[go: up one dir, main page]

JP5001788B2 - Photodetector - Google Patents

Photodetector Download PDF

Info

Publication number
JP5001788B2
JP5001788B2 JP2007280863A JP2007280863A JP5001788B2 JP 5001788 B2 JP5001788 B2 JP 5001788B2 JP 2007280863 A JP2007280863 A JP 2007280863A JP 2007280863 A JP2007280863 A JP 2007280863A JP 5001788 B2 JP5001788 B2 JP 5001788B2
Authority
JP
Japan
Prior art keywords
light receiving
light
signal processing
resin
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007280863A
Other languages
Japanese (ja)
Other versions
JP2009111090A (en
Inventor
正敏 石原
直 井上
洋夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007280863A priority Critical patent/JP5001788B2/en
Priority to US12/259,740 priority patent/US7791016B2/en
Publication of JP2009111090A publication Critical patent/JP2009111090A/en
Application granted granted Critical
Publication of JP5001788B2 publication Critical patent/JP5001788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光検出装置に関する。   The present invention relates to a light detection device.

光検出装置として、複数の受光素子と、これらの受光素子から出力された電気信号が入力される信号処理素子と、を備えているものが知られている(例えば、特許文献1参照)。特許文献1に記載された光検出装置では、信号処理装置は、各受光素子に対向して配置されると共に導電性バンプを介して接続されており、各受光素子と信号処理素子との間の空隙に電気絶縁性を有する樹脂が充填されている。
米国特許第6828545号明細書
2. Description of the Related Art As a light detection device, a device including a plurality of light receiving elements and a signal processing element to which an electrical signal output from these light receiving elements is input is known (for example, see Patent Document 1). In the photodetection device described in Patent Document 1, the signal processing device is arranged to face each light receiving element and is connected via a conductive bump, and between each light receiving element and the signal processing element. The gap is filled with a resin having electrical insulation.
US Pat. No. 6,828,545

しかしながら、特許文献1に記載された光検出装置では、迷光が発生し、この迷光が受光素子に入射し、ノイズとして検出されてしまうという問題点を有している。すなわち、特許文献1に記載された光検出装置では、上述した樹脂における受光素子及び信号処理素子から露出する表面から光が入射すると、当該表面で散乱すると共に樹脂を透過して信号処理素子の表面(受光素子に対向する面)で反射し、これらの散乱光及び反射光が迷光となって、受光素子の裏面(信号処理素子に対向する面)又は側面から入射する懼れがある。   However, the light detection device described in Patent Document 1 has a problem in that stray light is generated, and this stray light enters the light receiving element and is detected as noise. That is, in the light detection device described in Patent Document 1, when light is incident from the surface exposed from the light receiving element and the signal processing element in the resin, the surface of the signal processing element is scattered on the surface and transmitted through the resin. There is a possibility that these scattered light and reflected light become stray light that is reflected from (the surface facing the light receiving element) and enters from the back surface (surface facing the signal processing element) or the side surface of the light receiving element.

ところで、信号処理素子は、その作動の際に発熱して、赤外線を放射することがある。このため、特許文献1に記載された光検出装置では、受光素子が赤外線の波長領域に感度を有する場合、信号処理素子から放射される赤外線が受光素子の裏面又は側面から入射し、ノイズとして検出されてしまうという問題点も有している。   By the way, the signal processing element may generate heat during its operation and emit infrared rays. For this reason, in the light detection device described in Patent Document 1, when the light receiving element has sensitivity in the infrared wavelength region, infrared light emitted from the signal processing element enters from the back surface or side surface of the light receiving element and is detected as noise. It also has the problem of being done.

そこで、本発明はこのような事情に鑑みてなされたものであり、測定光の検出精度を高めることが可能な光検出装置を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a photodetector that can increase the detection accuracy of measurement light.

本発明に係る光検出装置は、入射した光の光量に応じた電気信号をそれぞれ出力する複数の受光素子と、複数の受光素子に対向して配置されていると共に、導電性バンプを介して接続されており、複数の受光素子から出力された電気信号が入力される信号処理素子と、電気絶縁性及び遮光性を有し、少なくとも複数の受光素子と信号処理素子との間の空隙に充填されている樹脂と、を備えている。   The light detection device according to the present invention includes a plurality of light receiving elements that respectively output electrical signals corresponding to the amount of incident light, and are disposed to face the plurality of light receiving elements, and are connected via conductive bumps. A signal processing element to which electric signals output from a plurality of light receiving elements are input, and has electrical insulation and light shielding properties, and is filled in a gap between at least the plurality of light receiving elements and the signal processing element. And a resin.

本発明に係る光検出装置では、遮光性を有する上記樹脂が、少なくとも複数の受光素子と信号処理素子との間の空隙に充填されていることから、迷光が発生した場合でも、発生した迷光が受光素子における信号処理素子に対向する面側から入射することを防ぐことができる。これにより、検出されるノイズを低減させ、測定光の検出精度を高めることができる。また、複数の受光素子が赤外線の波長領域に感度を有する場合でも、信号処理素子から放射される赤外線が受光素子における信号処理素子に対向する面側から入射することを防ぎ、検出されるノイズを低減できる。   In the light detection device according to the present invention, since the resin having light shielding properties is filled in at least the gaps between the plurality of light receiving elements and the signal processing element, the generated stray light is generated even when stray light is generated. It can prevent entering from the surface side which opposes the signal processing element in a light receiving element. Thereby, the detected noise can be reduced and the detection accuracy of the measurement light can be increased. Moreover, even when a plurality of light receiving elements have sensitivity in the infrared wavelength region, the infrared rays emitted from the signal processing elements are prevented from entering from the side of the light receiving element facing the signal processing elements, and the detected noise is reduced. Can be reduced.

また、複数の受光素子は、互いに所定の間隔を有して配置されており、樹脂は、信号処理素子における受光素子間に対応する領域を覆うように配置されていることが好ましい。この場合、複数の受光素子間から信号処理素子に光が入射することが抑制され、迷光の発生を防ぐことができる。   Moreover, it is preferable that the plurality of light receiving elements are arranged at a predetermined interval from each other, and the resin is arranged so as to cover a region corresponding to the space between the light receiving elements in the signal processing element. In this case, light is prevented from entering the signal processing element from between a plurality of light receiving elements, and stray light can be prevented from being generated.

また、樹脂は、複数の受光素子の側面を覆うように配置されていることが好ましい。この場合、受光素子の側面からの迷光を抑制することができる。この結果、光検出装置における測定光の検出精度をより一層高めることができる。   Moreover, it is preferable that resin is arrange | positioned so that the side surface of a some light receiving element may be covered. In this case, stray light from the side surface of the light receiving element can be suppressed. As a result, the detection accuracy of the measurement light in the light detection device can be further enhanced.

また、信号処理素子は、複数の受光素子が対向する第1の領域と、第1の領域の外周側に位置する第2の領域と、を含み、樹脂は、第2の領域を覆うように配置されていることが好ましい。この場合、信号処理素子における第2の領域に光が入射することが抑制され、迷光の発生を防ぐことができる。   The signal processing element includes a first region where the plurality of light receiving elements face each other, and a second region located on the outer peripheral side of the first region, and the resin covers the second region. It is preferable that they are arranged. In this case, light is suppressed from entering the second region of the signal processing element, and stray light can be prevented from being generated.

また、樹脂は、遮光性を有するフィラーが含有されることにより、遮光性を有することが好ましく、さらには、入射光を吸収することにより、遮光性を有することが好ましい。   Further, the resin preferably has a light shielding property by containing a filler having a light shielding property, and further preferably has a light shielding property by absorbing incident light.

また、導電性バンプ導電性バンプは、柱状であり、そのアスペクト比が1以上に設定されていることが好ましい。   Further, the conductive bump conductive bump has a columnar shape, and its aspect ratio is preferably set to 1 or more.

本発明によれば、迷光が発生して受光素子に入射することを防ぎ、測定光の検出精度を高めることが可能な光検出装置を提供することができる。   According to the present invention, it is possible to provide a photodetection device that can prevent stray light from entering the light receiving element and increase the detection accuracy of measurement light.

以下、本発明の実施形態に係る光検出装置について添付図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, a photodetecting device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

図1を参照して、本実施形態に係る光検出装置の構成を説明する。図1は、本実施形態に係る光検出装置の断面構成を示す模式図である。光検出装置PD1は、複数の受光素子1と、信号処理素子10と、樹脂20と、を備えている。   With reference to FIG. 1, the structure of the photon detector according to the present embodiment will be described. FIG. 1 is a schematic diagram illustrating a cross-sectional configuration of the photodetecting device according to the present embodiment. The light detection device PD1 includes a plurality of light receiving elements 1, a signal processing element 10, and a resin 20.

各受光素子1は、互いに所定の間隔を有すると共に、信号処理素子10に対向して配置されている。各受光素子1は、1次元又は2次元に配列されている。受光素子1は、信号処理素子10に対向する主面1a側において、複数のpn接合領域3が配列されており、各pn接合領域3が受光素子1の光感応領域として機能する。   Each light receiving element 1 has a predetermined distance from each other and is disposed to face the signal processing element 10. Each light receiving element 1 is arranged in one or two dimensions. In the light receiving element 1, a plurality of pn junction regions 3 are arranged on the main surface 1 a side facing the signal processing element 10, and each pn junction region 3 functions as a photosensitive region of the light receiving element 1.

受光素子1は、いわゆるホトダイオードアレイであり、Siからなるn型(第1導電型)の半導体基板5を有している。n型半導体基板5には主面1a側において、複数のp型(第2導電型)領域7がアレイ状に配列(1次元又は2次元配列)されている。各p型領域7とn型半導体基板5との間で形成されるpn接合領域3により、各ホトダイオードの光感応領域が構成されている。   The light receiving element 1 is a so-called photodiode array, and includes an n-type (first conductivity type) semiconductor substrate 5 made of Si. A plurality of p-type (second conductivity type) regions 7 are arrayed (one-dimensional or two-dimensional array) on the n-type semiconductor substrate 5 on the main surface 1a side. The pn junction region 3 formed between each p-type region 7 and the n-type semiconductor substrate 5 constitutes a photosensitive region of each photodiode.

主面1aには、アンダーバンプメタル(UBM)としての電極8、9が配置されている。電極8は、対応するp型領域7に電気的に接続されている。電極9は、n型半導体基板5に電気的に接続されている。各電極8、9は、p型領域7又はn型半導体基板5に接続された電極配線(図示せず)上に例えばNi、Auを順次メッキすることにより形成される。   Electrodes 8 and 9 as under bump metal (UBM) are arranged on the main surface 1a. The electrode 8 is electrically connected to the corresponding p-type region 7. The electrode 9 is electrically connected to the n-type semiconductor substrate 5. Each of the electrodes 8 and 9 is formed by sequentially plating, for example, Ni and Au on an electrode wiring (not shown) connected to the p-type region 7 or the n-type semiconductor substrate 5.

受光素子1は、光が入射すると、光が入射したp型領域7において入射した光の光量に応じてキャリアが生成される。生成されたキャリアによる光電流は、p型領域7に接続された電極8から取り出される。これにより、各受光素子1は、入射した光の光量に応じた電気信号をそれぞれ出力することとなる。   When light is incident on the light receiving element 1, carriers are generated according to the amount of incident light in the p-type region 7 where the light is incident. The photocurrent generated by the generated carriers is taken out from the electrode 8 connected to the p-type region 7. Thereby, each light receiving element 1 outputs an electrical signal corresponding to the amount of incident light.

受光素子1は、上述した構成のホトダイオードアレイに限られることなく、pn接合を有する量子型検出素子や、熱型検出素子等であれば、いずれの検出素子を用いてもよい。量子型検出素子としては、Siホトダイオードアレイのような検出素子の他、InGaAs、GaAs、AlGaAs、InSb、HgCdTe、又はInAsSn等の光起電力型の検出素子、あるいは、PbS、PbSe、InSb、又はHgCdTe等の光導電型の検出素子が挙げられる。熱型検出素子としては、サーモパイル、ボロメータ、又はニューマチックセル等が挙げられる。量子型検出素子の構造も、MQW(multiple−quantum−well)構造であってもよい。熱型検出素子の構造は、メンブレン構造であってもよい。   The light receiving element 1 is not limited to the photodiode array having the above-described configuration, and any detecting element may be used as long as it is a quantum type detecting element having a pn junction, a thermal type detecting element, or the like. As a quantum type detection element, in addition to a detection element such as a Si photodiode array, a photovoltaic type detection element such as InGaAs, GaAs, AlGaAs, InSb, HgCdTe, or InAsSn, or PbS, PbSe, InSb, or HgCdTe. And the like. Examples of the thermal detection element include a thermopile, a bolometer, or a pneumatic cell. The structure of the quantum detection element may also be an MQW (multiple-quantum-well) structure. The structure of the thermal detection element may be a membrane structure.

信号処理素子10は、上述したように、各受光素子1に対向して配置されており、信号読み出し回路、信号処理回路、及び信号出力回路(いずれも図示せず)等を有している。本実施形態では、信号処理素子10は、SiやGaAs等の半導体結晶からなる基板11を有しており、各回路は基板11に形成されている。信号処理素子10はセラミックスやPCB等の配線材料からなる配線パターンにより構成してもよい。   As described above, the signal processing element 10 is disposed to face each of the light receiving elements 1 and includes a signal readout circuit, a signal processing circuit, a signal output circuit (all not shown), and the like. In the present embodiment, the signal processing element 10 includes a substrate 11 made of a semiconductor crystal such as Si or GaAs, and each circuit is formed on the substrate 11. The signal processing element 10 may be constituted by a wiring pattern made of a wiring material such as ceramics or PCB.

基板11は、各受光素子1が対向する第1の領域11aと、各第1の領域11aの外周側に位置する第2の領域11bと、を含んでいる。第1の領域11aにおける、各受光素子1に対向する面側には、各電極8、9に対応して、アンダーバンプメタル(UBM)としての複数の電極13が配置されている。各電極13は、信号読み出し回路等に接続された電極配線(図示せず)上に例えばNi、Auを順次メッキすることにより形成される。   The substrate 11 includes a first region 11a facing each light receiving element 1 and a second region 11b located on the outer peripheral side of each first region 11a. A plurality of electrodes 13 serving as under bump metal (UBM) are arranged on the surface side of the first region 11 a facing each light receiving element 1 in correspondence with the electrodes 8 and 9. Each electrode 13 is formed by sequentially plating, for example, Ni and Au on an electrode wiring (not shown) connected to a signal readout circuit or the like.

対応する電極8、9と電極13とは、導電性バンプ15により電気的かつ物理的にそれぞれ接続されている。これにより、各受光素子1と信号処理素子10とが、電極8、9、13及び導電性バンプ15を通して、電気的に接続されることとなる。そして、信号処理素子10には、受光素子1から出力された電気信号が入力される。ところで、信号処理素子10は、一般に信号処理回路にIC等を含んでおり、その作動の際に発熱して、赤外線を放射する。   Corresponding electrodes 8, 9 and electrode 13 are electrically and physically connected by conductive bumps 15, respectively. Thereby, each light receiving element 1 and the signal processing element 10 are electrically connected through the electrodes 8, 9, 13 and the conductive bump 15. The electrical signal output from the light receiving element 1 is input to the signal processing element 10. By the way, the signal processing element 10 generally includes an IC or the like in the signal processing circuit, and generates heat during its operation to emit infrared rays.

電極8、9、13について、電極間の間隔(ピッチ)、サイズ(面積及び形状)、及び高さ、並びに、導電性バンプ15の高さ及び形状は、それぞれ単独で決定される事項ではなく、導電性バンプ15に用いられる材料、その形成方法、受光素子1や信号処理素子10の大きさ、製造時の反り等に依存して決定される事項である。また、p型領域7の間隔(ピッチ)は、受光素子1からの出力信号の用途に応じて、様々な値を取り得る。   For the electrodes 8, 9, and 13, the spacing (pitch), size (area and shape) and height between the electrodes, and the height and shape of the conductive bumps 15 are not matters determined independently, This is a matter determined depending on the material used for the conductive bump 15, its forming method, the size of the light receiving element 1 and the signal processing element 10, warpage during manufacturing, and the like. Further, the interval (pitch) between the p-type regions 7 can take various values depending on the use of the output signal from the light receiving element 1.

導電性バンプ15は、柱状を呈しており、そのアスペクト比が1以上に設定されている。ここで「アスペクト比」とは、導電性バンプ15の高さを、導電性バンプ15における高さ方向での端部の幅で除した値を示す。導電性バンプ15は、厚膜レジストや2層レジストを用いて蒸着する方式、バンプの水平方向へのめっき成長を選択的に抑制する方式、インクジェット方式(例えば特開2004−17205号公報参照)、又は、ピラミッド方式(例えば特開2005−243714号公報参照)等を用いて形成される。これらの方式によりバンプを異方性成長させることで、高いアスペクト比を有する柱状のバンプを形成できる。   The conductive bump 15 has a columnar shape, and its aspect ratio is set to 1 or more. Here, the “aspect ratio” indicates a value obtained by dividing the height of the conductive bump 15 by the width of the end of the conductive bump 15 in the height direction. The conductive bump 15 is a method of vapor deposition using a thick film resist or a two-layer resist, a method of selectively suppressing plating growth in the horizontal direction of the bump, an ink jet method (for example, see Japanese Patent Application Laid-Open No. 2004-17205), Alternatively, it is formed using a pyramid method (for example, see JP-A-2005-243714). By making the bumps grow anisotropically by these methods, a columnar bump having a high aspect ratio can be formed.

樹脂20は、電気絶縁性を有すると共に、各受光素子1と信号処理素子10との間の空隙に充填されている。樹脂20は、導電性バンプ15の機械的強度を確保すると共に、各受光素子1と信号処理素子10との間の空隙への異物の混入を防ぎ、アンダーフィル材として機能する。樹脂20は、第2の領域11bを覆っており、更に、各受光素子1の側面を覆うように配置されている。樹脂20には、例えば、エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、若しくはアクリル系樹脂、又はこれらを複合させたものを用いることができる。   The resin 20 has electrical insulation and is filled in a gap between each light receiving element 1 and the signal processing element 10. The resin 20 secures the mechanical strength of the conductive bumps 15, prevents foreign matters from entering the gaps between the light receiving elements 1 and the signal processing elements 10, and functions as an underfill material. The resin 20 covers the second region 11b and is disposed so as to cover the side surface of each light receiving element 1. As the resin 20, for example, an epoxy resin, a urethane resin, a silicone resin, an acrylic resin, or a composite of these can be used.

樹脂20は、遮光性を有するフィラー(例えば、カーボン粒子、アルミナ粒子、PbS、又はPbSe等)が含有された樹脂からなる。フィラーとしてPbS、又はPbSe等の所定波長帯域において吸光特性を示す材料を用いた場合、樹脂20は、入射光を吸収することにより遮光することとなる。樹脂20は、入射光を反射することにより遮光してもよいが、反射光が迷光となる懼れがあることから、入射光が吸収することにより遮光することが好ましい。樹脂20は、フィラーが含有された樹脂を各受光素子1と信号処理素子10との間の空隙に充填されるように第1の領域11a及び第2の領域11bに付与して硬化させることにより形成してもよく、上記樹脂を各受光素子1と信号処理素子10との間の空隙に充填して硬化させた後、受光素子1及び信号処理素子10から露出した表面に更に付与して硬化させることにより形成してもよい。   The resin 20 is made of a resin containing a light-shielding filler (for example, carbon particles, alumina particles, PbS, PbSe, or the like). When a material exhibiting light absorption characteristics in a predetermined wavelength band such as PbS or PbSe is used as the filler, the resin 20 is shielded by absorbing incident light. The resin 20 may be shielded by reflecting incident light. However, since the reflected light may be stray light, the resin 20 is preferably shielded by absorbing incident light. The resin 20 is formed by applying a resin containing a filler to the first region 11a and the second region 11b so as to fill a gap between each light receiving element 1 and the signal processing element 10 and curing the resin. The resin may be formed and filled in the gaps between the light receiving elements 1 and the signal processing elements 10 and cured, and then further applied to the surfaces exposed from the light receiving elements 1 and the signal processing elements 10 and cured. You may form by making.

以上のように、本実施形態においては、樹脂20が、各受光素子1と信号処理素子10との間の空隙に充填されて配置されているため、迷光が発生した場合でも、発生した迷光が各受光素子1における信号処理素子10に対向する面側から入射することを防ぐことができる。これにより、検出されるノイズを低減させ、測定光の検出精度を高めることができる。また、受光素子1が赤外線の波長領域に感度を有する赤外線検出素子であっても、信号処理素子10から放射される赤外線が各受光素子1における信号処理素子10に対向する面側から入射することを防ぎ、検出されるノイズを低減できる。   As described above, in the present embodiment, since the resin 20 is filled in the gap between each light receiving element 1 and the signal processing element 10, the generated stray light is generated even when stray light is generated. It can prevent entering from the surface side which opposes the signal processing element 10 in each light receiving element 1. FIG. Thereby, the detected noise can be reduced and the detection accuracy of the measurement light can be increased. Further, even if the light receiving element 1 is an infrared detecting element having sensitivity in the infrared wavelength region, the infrared light emitted from the signal processing element 10 is incident from the side of the surface facing the signal processing element 10 in each light receiving element 1. Can be prevented and the detected noise can be reduced.

本実施形態においては、樹脂20は、第2の領域11bの受光素子1間に対応する領域を覆うように配置されている。これにより、上記領域への光の入射が抑制され、迷光の発生を防ぐことができる。   In the present embodiment, the resin 20 is disposed so as to cover a region corresponding to the space between the light receiving elements 1 in the second region 11b. Thereby, the incidence of light on the region is suppressed, and the generation of stray light can be prevented.

本実施形態においては、樹脂20は、第2の領域11bの基板11の外縁部に対応する領域を覆うように配置されている。これにより、上記領域への光の入射が抑制され、迷光の発生を防ぐことができる。   In the present embodiment, the resin 20 is disposed so as to cover a region corresponding to the outer edge portion of the substrate 11 in the second region 11b. Thereby, the incidence of light on the region is suppressed, and the generation of stray light can be prevented.

本実施形態においては、樹脂20は、各受光素子1の側面を覆うように配置されている。これにより、迷光が受光素子1の側面から入射することが抑制できる。この結果、光検出装置PD1における測定光の検出精度をより一層高めることができる。特に、本実施形態では、樹脂20は、受光素子1の上端(信号処理素子10に対向する主面1aに対向する主面の端)まで覆っており、迷光の入射をより一層確実に防ぐことができる。   In the present embodiment, the resin 20 is disposed so as to cover the side surface of each light receiving element 1. Thereby, stray light can be prevented from entering from the side surface of the light receiving element 1. As a result, the detection accuracy of the measurement light in the light detection device PD1 can be further increased. In particular, in the present embodiment, the resin 20 covers up to the upper end of the light receiving element 1 (the end of the main surface facing the main surface 1a facing the signal processing element 10), thereby preventing the stray light from entering more reliably. Can do.

各受光素子1と信号処理素子10との間の空隙に遮光性を有さない樹脂30がアンダーフィル材として充填されている場合には、図2に示されるように、受光素子1及び信号処理素子10から露出する表面から光Lが入射すると、当該表面で散乱すると共に樹脂20を透過して信号処理素子10における受光素子1に対向する面で反射する。そして、これらの散乱光及び反射光(図中、破線で示す)が迷光となって、受光素子1における信号処理素子10に対向する主面又は側面から入射する懼れがある。さらに、信号処理部10から放射された赤外線I(図中、一点鎖線で示す)が、受光素子1の裏面又は側面から入射する懼れもある。これに対して、本実施形態では、上述したように、これらの迷光が発生することはなく、受光素子1に信号処理部10から放射された赤外線Iが入射することもない。   When the gap between each light receiving element 1 and the signal processing element 10 is filled with a resin 30 having no light shielding property as an underfill material, as shown in FIG. 2, the light receiving element 1 and the signal processing When the light L enters from the surface exposed from the element 10, the light L is scattered on the surface and transmitted through the resin 20 and reflected by the surface of the signal processing element 10 facing the light receiving element 1. These scattered light and reflected light (indicated by broken lines in the figure) become stray light and may be incident from the main surface or side surface of the light receiving element 1 facing the signal processing element 10. Furthermore, the infrared rays I (indicated by the alternate long and short dash line in the figure) radiated from the signal processing unit 10 may be incident from the back surface or the side surface of the light receiving element 1. On the other hand, in this embodiment, as described above, these stray lights are not generated, and the infrared rays I emitted from the signal processing unit 10 are not incident on the light receiving element 1.

本実施形態では、導電性バンプ15のアスペクト比が1以上に設定されている。このように、アスペクト比が1以上と設定されることにより、受光素子1と信号処理素子10との間隔は比較的広くなる。これにより、受光素子1と信号処理素子10との間の空隙への樹脂の充填を迅速かつ容易に行うことができる。また、樹脂20に含有されるフィラーのサイズが大きい場合でも、フィラーが含有された樹脂の上記空隙への充填が可能となる。   In the present embodiment, the aspect ratio of the conductive bump 15 is set to 1 or more. Thus, when the aspect ratio is set to 1 or more, the distance between the light receiving element 1 and the signal processing element 10 becomes relatively wide. Thereby, filling of the resin into the gap between the light receiving element 1 and the signal processing element 10 can be performed quickly and easily. In addition, even when the size of the filler contained in the resin 20 is large, the resin containing the filler can be filled into the voids.

ところで、本実施形態及び変形例に係る光検出装置PD1は、例えば、ガス分析の非分散赤外分析計(NDIR)に適用することができる。回折格子など分散型グレーティングを利用したミニ分光器の受光素子には、ホトダイオードアレイやイメージセンサ等の受光素子が用いられている。連続スペクトルを観察するには、1チップからなるホトダイオードアレイやイメージセンサが必要となるが、用途によっては、複数の固定波長が検出できればよい場合もある。例えば、上述した非分散赤外分析計では、必要とするサンプル波長とリファレンス波長は決まっており、画素が連続した長尺の高価なホトダイオードアレイやイメージセンサは不要である。したがって、必要な波長を検出し得る画素数の小さな受光素子を複数配置することで、受光素子にかかる費用を低減することができる。回折格子から出射された連続スペクトル上に複数の受光素子を配置させた時に、受光素子間で反射する光等が迷光として作用し問題となる。しかしながら、本実施形態及び変形例に係る光検出装置PD1では上述したように迷光の発生が抑制されるため、非分散赤外分析計等にも適用することができる。   By the way, the photodetector PD1 according to the present embodiment and the modification can be applied to, for example, a non-dispersive infrared analyzer (NDIR) for gas analysis. A light receiving element such as a photodiode array or an image sensor is used as a light receiving element of a mini-spectrometer using a dispersion type grating such as a diffraction grating. To observe a continuous spectrum, a photodiode array or image sensor consisting of one chip is required. However, depending on the application, it may be sufficient to detect a plurality of fixed wavelengths. For example, in the non-dispersive infrared analyzer described above, the required sample wavelength and reference wavelength are determined, and a long and expensive photodiode array or image sensor with continuous pixels is unnecessary. Therefore, by arranging a plurality of light receiving elements with a small number of pixels that can detect a necessary wavelength, the cost of the light receiving elements can be reduced. When a plurality of light receiving elements are arranged on the continuous spectrum emitted from the diffraction grating, the light reflected between the light receiving elements acts as stray light and becomes a problem. However, since the generation of stray light is suppressed in the photodetector PD1 according to the present embodiment and the modification as described above, it can be applied to a non-dispersive infrared analyzer or the like.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。例えば、受光素子1の数及び配列、p型領域7の数及び配列は、図示されたものに限られない。また、受光素子1は、p型半導体基板に光感応領域としてn型領域を配列したものであっても良い。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the number and arrangement of the light receiving elements 1 and the number and arrangement of the p-type regions 7 are not limited to those illustrated. The light receiving element 1 may be an n-type region arranged as a photosensitive region on a p-type semiconductor substrate.

また、樹脂20は、必ずしも各受光素子1の側面を覆う必要はない。しかしながら、上述したように迷光及び赤外線が受光素子1の側面から入射することを抑制するためには、樹脂20は受光素子1の側面を覆っている必要がある。   Further, the resin 20 does not necessarily need to cover the side surface of each light receiving element 1. However, as described above, the resin 20 needs to cover the side surface of the light receiving element 1 in order to prevent stray light and infrared rays from entering from the side surface of the light receiving element 1.

本実施形態に係る光検出装置の断面構成を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the photon detection apparatus which concerns on this embodiment. 迷光等が受光素子に入射する状態を説明するための模式図である。It is a schematic diagram for demonstrating the state in which a stray light etc. inject into a light receiving element.

符号の説明Explanation of symbols

1…受光素子、10…信号処理素子、11a…第1の領域、11b…第2の領域、15…導電性バンプ、20…樹脂、30…アンダーフィル材、PD1…光検出装置。   DESCRIPTION OF SYMBOLS 1 ... Light receiving element, 10 ... Signal processing element, 11a ... 1st area | region, 11b ... 2nd area | region, 15 ... Conductive bump, 20 ... Resin, 30 ... Underfill material, PD1 ... Photodetection apparatus.

Claims (2)

入射した光の光量に応じた電気信号をそれぞれ出力する複数の受光素子と、
前記複数の受光素子に対向して配置されていると共に、導電性バンプを介して接続されており、前記複数の受光素子から出力された電気信号が入力される信号処理素子と、
電気絶縁性及び遮光性を有し、少なくとも前記複数の受光素子と前記信号処理素子との間の空隙に充填されている樹脂と、を備え
前記複数の受光素子は、互いに所定の間隔を有して配置されていると共に、前記信号処理素子に対向する主面側に1次元又は2次元配列された複数の光感応領域を有し、
前記樹脂は、前記信号処理素子における前記受光素子間に対応する領域、及び、前記複数の受光素子の側面を覆うように配置されていると共に、遮光性を有するフィラーが含有され且つ入射光を吸収することにより遮光性を有しており、
前記導電性バンプは、柱状であり、そのアスペクト比が1以上に設定されていることを特徴とする光検出装置。
A plurality of light receiving elements that each output an electrical signal corresponding to the amount of incident light;
A signal processing element that is disposed so as to face the plurality of light receiving elements and is connected via a conductive bump, to which an electrical signal output from the plurality of light receiving elements is input,
A resin having electrical insulating properties and light shielding properties, and at least filling a gap between the plurality of light receiving elements and the signal processing elements ,
The plurality of light receiving elements are arranged at a predetermined interval from each other, and have a plurality of photosensitive regions arranged one-dimensionally or two-dimensionally on the main surface side facing the signal processing elements,
The resin is disposed so as to cover a region corresponding to the space between the light receiving elements in the signal processing element and the side surfaces of the plurality of light receiving elements, and contains a light-shielding filler and absorbs incident light. Has a light-shielding property,
The photo-detecting device, wherein the conductive bumps are columnar and have an aspect ratio of 1 or more .
前記信号処理素子は、前記複数の受光素子が対向する第1の領域と、前記第1の領域の外周側に位置する第2の領域と、を含み、
前記樹脂は、前記第2の領域を覆うように配置されていることを特徴とする請求項1に記載の光検出装置。
The signal processing element includes a first region where the plurality of light receiving elements face each other, and a second region located on the outer peripheral side of the first region,
The resin A light detecting device according to claim 1, characterized in that it is arranged to cover the second region.
JP2007280863A 2007-10-29 2007-10-29 Photodetector Active JP5001788B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007280863A JP5001788B2 (en) 2007-10-29 2007-10-29 Photodetector
US12/259,740 US7791016B2 (en) 2007-10-29 2008-10-28 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280863A JP5001788B2 (en) 2007-10-29 2007-10-29 Photodetector

Publications (2)

Publication Number Publication Date
JP2009111090A JP2009111090A (en) 2009-05-21
JP5001788B2 true JP5001788B2 (en) 2012-08-15

Family

ID=40779272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280863A Active JP5001788B2 (en) 2007-10-29 2007-10-29 Photodetector

Country Status (1)

Country Link
JP (1) JP5001788B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319872B2 (en) * 2013-09-24 2018-05-09 株式会社センサーズ・アンド・ワークス Pyroelectric infrared sensor
WO2015159512A1 (en) 2014-04-18 2015-10-22 パナソニックIpマネジメント株式会社 Light-receiving device
JP2017195327A (en) * 2016-04-22 2017-10-26 住友電気工業株式会社 Semiconductor photo detector
CN117253884A (en) 2017-10-06 2023-12-19 浜松光子学株式会社 Light detection device
JP2019145739A (en) * 2018-02-23 2019-08-29 株式会社朝日ラバー Led light-emitting device with optical diffusion film, ink for forming optical diffusion film and light diffusion sheet for led light-emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226080A (en) * 1988-07-14 1990-01-29 Olympus Optical Co Ltd Semiconductor device
JP2002214351A (en) * 2001-01-12 2002-07-31 Canon Inc Radiation detector
US6828545B1 (en) * 2001-05-15 2004-12-07 Raytheon Company Hybrid microelectronic array structure having electrically isolated supported islands, and its fabrication
JP2003318478A (en) * 2002-04-26 2003-11-07 Sumitomo Electric Ind Ltd Optical communication device
JP2004235254A (en) * 2003-01-28 2004-08-19 Fujitsu Ltd Infrared detector and manufacturing method thereof
JP4534484B2 (en) * 2003-12-26 2010-09-01 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP2005241457A (en) * 2004-02-26 2005-09-08 Hamamatsu Photonics Kk Infrared sensor and manufacturing method thereof
JP2006049512A (en) * 2004-08-03 2006-02-16 Ngk Insulators Ltd Optical device
JP2007048919A (en) * 2005-08-10 2007-02-22 Sony Corp Bump forming method

Also Published As

Publication number Publication date
JP2009111090A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7791016B2 (en) Photodetector
JP4743453B2 (en) Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
KR101075626B1 (en) Photodetector
JP5405512B2 (en) Semiconductor light detection element and radiation detection apparatus
JP4786035B2 (en) Semiconductor device
JP5001788B2 (en) Photodetector
JP2010151690A5 (en)
US6580089B2 (en) Multi-quantum-well infrared sensor array in spatially-separated multi-band configuration
JP4997066B2 (en) Photodetector
US9123605B2 (en) Image sensor
JP6413518B2 (en) Optical semiconductor device, optical sensor, and manufacturing method of optical semiconductor device
JP5085122B2 (en) Semiconductor light detection element and radiation detection apparatus
JP2011192873A (en) Wide-wavelength-band photodetector array
JP2005203708A (en) X-ray imaging device
US9728577B2 (en) Infrared image sensor
JP2004296836A (en) Photodiode array, method of manufacturing the same, and radiation detector
JP2008047587A (en) Photodetector
TWI782784B (en) Imaging systems and imaging methods
JP5402972B2 (en) Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2005164286A (en) Photodetector and spectroscope using the same
US9264645B2 (en) Optical sensor apparatus
JP2011155291A5 (en)
CN112823425A (en) Photoelectric sensor
KR102368900B1 (en) Multi-color photo detector and method for fabricating the same by integrating with read-out circuit
CN118318311A (en) Radiation detectors containing perovskites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Ref document number: 5001788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250