addition device in the device.

JP2006078139A 2006-03-22 2006-03-22 Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment Expired - Fee Related JP5005239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078139A JP5005239B2 (en) 2006-03-22 2006-03-22 Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078139A JP5005239B2 (en) 2006-03-22 2006-03-22 Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2007253003A JP2007253003A (en) 2007-10-04
JP5005239B2 true JP5005239B2 (en) 2012-08-22

Family

ID=38627770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078139A Expired - Fee Related JP5005239B2 (en) 2006-03-22 2006-03-22 Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP5005239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522351A (en) * 2017-07-26 2017-12-29 上海理工大学 Powerless micro step sewage-treatment plant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442856B2 (en) * 2014-04-10 2018-12-26 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
CN114088773A (en) * 2021-12-22 2022-02-25 北京城市排水集团有限责任公司 Detection apparatus for mud phosphorus capacity
CN114671568A (en) * 2022-03-20 2022-06-28 北京首钢国际工程技术有限公司 Coking wastewater treatment device and method thereof
CN115448531B (en) * 2022-08-19 2023-05-23 北京工商大学 Method for correcting internal and external reflux ratio of A2/O process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009497A (en) * 1999-06-30 2001-01-16 Hitachi Ltd Biological water treatment and equipment therefor
JP4070174B2 (en) * 2000-07-13 2008-04-02 日本碍子株式会社 Sewage dephosphorization method
JP3700938B2 (en) * 2002-07-16 2005-09-28 株式会社荏原製作所 Method and apparatus for treating combined sewage in rainy weather
JP4318491B2 (en) * 2003-06-16 2009-08-26 横河電機株式会社 Phosphorus removal method
JP4432430B2 (en) * 2003-09-30 2010-03-17 株式会社日立製作所 Sewage treatment operation support device, plant system, program and storage medium
JP2005169206A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Sewage treatment method
JP4377770B2 (en) * 2004-07-30 2009-12-02 住友重機械エンバイロメント株式会社 Sewage treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522351A (en) * 2017-07-26 2017-12-29 上海理工大学 Powerless micro step sewage-treatment plant
CN107522351B (en) * 2017-07-26 2020-05-15 上海理工大学 Unpowered miniature step sewage treatment plant

Also Published As

Publication number Publication date
JP2007253003A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4340239B2 (en) Waste water treatment apparatus and waste water treatment method
EP0423889B1 (en) Method and installation for processing manure, fermented manure and Kjeldahl-N containing waste water
JP5005239B2 (en) Estimating water quality of influent sewage by phosphorus elution from activated sludge, nutrient source addition equipment in advanced sewage treatment equipment
US20120006414A1 (en) Method for controlling oxygen supply for treating wastewater, and facility for implmenting same
JP4334317B2 (en) Sewage treatment system
JP2005193236A5 (en)
JP4304453B2 (en) Operation control device for nitrogen removal system
JP2004275826A (en) Sewage treatment plant water quality monitoring and controlling device
JP5307066B2 (en) Waste water treatment method and waste water treatment system
CN105722796B (en) The control program of organic waste-water treating apparatus, the processing method of organic wastewater and organic waste-water treating apparatus
JP3058414B1 (en) Water treatment equipment
JP5801506B1 (en) Operation method of biological denitrification equipment
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JPS6359396A (en) Biological treatment of waste water
JP3691651B2 (en) Water treatment method and control device for water treatment facility
JP4101539B2 (en) Wastewater treatment equipment
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JPH0631291A (en) Sewage treatment device
JP2009214073A (en) Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JP2022042385A (en) Organic wastewater treatment method and organic wastewater treatment equipment
JP2010269276A (en) Method and apparatus for controlling water treatment
JP2000325986A (en) Waste water treatment apparatus having phosphorus removing process
JPH11244889A (en) Biological phosphorous removing device
JPH091172A (en) Biological treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees