JP5004294B2 - High flow mortar - Google Patents
High flow mortar Download PDFInfo
- Publication number
- JP5004294B2 JP5004294B2 JP2007339268A JP2007339268A JP5004294B2 JP 5004294 B2 JP5004294 B2 JP 5004294B2 JP 2007339268 A JP2007339268 A JP 2007339268A JP 2007339268 A JP2007339268 A JP 2007339268A JP 5004294 B2 JP5004294 B2 JP 5004294B2
- Authority
- JP
- Japan
- Prior art keywords
- mortar
- parts
- mass
- water
- fluidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004570 mortar (masonry) Substances 0.000 title claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 24
- 239000003638 chemical reducing agent Substances 0.000 claims description 14
- 239000011398 Portland cement Substances 0.000 claims description 13
- 239000002518 antifoaming agent Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 3
- 239000002562 thickening agent Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 27
- 238000010276 construction Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 14
- 239000004568 cement Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000004898 kneading Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000012530 fluid Substances 0.000 description 9
- 230000008719 thickening Effects 0.000 description 9
- 239000004567 concrete Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000004576 sand Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 229920003086 cellulose ether Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910001653 ettringite Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、例えばレベリング調整材や床材等として使用でき、低温での施工性に適した高流動モルタルに関する。 The present invention relates to a high-flowing mortar that can be used as, for example, a leveling adjusting material or a flooring material and is suitable for workability at a low temperature.
セメント等を水硬成分とする高流動モルタルは、例えばコンクリート構造物の床版などに流し込むと水平な表面を容易に形成できるため、レベリング材などとして使用されている。高流動モルタルを水平床等のレベリング材に使用する場合、施工に適した流動性の設定が重要である。また流動性の操作によって影響を受ける諸性状の調整も重要となる。高い流動状態のモルタルを得る上では、概して混練水を多く用いた配合になるため、材料分離や乾燥過程でのひび割れ等が起こり易く、水平施工物は得られるものの、特に表面状態が良好な施工物が容易には得難い。このような問題に対処するため、例えば、セメントに次に示すような様々な混和成分を配合した水平面を得るのに適した組成物が提案されている。即ち、砂(骨材)、石灰系膨張材、分散剤、フライアッシュ及びセルロース系保水剤を配合したもの(特許文献1参照。)、骨材、分散剤、収縮低減剤、石膏のような凝結促進剤、増粘剤及び消泡剤を配合したもの(特許文献2参照。)、骨材、減水剤、消泡剤、凝結調整剤及び水溶性セルロースエーテルを配合したもの(特許文献3参照。)等が知られている。このような対策がなされた高流動のモルタルであっても、一般に粘度は温度の低下と共に大きく上昇するため、低温で施工使用しようとすると、高粘性となって流動性が低下し、施工作業性が著しく低下する。温度低下による高粘性化の傾向は、増粘成分を含有するモルタルほど顕著である。低温施工に適ったセルフレベリング性のセメント系モルタルも知られているが、その多くは速硬成分を使用したものである。(例えば、特許文献4〜6参照。)これらは低温での凝結・硬化性の改善を主目的としているため、より高い温度での施工には難があるか、常温以上での使用も可能なものでも低温では高い粘性状態で凝結が早く進行する。高い粘性のモルタルでは混練時に巻き込まれたモルタル中の微細な気泡が抜け難く、これが施工物表面に蓄積したり、またその破泡痕が残ったりし、荒れた表面になり易かった。低温で低粘性のモルタルを得る方策として、特定のビニル系共重合体を有効成分とする分散剤を使用すると、低温でセルフレベリング材に適した高流動性が得られることが知られている。(例えば、特許文献7参照。)
一般のセメント系高流動モルタルを低温で施工使用すると、低温時の粘性上昇による施工作業性の著しい低下や、混練時に巻き込まれた気泡の残存により荒れた表面になり易い。一方、特殊な分散剤等の使用で低温で高い流動性を発現させたモルタルでは、温度上昇に伴い粘性が低下し過ぎて不具合が生じることがあり、低温以外での施工使用は実質困難であった。本発明は、5℃程度での低温での使用に適した高流動性モルタルであって、当該低温時の施工作業性が良好で、施工後比較的短時間で気泡が消失することができる高流動モルタルであって、これよりも温度の高い、例えば常温等での施工使用も、施工作業性や施工物の性状等に実質支障を及ぼすことなく行うことができる高流動モルタルの提供を課題とする。 When general cement-based high-fluidity mortar is used at low temperatures, the workability of the construction is significantly reduced due to the increase in viscosity at low temperatures, and the surface becomes rough due to the residual bubbles entrained during kneading. On the other hand, mortars that exhibit high fluidity at low temperatures with the use of special dispersants, etc., may experience problems due to excessively low viscosity with increasing temperature, making it practically difficult to use at other temperatures. It was. The present invention is a high fluidity mortar suitable for use at a low temperature of about 5 ° C., has good workability at the time of low temperature, and can eliminate bubbles in a relatively short time after construction. It is a flow mortar that has a higher temperature than that, for example, at room temperature, etc., and it is an issue to provide a high flow mortar that can be used without substantially affecting the workability and properties of the work. To do.
本発明者は、前記課題解決のため検討を行った結果、高流動モルタルに粒子径150μmを超える細骨材と粒子径150μm以下の細骨材を使用し、両者を特定の含有比率にすることによって流動性を十分調整することができ、しかも調整された流動性は、増粘成分を主体として調整された流動性に比べ、温度依存性が遙かに少ないことを見出し、低温に適した施工作業性が得られる流動性にしても、そのまま常温以上の温度でも実質支障なく施工使用できたことから本発明を完成するに至った。 As a result of investigations for solving the above problems, the present inventor uses a fine aggregate having a particle diameter of more than 150 μm and a fine aggregate having a particle diameter of not more than 150 μm in a high-flowing mortar, and setting both to a specific content ratio. The fluidity can be adjusted sufficiently by the method, and the adjusted fluidity is much less temperature-dependent than the fluidity adjusted mainly for thickening components. Even if the fluidity is such that workability can be obtained, the present invention has been completed since it can be used without any substantial trouble even at temperatures above room temperature.
即ち、本発明は、ポルトランドセメント100質量部、膨張材2〜15質量部、保水性及び増粘性物質0.08〜0.5質量部、減水剤0.4〜1質量部、消泡剤0.05〜1質量部(固形分換算)、粒子径150μmを超える細骨材(α)及び粒子径150μm以下の細骨材(β)1.3〜2.5質量部を含有し、質量比で(β)/(α)が0.8〜3であることを特徴とする高流動モルタルである。また、本発明は、5℃でのモルタルフローが250〜300mmである前記の高流動モルタルである。
That is, the present invention includes 100 parts by weight of Portland cement, 2 to 15 parts by weight of an expanding material, 0.08 to 0.5 parts by weight of a water retention and thickening substance, 0.4 to 1 part by weight of a water reducing agent, and 0 defoamer. 0.05 to 1 part by mass (in terms of solid content) , fine aggregate (α) having a particle diameter of more than 150 μm and fine aggregate (β) having a particle diameter of 150 μm or less, containing 1.3 to 2.5 parts by mass , and mass ratio (Β) / (α) is a high flow mortar characterized by 0.8-3. Moreover, this invention is the said high fluid mortar whose mortar flow in 5 degreeC is 250-300 mm.
本発明による高流動モルタルは、例えば5℃程度の低温〜常温に至るまで高い流動性を示すことができ、流し込むだけで容易に水平性を発現することも可能であり、材料分離、収縮亀裂及び表面に気泡痕等も実質見られない施工物が得られる。 The high-fluidity mortar according to the present invention can exhibit high fluidity, for example, from a low temperature of about 5 ° C. to room temperature, and can easily express horizontality just by pouring. A construction having substantially no bubble marks on the surface can be obtained.
本発明の高流動モルタルは、結合相形成成分としてポルトランドセメントを使用する。ポルトランドセメントの種類は特に限定されず、例えば、普通、早強、超早強、中庸熱、低熱等の各種ポルトランドセメントの他、該ポルトランドセメントをベースとするものであれば、高炉セメントやフライアッシュセメント等の混合セメントでも良い。また2種類以上のポルトランドセメントを使用しても良い。好ましくは、施工時のシマリが良好になることから、普通ポルトランドセメントと早強又は超早強ポルトランドセメントを併用するのが良い。併用する場合は普通ポルトランドセメント使用量の5〜30質量%に相当する量を早強又は超早強ポルトランドセメントにするのが適当である。 The high flow mortar of the present invention uses Portland cement as a binder phase forming component. The type of Portland cement is not particularly limited. For example, in addition to various Portland cements such as normal, early strength, very early strength, moderate heat, and low heat, blast furnace cement and fly ash can be used as long as they are based on Portland cement. Mixed cement such as cement may be used. Two or more types of Portland cement may be used. Preferably, normal portland cement and early strength or very early strength portland cement are preferably used in combination, since the simminess during construction becomes good. When used in combination, it is appropriate to use an amount corresponding to 5 to 30% by mass of ordinary Portland cement used as early or very early Portland cement.
また、本発明の高流動モルタルは膨張材を配合使用する。膨張材はモルタルやコンクリートに使用できるものであれば特に限定されない。好ましくは、石灰系やエトリンガイト系のような水和反応で体積膨張を起こすことが可能な膨張材を配合使用する。石灰系の膨張材としては、例えば遊離生石灰を共存生成させたクリンカの粉砕物、石灰石の焼成粉砕物を有効成分とするもの等を挙げることができる。またエトリンガイト系の膨張材とは、水と反応してエトリンガイト相を生成するものなら限定されず、例えばカルシウムサルホアルミネートを有効成分とするもの等を好適に挙げることができる。石灰系とエトリンガイト系の膨張材を併用しても良い。膨張材により硬化〜乾燥期に渡る比較的規模の大きな収縮が抑制され、特に初期ひび割れの発生を防ぐことができる。膨張材の配合量はセメント含有量100質量部に対し、2〜15質量部が好ましい。2質量部未満では硬化時の収縮を十分抑えられず、また15質量部を超えると過膨張による膨張亀裂の虞があるので適当ではない。 Moreover, the high fluid mortar of this invention mix | blends and uses an expanding material. The expansion material is not particularly limited as long as it can be used for mortar and concrete. Preferably, an expansion material capable of causing volume expansion by a hydration reaction such as lime or ettringite is used. Examples of the lime-based expansion material include a clinker pulverized product in which free quick lime is co-generated, and a limestone calcined pulverized product as an active ingredient. The ettringite-based expansion material is not limited as long as it reacts with water to generate an ettringite phase, and examples thereof include those containing calcium sulfoaluminate as an active ingredient. Lime-based and ettringite-based expansion materials may be used in combination. The expansion material suppresses relatively large-scale shrinkage from the curing to the drying period, and can particularly prevent the occurrence of initial cracks. The blending amount of the expansion material is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the cement content. If it is less than 2 parts by mass, shrinkage during curing cannot be sufficiently suppressed, and if it exceeds 15 parts by mass, there is a risk of expansion cracking due to overexpansion, which is not appropriate.
また、本発明の高流動モルタルは、保水性及び増粘性物質を配合使用する。ここで保水性及び増粘性物質とは、セメント系のモルタルに対し保水性と増粘性を付与できる物質を云い、両性能を兼ね備えた単一成分の物質(例えば単一の化合物。)であっても、保水性物質と増粘性物質の両者を併用した物(保水性物質と増粘性物質の混合物)でも良い。これら何れかであってモルタルやコンクリートに使用できるものであれば限定されない。前者の例として水溶性セルロースエーテルを挙げることができ、より具体的には、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等が例示される。水溶性セルロースエーテルは増粘作用により材料分離を抑制する。また保水作用によって、例えば凹凸が見られる床に施工したときに、施工厚が薄くなる部位と厚くなる部位との乾燥期間を整合させ、施工物の乾燥収縮時期の差により生じるひび割れを抑制すると共に乾燥過程での表層部と低層部の水分量のバランスも保つことに貢献する。水溶性セルロースエーテルの配合量はセメント含有量100質量部に対し、0.08〜0.5質量部が好ましい。0.08質量部未満では材料分離やひび割れを十分抑えられず、また0.5質量部を超えると粘性が上昇し過ぎて所望のモルタルフローが得られないことがあり、施工性が低下する虞があるので適当ではない。 Moreover, the high fluidity mortar of this invention mix | blends and uses a water retention and a thickening substance. Here, the water retention and thickening substance refers to a substance capable of imparting water retention and thickening to cement-based mortar, and is a single component substance (for example, a single compound) having both performances. Alternatively, a combination of both a water-retaining substance and a thickening substance (a mixture of a water-retaining substance and a thickening substance) may be used. Any of these can be used as long as it can be used for mortar and concrete. Examples of the former include water-soluble cellulose ethers, and more specifically, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and the like are exemplified. Water-soluble cellulose ether suppresses material separation by thickening action. In addition, due to the water retention effect, for example, when applied to floors with unevenness, the drying period of the part where the construction thickness becomes thin and the part where the thickness becomes thick are matched, and cracks caused by the difference in the drying shrinkage time of the construction are suppressed. This contributes to maintaining the balance of moisture content in the surface layer and low layer during the drying process. The compounding amount of the water-soluble cellulose ether is preferably 0.08 to 0.5 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 0.08 parts by mass, material separation and cracking cannot be sufficiently suppressed. If the amount exceeds 0.5 parts by mass, the viscosity may increase excessively and a desired mortar flow may not be obtained, which may reduce workability. Because there is, it is not appropriate.
また、本発明の高流動モルタルは減水剤が配合される。減水剤はモルタルやコンクリートに使用できるものであって、減水作用があるものなら、分散剤、高性能減水剤、AE減水剤、高性能AE減水剤又は流動化剤と称されているものの何れでも良く、成分も限定されない。中でも、ポリカルボン酸系の減水剤類を使用すると低温でも良好な流動性が持続発現できるので好ましい。減水剤の配合量は有効成分毎に適宜定めれば良く、例えばポリカルボン酸系高性能減水剤を使用する場合は、セメント含有量100質量部に対し、0.4〜1質量部が好ましい。この場合、0.4質量部未満では低温で施工に適した流動性を確保することが困難になり、また1質量部を超えると材料分離を起こし易くなるので適当ではない。 Moreover, a water reducing agent is mix | blended with the high fluid mortar of this invention. The water reducing agent can be used for mortar and concrete, and if it has a water reducing action, any of the so-called dispersant, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent or fluidizing agent can be used. Good and the ingredients are not limited. Among them, it is preferable to use polycarboxylic acid-based water reducing agents because good fluidity can be continuously expressed even at low temperatures. What is necessary is just to determine the compounding quantity of a water reducing agent suitably for every active ingredient, for example, when using a polycarboxylic acid type high performance water reducing agent, 0.4-1 mass part is preferable with respect to 100 mass parts of cement contents. In this case, if it is less than 0.4 parts by mass, it becomes difficult to ensure fluidity suitable for construction at low temperatures, and if it exceeds 1 part by mass, material separation tends to occur, which is not appropriate.
また、本発明の高流動モルタルは粒子径150μmを超える細骨材(α)を配合使用する。粒子径150μmを超える細骨材は、モルタルやコンクリートに使用できるものであれば、含有成分を問わず、何れの細骨材でも良い。具体的には、山砂、川砂、海砂、砕砂の天然細骨材、鉱物粉等を主体とする原料を焼成してなる人工細骨材等を挙げることができる。細骨材の最大粒子径は2.5mm以下であるのが好ましく、より好ましくは最大粒子径が1.2mm以下の細骨材を使用する。粒子径150μmを超える細骨材を使用することで施工後の収縮量が低減され易くなる。 Moreover, the high flow mortar of this invention mix | blends and uses the fine aggregate ((alpha)) exceeding a particle diameter of 150 micrometers. The fine aggregate exceeding the particle diameter of 150 μm may be any fine aggregate, regardless of the content, as long as it can be used for mortar and concrete. Specific examples include natural fine aggregates of mountain sand, river sand, sea sand, crushed sand, and artificial fine aggregates obtained by firing raw materials mainly composed of mineral powder. The maximum particle diameter of the fine aggregate is preferably 2.5 mm or less, more preferably a fine aggregate having a maximum particle diameter of 1.2 mm or less. By using a fine aggregate having a particle diameter of more than 150 μm, the amount of shrinkage after construction is easily reduced.
また、本発明の高流動モルタルは、粒子径150μm以下の細骨材(β)を配合使用する。この微粒細骨材の使用により施工に適した流動性を安定して発現させることができる。特に低温での施工に於いて、減水剤との併用作用により水量増加させずとも、温度低下に伴う粘性増大化を抑制し、所望の流動性が容易に得られるようになる。使用する細骨材は、水と実質反応せず且つ溶解しないものであれば制限ず、粒径以外は前記細骨材(α)と同じ材質の骨材であっても良い。好ましくは無機材質の普通細骨材を使用する。具体的には、例えば炭酸カルシウム粉や珪石粉等を挙げることができるが、これに限定されるものではない。また、粒子径150μm以下の細骨材(β)の配合量は、粒子径150μmを超える細骨材の配合量(α)と相関性があり、質量比で(β)/(α)が0.8以上3未満となる範囲内で定めれば良い。質量比で(β)/(α)が0.8未満では粒子径が150μmを超える細骨材の配合効果が実質得られず、施工性の良い流動性を安定して得ることが困難になる他、材料分離も抑制され難いので好ましくない。また、質量比で(β)/(α)が3を超えると、モルタルの粘性が大きくなり過ぎて所望の流動性が得難くなるので好ましくない。粒子径150μm以下の細骨材(β)と粒子径150μmを超える細骨材(α)の合計配合量はセメント100質量部に対し、1.3〜2.5質量部が好ましい。1.3質量部未満では収縮量が大きく、ひび割れが発生し易くなるので適当ではない。また2.5質量部を超えると施工物の強度が低下するので適当ではない。 Moreover, the high flow mortar of this invention mix | blends and uses the fine aggregate ((beta)) with a particle diameter of 150 micrometers or less. By using this fine fine aggregate, fluidity suitable for construction can be stably expressed. In particular, in construction at a low temperature, even if the amount of water is not increased by the combined action with a water reducing agent, the increase in viscosity due to the temperature decrease is suppressed, and the desired fluidity can be easily obtained. The fine aggregate to be used is not limited as long as it does not substantially react with water and does not dissolve, and may be the same aggregate as the fine aggregate (α) except for the particle diameter. Preferably, inorganic fine aggregates are used. Specific examples include calcium carbonate powder and quartzite powder, but are not limited thereto. The amount of fine aggregate (β) having a particle size of 150 μm or less is correlated with the amount (α) of fine aggregate having a particle size of more than 150 μm, and (β) / (α) is 0 in terms of mass ratio. It may be set within a range of 8 or more and less than 3. When the mass ratio (β) / (α) is less than 0.8, the effect of blending fine aggregates with a particle diameter exceeding 150 μm cannot be obtained substantially, and it becomes difficult to stably obtain fluidity with good workability. In addition, material separation is difficult to suppress, which is not preferable. On the other hand, if (β) / (α) exceeds 3 in terms of mass ratio, the viscosity of the mortar becomes too large, and it becomes difficult to obtain desired fluidity. The total amount of fine aggregate (β) having a particle diameter of 150 μm or less and fine aggregate (α) having a particle diameter of 150 μm or more is preferably 1.3 to 2.5 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 1.3 parts by mass, the amount of shrinkage is large, and cracks are likely to occur. Moreover, since the intensity | strength of a construction material will fall when it exceeds 2.5 mass parts, it is not suitable.
また、本発明の高流動モルタルは、消泡剤を配合使用する。消泡剤は、モルタルやコンクリートに使用できるものであれば、何れのものでも配合使用できる。消泡剤の使用により、高流動モルタルの注水後の混練時に巻き込まれた空気によって施工物表面に見られ易い気泡あばたの出現を防ぎ、平滑面が得易やすくなる。消泡剤の配合量は、セメント含有量100質量部に対し、固形分換算で0.05〜1質量部が好ましい。0.05質量部未満では気泡除去が困難であり、また1質量部を超える量の消泡剤を使用しても配合効果が向上せず、コストのみが上昇するので適当ではない。 Moreover, the high fluid mortar of this invention mix | blends and uses an antifoamer. Any antifoaming agent can be used as long as it can be used for mortar and concrete. The use of the antifoaming agent prevents the appearance of bubble blisters that are likely to be seen on the surface of the work due to the air entrained during the kneading of the high-fluid mortar, and makes it easier to obtain a smooth surface. As for the compounding quantity of an antifoamer, 0.05-1 mass part is preferable in conversion of solid content with respect to 100 mass parts of cement contents. If the amount is less than 0.05 parts by mass, it is difficult to remove the bubbles, and even if an amount of the antifoaming agent exceeding 1 part by mass is used, the blending effect is not improved and only the cost is increased, which is not appropriate.
本発明の高流動モルタルは、本発明の効果を実質喪失させない範囲で、前記以外の成分を含有するものであっても良い。このような成分として、例えばモルタルやコンクリートに使用できる収縮低減材、白華防止剤、繊維、凝結調整剤、撥水剤、ポゾラン反応性物質、石膏、粘土鉱物、顔料等を挙げることができる。 The high flow mortar of the present invention may contain components other than those described above as long as the effects of the present invention are not substantially lost. Examples of such components include shrinkage reducing materials that can be used in mortar and concrete, anti-whitening agents, fibers, setting modifiers, water repellents, pozzolanic reactive substances, gypsum, clay minerals, pigments, and the like.
また、本発明の高流動モルタルは、5℃でのモルタルフローが250〜300mmであるモルタルである。5℃でのモルタルフローが250未満では、床板等へ流し込むだけで水平面が得られ難く、施工作業性も低下するので好ましくない。また、モルタルフローが300を超えると、施工物にひび割れ等が発生し易くなるので好ましくない。また、本発明の高流動モルタルの混練水の配合量は、前記モルタルフローが得やすいよう、適宜水量を選定すれば良く、特に制限されるものではない。20℃での施工する場合の好適例示として、高流動モルタル100質量部に対し、混練水量は概ね23〜28質量部とする。この場合、概ね23質量部未満では良好な施工性に適した流動性が得られないことがあり、概ね28質量部を超えると、施工物の表層強度向上が得難くなる。 Moreover, the high flow mortar of this invention is a mortar whose mortar flow in 5 degreeC is 250-300 mm. If the mortar flow at 5 ° C. is less than 250, it is difficult to obtain a horizontal plane simply by pouring into a floor board or the like, and the workability of the work is also not preferable. On the other hand, when the mortar flow exceeds 300, it is not preferable because cracks and the like are easily generated in the construction. Further, the blending amount of the high-fluid mortar kneading water of the present invention is not particularly limited and may be appropriately selected so that the mortar flow can be easily obtained. As a suitable example in the case of construction at 20 ° C., the amount of kneading water is generally 23 to 28 parts by mass with respect to 100 parts by mass of the high flow mortar. In this case, if it is less than about 23 parts by mass, fluidity suitable for good workability may not be obtained, and if it exceeds about 28 parts by mass, it will be difficult to improve the surface layer strength of the construction.
また、本発明の高流動モルタルの混練水の配合量は、前記モルタルフローを充当する限り特に制限されない。本発明の高流動モルタルの製造方法は特に限定されない。一例を挙げれば、混練容器に混練水を入れ、次いで混練水以外の配合材料を加えて混合することにより製造できる。また、本高流動モルタルの施工方法も特に限定されず、例えば、従来より一般に行われているセメント系セルフレベリング材の施工法を適用できる。 Moreover, the compounding quantity of the kneading | mixing water of the high fluid mortar of this invention will not be restrict | limited especially as long as the said mortar flow is applied. The manufacturing method of the high fluid mortar of this invention is not specifically limited. For example, it can be produced by adding kneaded water to a kneading container, and then adding and mixing a compounding material other than kneaded water. Moreover, the construction method of this high fluidity mortar is not specifically limited, For example, the construction method of the cement type self-leveling material generally performed conventionally can be applied.
以下、実施例により本発明を具体的に詳しく説明する。
次に表すA1〜Fから選定される材料を用い、表1の配合量となるよう、まず混練水を混練容器に投入し、次いで他の材料を一括投入し、約90秒間混練を行い、高流動モルタルを作製した。このモルタルの作製は温度20℃と温度5℃の両環境下で同様に作製した。但し、混練水の配合量のみ温度によって変更した。
A1;普通ポルトランドセメント(太平洋セメント株式会社製)
A2;早強ポルトランドセメント(太平洋セメント株式会社製)
B;石灰系膨張材(商品名;太平洋エクスパン、太平洋マテリアル株式会社製)
C;水溶性メチルセルロース系増粘剤(商品名;メトローズ90SH−4000、信越化学工業株式会社製)
D;ポリカルボン酸系高性能減水剤(商品名;マイティ21P、花王株式会社製)
E1;細骨材(山形珪砂6・7号、粒子径150μm以下の粒子含有率5質量%)
E2;細骨材(山形珪砂7号、粒子径150μm以下の粒子含有率51質量%)
E3;炭酸カルシウム微粉(市販品、粒子径150μm以下の粒子含有率96質量%)
F;消泡剤(商品名;SNディフォーマーAHP、サンノプコ株式会社製)
Hereinafter, the present invention will be described in detail by way of examples.
Using materials selected from A1 to F shown below, kneading water is first put into a kneading container so as to achieve the blending amount shown in Table 1, and then other materials are put together and kneaded for about 90 seconds. A fluid mortar was made. This mortar was prepared in the same manner in both environments of a temperature of 20 ° C. and a temperature of 5 ° C. However, only the amount of the kneaded water was changed depending on the temperature.
A1: Normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
B: Lime-based expansion material (trade name: Taiheiyo Expan, manufactured by Taiheiyo Materials Co., Ltd.)
C: Water-soluble methylcellulose thickener (trade name; Metroles 90SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.)
D: Polycarboxylic acid-based high-performance water reducing agent (trade name; Mighty 21P, manufactured by Kao Corporation)
E1: Fine aggregate (Yamagata silica sand No.6, No. 7, particle content 5% by mass with particle diameter of 150 μm or less)
E2: Fine aggregate (Yamagata silica sand No. 7, particle content of 51 μm or less with a particle diameter of 150 μm or less)
E3: Calcium carbonate fine powder (commercially available product, particle content 96 mass% with particle diameter of 150 μm or less)
F: Antifoaming agent (trade name; SN deformer AHP, manufactured by San Nopco)
作製した高流動モルタルについて、流動性の評価として、日本建築学会規格JASS 15M−103のフロー試験方法に準じてフローを測定した。フローは、混練終了直後(注水から約2分経過時点)の高流動モルタルに対し、温度20℃で作製したモルタルは20℃の温度下で、また温度5℃で作製したモルタルは5℃の温度下でそれぞれ測定した。また、作製した高流動モルタルを内寸縦13cm、横8.5cm、高さ1.8cmのブラスチック製容器に、厚さ約1cmとなるように、5℃で作製したモルタルは5℃で、20℃で作製したモルタルは20℃の温度下でそれぞれ流し込んだ。材料分離性の評価として、30分間放置した施工物表面のブリーディング水発生有無を目視で観察した。またさらに、施工から5℃と20℃でそれぞれ1日経過後の各施工物表面状態の評価として、表面に気泡膨れ、ピンホール又は浮遊成膜の存在があるか否かを目視で確認し、何れの発生も全く見られなかったものを表面状態「良好」と判断し、それ以外は「不良」と判断した。 About the produced high fluidity mortar, the flow was measured according to the flow test method of the Architectural Institute of Japan standard JASS 15M-103 as fluidity | liquidity evaluation. As for the flow, the mortar prepared at a temperature of 20 ° C. is 20 ° C., and the mortar prepared at a temperature of 5 ° C. is 5 ° C. with respect to the high-flowing mortar immediately after the end of the kneading (when about 2 minutes have passed since the injection). Each was measured below. Moreover, the mortar produced at 5 ° C. was 5 ° C. so that the produced high-flowing mortar had a thickness of about 1 cm in a plastic container having an inner dimension of 13 cm, a width of 8.5 cm, and a height of 1.8 cm. The mortar produced at 20 ° C. was poured at a temperature of 20 ° C., respectively. As evaluation of material separability, the presence or absence of bleeding water generation on the surface of the construction left for 30 minutes was visually observed. Furthermore, as an evaluation of the surface condition of each construction after 1 day at 5 ° C. and 20 ° C. from the construction, it is visually confirmed whether or not there are bubbles bulging, pinholes or floating film formation on the surface. In the case where no occurrence of odor was observed, the surface condition was judged as “good”, and other cases were judged as “bad”.
表2から、本発明による高流動モルタルは低温(5℃)でも、また常温(20℃)でも施工に適した比較的高い流動性を安定して示し、施工後も表面状態が良好で材料分離等も実質発生していないことがわかる。 From Table 2, the high flow mortar according to the present invention stably exhibits a relatively high fluidity suitable for construction even at low temperature (5 ° C.) or at ordinary temperature (20 ° C.), and the surface condition is good after construction and material separation. It can be seen that there is no substantial occurrence.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339268A JP5004294B2 (en) | 2007-12-28 | 2007-12-28 | High flow mortar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339268A JP5004294B2 (en) | 2007-12-28 | 2007-12-28 | High flow mortar |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009161360A JP2009161360A (en) | 2009-07-23 |
JP5004294B2 true JP5004294B2 (en) | 2012-08-22 |
Family
ID=40964425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007339268A Expired - Fee Related JP5004294B2 (en) | 2007-12-28 | 2007-12-28 | High flow mortar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5004294B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5768431B2 (en) * | 2011-03-24 | 2015-08-26 | 宇部興産株式会社 | High flow mortar composition |
JP5741113B2 (en) * | 2011-03-24 | 2015-07-01 | 宇部興産株式会社 | Construction method for housing foundation structure and housing foundation structure constructed using the same |
JP2014129208A (en) * | 2012-12-28 | 2014-07-10 | Taiheiyo Material Kk | Adhesive for tile |
JP5997807B2 (en) * | 2015-06-16 | 2016-09-28 | 株式会社大林組 | High strength mortar composition |
JP6959151B2 (en) * | 2018-01-17 | 2021-11-02 | 太平洋マテリアル株式会社 | Mortar composition and mortar |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223652A (en) * | 1982-06-22 | 1983-12-26 | 宇部興産株式会社 | Non-shrinkable high fluidity high strength mortar |
JPH11130508A (en) * | 1997-10-30 | 1999-05-18 | Taiheiyo Cement Corp | Cement-based composition and its hardened body |
JP2000086320A (en) * | 1998-09-16 | 2000-03-28 | Taiheiyo Cement Corp | Grout composition and admixture for grouting material |
JP4796225B2 (en) * | 1999-11-12 | 2011-10-19 | 太平洋マテリアル株式会社 | Mortar composition |
JP2005047772A (en) * | 2003-07-31 | 2005-02-24 | Denki Kagaku Kogyo Kk | Mortar composition |
JP2006045025A (en) * | 2004-08-06 | 2006-02-16 | Ube Ind Ltd | Self-flowing hydraulic composition |
-
2007
- 2007-12-28 JP JP2007339268A patent/JP5004294B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009161360A (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5939776B2 (en) | Repair mortar composition | |
JP5161062B2 (en) | High flow mortar | |
JP2008094674A (en) | Reinforcing bar joint filler and reinforcing joint filling method using the same | |
JP6891041B2 (en) | Fast-strength ultra-high-strength grout composition | |
CN106800401A (en) | A kind of gypsum based self-leveling mortar using molybdic tailing as filler | |
JP7034573B2 (en) | Fast-curing polymer cement composition and fast-curing polymer cement mortar | |
JP5004294B2 (en) | High flow mortar | |
JP6674307B2 (en) | Self-leveling mortar | |
WO2023213065A1 (en) | Gypsum-based ground tile bonding mortar and preparation method therefor | |
JP6830826B2 (en) | Self-smooth mortar | |
US10640424B2 (en) | Castable material based on cementitious binder with shrinkage resistance | |
JP2011136863A (en) | Superhigh strength grout composition | |
JP2016124744A (en) | Self-leveling admixture composition with low efflorescence | |
JP5035721B2 (en) | High fluidity lightweight mortar | |
JP6654932B2 (en) | High strength grout composition and high strength grout material | |
JP2012140274A (en) | Strength-increasing agent for polymer cement composition, and high-strength polymer cement composition | |
JP2010155757A (en) | Admixture for grout and grout composition | |
JP2010100457A (en) | Grout composition for use at elevated temperature | |
JP2016121039A (en) | Inseparable mortar composition in water | |
JP6626363B2 (en) | Non-shrink grout composition | |
JP7574091B2 (en) | High-strength underwater non-segregating mortar composition for high-temperature environments and mortar using the same | |
JP2018123025A (en) | Self-leveling mortar | |
JP2019167272A (en) | Self-smoothing hydraulic composition | |
JP5594760B2 (en) | Hydraulic composition having self-smoothness | |
JP2008056541A (en) | Self-leveling composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120518 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5004294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |