[go: up one dir, main page]

JP4996686B2 - Removal of carbon dioxide from flue gas - Google Patents

Removal of carbon dioxide from flue gas Download PDF

Info

Publication number
JP4996686B2
JP4996686B2 JP2009526066A JP2009526066A JP4996686B2 JP 4996686 B2 JP4996686 B2 JP 4996686B2 JP 2009526066 A JP2009526066 A JP 2009526066A JP 2009526066 A JP2009526066 A JP 2009526066A JP 4996686 B2 JP4996686 B2 JP 4996686B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorbent
gas stream
acid
dioxide absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009526066A
Other languages
Japanese (ja)
Other versions
JP2010501343A (en
Inventor
ヴァーグナー ルッペルト
リヒトファース ウテ
シュウダ フォルカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2010501343A publication Critical patent/JP2010501343A/en
Application granted granted Critical
Publication of JP4996686B2 publication Critical patent/JP4996686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、吸収剤、およびガス流からの、殊に燃焼排ガスもしくは煙道ガスからの二酸化炭素の除去法に関する。   The present invention relates to an absorbent and a method for removing carbon dioxide from a gas stream, in particular from flue gas or flue gas.

燃焼排ガスからの二酸化炭素の除去は、様々の理由から所望されており、殊に、しかし、いわゆる温室効果の主原因とみなされる二酸化炭素の排出を減らすために所望されている。   The removal of carbon dioxide from flue gas is desired for a variety of reasons, in particular, but in order to reduce carbon dioxide emissions, which are considered the main cause of the so-called greenhouse effect.

工業的規模において、ガス流から、酸性ガス、例えば二酸化炭素を除去するために、頻繁に、有機塩基、例えばアルカノールアミンの水溶液が吸収剤として使用される。その場合、酸性ガスの溶解に際して、塩基および酸性ガス成分からイオン生成物が形成される。吸収剤は、加熱、より低圧への放圧またはストリッピングによって再生されえ、その際、イオン生成物は酸性ガスへと逆反応し、かつ/または酸性ガスは蒸気によってストリッピング除去される。再生工程の後、吸収剤は、再利用することができる。   On an industrial scale, aqueous solutions of organic bases such as alkanolamines are frequently used as absorbents to remove acidic gases such as carbon dioxide from gas streams. In that case, upon dissolution of the acidic gas, an ion product is formed from the base and the acidic gas component. The absorbent can be regenerated by heating, releasing to a lower pressure or stripping, where the ionic product reacts back to acid gas and / or the acid gas is stripped off by steam. After the regeneration step, the absorbent can be reused.

燃焼排ガスは、非常に低い二酸化炭素分圧を有する。それというのも、それらは一般に大気圧付近の圧力で生じ、かつ典型的には、二酸化炭素3〜13体積%しか含有しないからである。二酸化炭素の効果的な除去を達成するために、吸収剤は、低い分圧でも高いCO負荷容量を有していなければならない。他方で、二酸化炭素の吸収は、その経過において発熱が強すぎないことが望ましい:吸収剤の負荷容量は、温度が上昇するにつれて減少するので、高い吸収反応エンタルピーによって引き起こされる温度上昇が、吸収剤において欠点である。それ以外に、高い吸収反応エンタルピーが原因となって、吸収剤の再生に際してエネルギー消費量が高まる。明瞭な理由から、吸収剤の再生に必要なエネルギー必要量(例えば、除去されるCO1kg当たり蒸気1kgとして表記)は、可能な限り少ないのが望ましい。 The flue gas has a very low carbon dioxide partial pressure. This is because they generally occur at pressures near atmospheric pressure and typically contain only 3-13% by volume of carbon dioxide. To achieve effective removal of carbon dioxide, the absorbent must have a high CO 2 load capacity at low partial pressures. On the other hand, it is desirable that the absorption of carbon dioxide is not too exothermic in the course: the load capacity of the absorbent decreases with increasing temperature, so that the temperature rise caused by the high absorption reaction enthalpy is Is a drawback. In addition, energy consumption is increased during regeneration of the absorbent due to the high absorption reaction enthalpy. For obvious reasons, it is desirable that the amount of energy required to regenerate the absorbent (eg expressed as 1 kg of steam per kg of CO 2 removed) is as low as possible.

燃焼排ガスの洗浄に際して、典型的に、大きいガス体積は低い圧力で処理されるので、吸収剤はさらに、吸収剤損失量を少なく保つために、低い蒸気圧を有することが望ましい。それ以外に、吸収剤は、燃焼排ガスのその他の典型的な構成成分、例えば窒素または酸素との不所望な相互作用を示さないことが望ましい。   During cleaning of flue gas, typically large gas volumes are processed at low pressure, so it is desirable that the absorbent further have a low vapor pressure to keep the amount of absorbent loss low. In addition, it is desirable that the absorbent does not exhibit undesired interactions with other typical constituents of the flue gas, such as nitrogen or oxygen.

しばしば、モノエタノールアミン(2−アミノエタノール)の水溶液が、燃焼排ガスの洗浄のために用いられる。モノエタノールアミンは安価であり、かつ二酸化炭素による高い負荷容量を有する。しかしながら、吸収剤損失量は高い。それというのも、モノエタノールアミンは比較的高い蒸気圧を有し、かつ酸素の存在において高められた温度で分解傾向を示すため、要求される量は、除去される二酸化炭素1トン当たり1.6〜2.5kgである。再生のために必要とされるエネルギーは高い。   Often, an aqueous solution of monoethanolamine (2-aminoethanol) is used for cleaning the flue gas. Monoethanolamine is inexpensive and has a high load capacity due to carbon dioxide. However, the amount of absorbent loss is high. Because monoethanolamine has a relatively high vapor pressure and shows a tendency to decompose at elevated temperatures in the presence of oxygen, the required amount is 1. 6-2.5 kg. The energy required for regeneration is high.

Alkazid Mの名称で、N−メチルアラニン−カリウム塩(カリウム−α−メチルアミノプロピオネート)をベースとする吸収剤が公知である。それはモノメタノールアミンのように高負荷が可能である。アミノ酸塩は、そのイオン構造に基づき、ごく僅かな蒸気圧を有する。欠点であるのは、再生のために必要とされるエネルギーが、モノエタノールアミンと似て高いことである。   Under the name Alkazid M, absorbents based on N-methylalanine potassium salt (potassium-α-methylaminopropionate) are known. It can be loaded as high as monomethanolamine. Amino acid salts have negligible vapor pressure based on their ionic structure. The disadvantage is that the energy required for regeneration is high, similar to monoethanolamine.

第二級アミンおよび第三級アミン、例えばジエタノールアミン、ジイソプロパノールアミンまたはメチルジエタノールアミンが、低いCO分圧でそれほど高く負荷されえず、それゆえ場合によってより高い循環速度が必要とされるにも関わらず、これらは少しのエネルギー消費(除去される二酸化炭素1kg当たり蒸気1kg)で再生されうる。欠点であるのは、酸素の存在におけるそれらの不十分な安定性である。 Although secondary and tertiary amines such as diethanolamine, diisopropanolamine or methyldiethanolamine cannot be loaded so high at low CO 2 partial pressures, and therefore sometimes higher circulation rates are required. Instead, they can be regenerated with little energy consumption (1 kg of steam per kg of carbon dioxide removed). The disadvantage is their poor stability in the presence of oxygen.

EP−A671200が記載するのは、アミノ酸金属塩およびピペラジンの水溶液を用いた、大気圧での燃焼ガスからのCOの除去である。記載されたアミノ酸金属塩は、カリウム−ジメチルアミノアセテートおよびカリウム−α−メチルアミノプロピオネートである。 EP-A 671200 describes the removal of CO 2 from combustion gases at atmospheric pressure using an aqueous solution of an amino acid metal salt and piperazine. The amino acid metal salts described are potassium-dimethylaminoacetate and potassium-α-methylaminopropionate.

燃焼ガスは、たいてい微量の窒素酸化物もしくは硝気を含有する。これらは、第二級アミン、例えばピペラジンと容易に安定なニトロソアミンを形成しうる。ニトロソアミンは、第二級アミンのN−ニトロソ化合物の総称名である。それらは、きわめて強い発ガン性の(ガンを生じさせる)物質に属する。ガンを生じさせる作用は、遺伝物質のDNAと反応し、それによって該DNAを損傷させ、かつ腫瘍を引き起こしうる、物質交代におけるニトロソアミンの反応性代謝産物に基づく。それゆえ、技術的に回避可能である限り、ニトロソアミンが環境に取り込まれるのを防ごうと努力されている。   Combustion gases usually contain trace amounts of nitrogen oxides or glass. They can easily form stable nitrosamines with secondary amines such as piperazine. Nitrosamine is a generic name for secondary amine N-nitroso compounds. They belong to extremely strong carcinogenic (cancer-causing) substances. The cancer-causing action is based on reactive metabolites of nitrosamines in substance alternation that can react with DNA of genetic material, thereby damaging the DNA and causing tumors. Therefore, as long as technically avoidable, efforts are made to prevent nitrosamines from being taken into the environment.

本発明の基礎をなしている課題は、吸収剤、および(i)有害なニトロソアミンの形成の可能性の低減、(ii)高いCO吸収速度、(iii)高いCO吸収容量、(iv)再生に必要とされる低いエネルギー要求量、(v)低い蒸気圧および(vi)酸素の存在における安定性を特徴とする、ガス流、殊に燃焼排ガスからの二酸化炭素の除去法を示すことである。 The problems underlying the present invention are absorbents, and (i) reduced potential for the formation of harmful nitrosamines, (ii) high CO 2 absorption rate, (iii) high CO 2 absorption capacity, (iv) Demonstrating a method for the removal of carbon dioxide from a gas stream, in particular flue gas, characterized by low energy requirements for regeneration, (v) low vapor pressure and (vi) stability in the presence of oxygen. is there.

本発明は、
(A)式(I)

Figure 0004996686
[式中、RおよびRは、互いに無関係に、アルキルまたはヒドロキシアルキルであり、
Rは、水素、アルキルまたはヒドロキシアルキルであり、または基RはRとともにアルキレンを形成し、
Mは、アルカリ金属であり、かつ
nは、1〜6の整数である]の少なくとも1つのアミノ酸塩、および
(B)少なくとも1つの第一級アルカノールアミン
の水溶液を包含する吸収剤に関し、その際、該吸収剤は、無機塩基性塩を本質的に含まない。 The present invention
(A) Formula (I)
Figure 0004996686
Wherein R 1 and R 2 are, independently of one another, alkyl or hydroxyalkyl;
R is hydrogen, alkyl or hydroxyalkyl, or the group R together with R 1 forms alkylene,
M is an alkali metal and n is an integer from 1 to 6], and (B) an absorbent comprising an aqueous solution of at least one primary alkanolamine, The absorbent is essentially free of inorganic basic salts.

およびRは、一般的にC〜C−アルキルまたはC〜C−ヒドロキシアルキル、好ましくはメチルまたはエチルである。Rは、水素、アルキル(例えばC〜C−アルキル)またはヒドロキシアルキル(例えばC〜C−ヒドロキシアルキル)である。nは、1〜6の整数、好ましくは1または2である。基RはRとともにアルキレン(例えばC〜C−アルキレン)であってよい。 R 1 and R 2 are generally C 1 -C 6 -alkyl or C 2 -C 6 -hydroxyalkyl, preferably methyl or ethyl. R is hydrogen, alkyl (eg C 1 -C 6 -alkyl) or hydroxyalkyl (eg C 1 -C 6 -hydroxyalkyl). n is an integer of 1 to 6, preferably 1 or 2. The group R together with R 1 may be alkylene (eg C 2 -C 4 -alkylene).

それ以外に、本発明は、ガス流からの二酸化炭素の除去法に関し、その際、ガス流を、上で定義された吸収剤と接触させる。有利な一実施態様において、ガス流中の二酸化炭素の分圧は、500mbar未満、例えば50〜200mbarである。ガス流は、酸素(通常0.5〜6体積%)および微量の窒素酸化物を含有してよい。   In addition, the present invention relates to a method for removing carbon dioxide from a gas stream, wherein the gas stream is contacted with an absorbent as defined above. In one advantageous embodiment, the partial pressure of carbon dioxide in the gas stream is less than 500 mbar, for example 50 to 200 mbar. The gas stream may contain oxygen (usually 0.5-6% by volume) and trace amounts of nitrogen oxides.

本発明による方法に関する以下の態様は、相応して本発明による吸収剤および、文脈から他に読みとれない場合はその逆が適用される。   The following embodiments relating to the process according to the invention apply accordingly to the absorbent according to the invention and vice versa, if not otherwise readable from the context.

本発明により使用されるアミノ酸塩は、第三級アミノ基を有する。それは第一級アミノ官能基または第二級アミノ官能基を有するアミノ酸塩に比べてより僅かな吸収熱によって特徴付けられる。カリウム−ジメチルアミノアセテートの吸収熱は、例えばカリウム−α−メチルアミノプロピオネートの吸収熱より約17%低い。吸収熱がより低いと、吸収体における温度上昇はより僅かなものとなる。それ以外に、除去されるCO1kg当たりの再生エネルギーはより僅かなものとなる。 The amino acid salts used according to the invention have a tertiary amino group. It is characterized by less heat of absorption compared to amino acid salts with primary or secondary amino functions. The heat of absorption of potassium dimethylamino acetate is, for example, about 17% lower than the heat of absorption of potassium α-methylaminopropionate. The lower the heat of absorption, the less the temperature rise in the absorber. In addition, the regenerative energy per kg of CO 2 removed is less.

適したアミノ酸塩は、例えば
α−アミノ酸、例えばN,N−ジメチルグリシン(ジメチルアミノ酢酸)、N,N−ジエチルグリシン(ジエチルアミノ酢酸)、N,N−ジメチルアラニン(α−ジメチルアミノプロピオン酸)、N,N−ジメチルロイシン(2−ジメチルアミノ−4−メチルペンタン−1−酸)、N,N−ジメチルイソロイシン(α−ジメチルアミノ−β−メチル吉草酸)、N,N−ジメチルバリン(2−ジメチルアミノ−3−メチルブタン酸)、N−メチルピロリン(N−メチルピロリジン−2−カルボン酸)、N,N−ジメチルセリン(2−ジメチルアミノ−3−ヒドロキシプロパン−1−酸)、
β−アミノ酸、例えば3−ジメチルアミノプロピオン酸、N−メチルイミノジプロピオン酸、N−メチルピペリジン−3−カルボン酸、
またはアミノカルボン酸、例えばN−メチルピペリジン−4−カルボン酸、4−ジメチルアミノ酪酸
のアルカリ金属塩である。
Suitable amino acid salts are, for example, α-amino acids such as N, N-dimethylglycine (dimethylaminoacetic acid), N, N-diethylglycine (diethylaminoacetic acid), N, N-dimethylalanine (α-dimethylaminopropionic acid), N, N-dimethylleucine (2-dimethylamino-4-methylpentane-1-acid), N, N-dimethylisoleucine (α-dimethylamino-β-methylvaleric acid), N, N-dimethylvaline (2- Dimethylamino-3-methylbutanoic acid), N-methylpyrroline (N-methylpyrrolidine-2-carboxylic acid), N, N-dimethylserine (2-dimethylamino-3-hydroxypropane-1-acid),
β-amino acids such as 3-dimethylaminopropionic acid, N-methyliminodipropionic acid, N-methylpiperidine-3-carboxylic acid,
Or, it is an alkali metal salt of an aminocarboxylic acid such as N-methylpiperidine-4-carboxylic acid or 4-dimethylaminobutyric acid.

アミノ酸が1つ以上のキラル炭素原子を有する場合、構造は顧慮されない;純粋なエナンチオマー/ジアステレオマーのみならず、任意の混合物またはラセミ化合物も使用してよい。   If the amino acid has one or more chiral carbon atoms, the structure is not taken into account; not only pure enantiomers / diastereomers, but any mixtures or racemates may be used.

アルカリ金属塩は、好ましくはナトリウム塩またはカリウム塩であり、その中でも、カリウム塩が最も有利である。   The alkali metal salt is preferably a sodium salt or a potassium salt, of which the potassium salt is most advantageous.

とりわけ有利なアミノ酸塩(A)は、
N,N−ジメチルアミノ酢酸−カリウム塩、
N,N−ジエチルアミノ酢酸−カリウム塩、および
N−エチル−N−メチルアミノ酢酸−カリウム塩である。
Particularly advantageous amino acid salts (A) are:
N, N-dimethylaminoacetic acid-potassium salt,
N, N-diethylaminoacetic acid-potassium salt and N-ethyl-N-methylaminoacetic acid-potassium salt.

成分(B)として、本発明による吸収剤は、第一級アルカノールアミンを含有する。第一級アルカノールアミンは活性化剤として作用し、かつ中間生成物のカルバメート形成によって吸収剤のCO取り込みを促進する。第二級アミンに比べて、第一級アルカノールアミンは、例えば処理されるべきガス流中に存在しうる窒素酸化物と不所望のニトロソアミンを形成しない。 As component (B), the absorbent according to the invention contains a primary alkanolamine. The primary alkanolamine acts as an activator and promotes CO 2 uptake of the absorbent by intermediate carbamate formation. Compared to secondary amines, primary alkanolamines, for example, do not form undesired nitrosamines with nitrogen oxides that may be present in the gas stream to be treated.

アルカノールアミン(B)は、少なくとも1個の第一級アミノ基と、少なくとも1個のヒドロキシアルキル基を有する。それは、典型的には炭素原子2〜12個、好ましくは炭素原子2〜6個を含有する。エーテル結合において1個または複数個の酸素原子を含有してよい。   The alkanolamine (B) has at least one primary amino group and at least one hydroxyalkyl group. It typically contains 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms. One or more oxygen atoms may be contained in the ether bond.

アルカノールアミン(B)は、好ましくは、
2−アミノエタノール、
3−アミノプロパノール、
4−アミノブタノール、
2−アミノブタノール、
5−アミノペンタノール、
2−アミノペンタノール、
2−(2−アミノエトキシ)エタノールの中から選択されている。
The alkanolamine (B) is preferably
2-aminoethanol,
3-aminopropanol,
4-aminobutanol,
2-aminobutanol,
5-aminopentanol,
2-aminopentanol,
Selected from 2- (2-aminoethoxy) ethanol.

その中で、4−アミノブタノール、2−アミノブタノール、5−アミノペンタノールおよび2−アミノペンタノールがその低い蒸気圧に基づきとりわけ有利である。   Among them, 4-aminobutanol, 2-aminobutanol, 5-aminopentanol and 2-aminopentanol are particularly advantageous due to their low vapor pressure.

一般的に、吸収剤は、
アミノ酸塩(A)15〜50質量%、好ましくは20〜40質量%、殊に30〜40質量%および
アルカノールアミン(B)2〜20質量%、好ましくは5〜15質量%、殊に5〜10質量%を含有する。
In general, the absorbent is
Amino acid salt (A) 15-50% by weight, preferably 20-40% by weight, in particular 30-40% by weight and alkanolamine (B) 2-20% by weight, preferably 5-15% by weight, in particular 5-5% Contains 10% by weight.

吸収剤は、添加剤、例えば腐食抑制剤、酵素等も含有してよい。一般的に、このような添加剤の量は、吸収剤の約0.01〜3質量%の範囲内にある。   The absorbent may also contain additives such as corrosion inhibitors, enzymes and the like. Generally, the amount of such additives is in the range of about 0.01 to 3% by weight of the absorbent.

水溶液の吸収剤は、無機塩基性塩を本質的に含まず、すなわち、それは無機塩基性塩を、一般的に約10質量%未満、好ましくは約5質量%未満および殊に約2質量%未満で含有する。無機塩基性塩は、例えばアルカリ金属炭酸塩またはアルカリ土類金属炭酸塩またはアルカリ金属炭酸水素塩またはアルカリ土類金属炭酸水素塩、例えば殊に炭酸カリウム(カリ)である。当然のことながら、アミノカルボン酸の金属塩は、アミノカルボン酸と無機塩基、例えば水酸化カリウムとのin situでの中和によって得ることできる;しかしながら、このために、本質的に中和のために必要とされる量を超えた量の塩基は使用されない。   The absorbent of the aqueous solution is essentially free of inorganic basic salts, ie it generally contains less than about 10% by weight, preferably less than about 5% by weight and in particular less than about 2% by weight. Contains. Inorganic basic salts are, for example, alkali metal carbonates or alkaline earth metal carbonates or alkali metal hydrogen carbonates or alkaline earth metal hydrogen carbonates, in particular potassium carbonate (potassium). Of course, metal salts of aminocarboxylic acids can be obtained by in situ neutralization of aminocarboxylic acids and inorganic bases, such as potassium hydroxide; however, this is essentially due to neutralization. No amount of base is used in excess of that required for.

ガス流は、一般的に、次の方法で形成されるガス流である:
a)有機物質、例えば燃焼排ガスもしくは煙道ガス(flue gas)の酸化、
b)有機物質を含有する廃棄物のコンポスト化および貯蔵、または
c)有機物質のバクテリアによる分解。
A gas stream is generally a gas stream formed in the following manner:
a) Oxidation of organic substances such as flue gas or flue gas,
b) composting and storage of waste containing organic substances, or c) decomposition of organic substances by bacteria.

酸化は、火炎発生下で、すなわち従来通りの燃焼として、または火炎発生なしの酸化として、例えば接触酸化または部分酸化の形で実施してよい。燃焼に供される有機物質は、通常、化石燃料、例えば石炭、天然ガス、石油、ガソリン、ディーゼル油、ラフィネートまたは灯油、バイオディーゼルまたは有機物質の成分を有する廃棄物である。接触(部分)酸化の出発物質は、例えば、ギ酸またはホルムアルデヒドに変換されうるメタノールまたはメタンである。   Oxidation may be carried out under flame generation, ie as conventional combustion or as flame-free oxidation, for example in the form of catalytic oxidation or partial oxidation. The organic material subjected to combustion is usually a fossil fuel, such as coal, natural gas, petroleum, gasoline, diesel oil, raffinate or kerosene, biodiesel or waste with components of organic material. The starting material for catalytic (partial) oxidation is, for example, methanol or methane, which can be converted to formic acid or formaldehyde.

酸化、コンポスト化または貯蔵におかれる廃棄物は、典型的には家庭ゴミ、プラスチック屑またはパッケージゴミである。   Waste that is oxidized, composted or stored is typically household waste, plastic waste or package waste.

有機物質の燃焼は、たいていの場合、通常の燃焼プラント中で空気を用いて行なわれる。有機物質を含有する廃棄物のコンポスト化および貯蔵は、一般的にゴミ集積場で行なわれる。有利には、このようなプラントの排ガスもしくは排気は、本発明による方法に従って処理されうる。   The combustion of organic materials is most often performed using air in a normal combustion plant. Composting and storage of waste containing organic materials is generally performed in a garbage dump. Advantageously, the exhaust or exhaust of such a plant can be treated according to the method according to the invention.

バクテリアによる分解のための有機物質として、通常、厩肥、藁、有機質肥料、汚泥、発酵残留物等が使用される。バクテリアによる分解は、例えば通常のバイオガスプラント中で行なわれる。有利には、このようなプラントの排気は、本発明による方法に従って処理されうる。   As organic substances for decomposition by bacteria, manure, straw, organic fertilizer, sludge, fermentation residue, etc. are usually used. Degradation by bacteria is performed, for example, in a normal biogas plant. Advantageously, the exhaust of such a plant can be treated according to the method according to the invention.

該方法は、燃料電池または有機物質の(部分)酸化に用いられる化学合成プラントの排ガスを処理するためにも適している。   The method is also suitable for treating exhaust gas from chemical synthesis plants used for (partial) oxidation of fuel cells or organic substances.

そのうえ、本発明による方法は、当然の事ながら、未燃焼の化石燃料ガス、例えば天然ガス、例えばいわゆる炭層ガス、すなわち石炭の採掘に際して発生する;捕集されかつ圧縮されるガスを処理するために適用することもできる。   Moreover, the process according to the invention naturally takes place during the mining of unburned fossil fuel gas, for example natural gas, for example so-called coal bed gas, ie coal; for treating the gas to be collected and compressed It can also be applied.

一般的に、これらのガス流は、標準条件で二酸化硫黄50mg/m未満を含有する。 In general, these gas streams contain less than 50 mg / m 3 of sulfur dioxide at standard conditions.

出発ガスは、ほぼ周囲空気の圧力に相当する圧力、すなわち標準圧力か、または標準圧力と1barまでの偏差を示す圧力のいずれかを有してよい。   The starting gas may have either a pressure approximately corresponding to the pressure of the ambient air, ie a standard pressure, or a pressure showing a deviation from the standard pressure up to 1 bar.

本発明による方法を実施するのに適した装置は、少なくとも1つの洗浄塔、例えば不規則充填塔、規則充填塔および棚段塔、および/またはその他の吸収装置、例えば膜接触装置、ラジアルストリームスクラバー、ジェットスクラバー、ベンチュリスクラバーおよびロータリースプレースクラバーを包含する。その際、吸収剤によるガス流の処理は、有利には洗浄塔内で逆流において行なわれる。その際、ガス流は、一般的に塔の下部領域に供給され、吸収剤は、塔の上部領域に供給される。   Suitable equipment for carrying out the process according to the invention is at least one washing tower, such as irregular packed towers, ordered packed towers and plate towers, and / or other absorbers, such as membrane contact devices, radial stream scrubbers , Jet scrubbers, venturi scrubbers and rotary spray scrubbers. In this case, the treatment of the gas stream with the absorbent is preferably carried out in countercurrent in the washing tower. In that case, the gas stream is generally supplied to the lower region of the tower and the absorbent is supplied to the upper region of the tower.

本発明による方法を実施するのに適しているのはまた、プラスチック、例えばポリオレフィンまたはポリテトラフルオロエチレンからの洗浄塔、またはその内部表面が全体または部分的にプラスチックまたはゴムで被覆されている洗浄塔である。さらに、プラスチックケーシングを有する膜接触装置が適している。   Suitable for carrying out the process according to the invention is also a washing tower made of plastic, for example polyolefin or polytetrafluoroethylene, or a washing tower whose internal surface is entirely or partly coated with plastic or rubber. It is. Furthermore, a membrane contact device with a plastic casing is suitable.

吸収剤の温度は、吸収工程において、一般的に約25℃〜70℃であり、塔が使用される場合、例えば塔の頂部で25℃〜60℃、好ましくは30℃〜50℃およびとりわけ有利には35℃〜45℃であり、かつ例えば塔の底部で40℃〜70℃である。二酸化炭素およびその他の酸性ガス成分に乏しい、すなわちこれらの成分が減損された生成ガスと、酸性のガス成分が負荷された吸収剤とが得られる。   The temperature of the absorbent is generally about 25 ° C. to 70 ° C. in the absorption process, and when a column is used, for example, 25 ° C. to 60 ° C., preferably 30 ° C. to 50 ° C. and especially advantageous when the column is used Is 35 ° C. to 45 ° C. and, for example, 40 ° C. to 70 ° C. at the bottom of the column. A product gas is obtained which is poor in carbon dioxide and other acid gas components, i.e. in which these components are depleted, and an absorbent loaded with acid gas components.

酸性のガス成分が負荷された吸収剤から、二酸化炭素が再生工程において放出され、その際、再生された吸収剤が得られる。再生工程において、吸収剤の負荷が軽減され、かつこの得られた再生された吸収剤は、好ましくは引き続き吸収工程に返送される。 From absorbent gas component of acid-loaded, resulting carbon dioxide is released in the regeneration step, in which regenerated absorbent is obtained. In the regeneration process, the load on the absorbent is reduced and the resulting regenerated absorbent is preferably subsequently returned to the absorption process.

一般的に、負荷された吸収剤は、
a)例えば70〜110℃への加熱、
b)放圧、
c)不活性流体を用いてのストリッピング
またはこれらの措置の2つのまたは全ての組み合わせによって再生される。
In general, the loaded absorbent is
a) heating to eg 70-110 ° C.
b) pressure release,
c) Regenerated by stripping with an inert fluid or a combination of two or all of these measures.

一般に、負荷された吸収剤は再生のために加熱され、かつ放出された二酸化炭素は、例えば脱着塔内で分離除去される。再生された吸収剤が再び吸収装置中に導入される前に、それは適した吸収温度へと冷却される。高温で再生された吸収剤中に含まれるエネルギーを利用するために、吸収装置からの負荷された吸収剤を、高温の再生された吸収剤との熱交換によって予熱することが有利である。熱交換によって、負荷された吸収剤はより高い温度にもたらされ、そうして再生工程において使用されるエネルギーはより僅かなものとなる。熱交換によって、負荷された吸収剤の部分的な再生もすでに、二酸化炭素の放出下に行うことができる。得られた気液混合相の流は、相分離容器中に導通され、該相分離容器から二酸化炭素が取り出される;液相は、吸収剤の完全な再生のために脱着塔内に導通される。   In general, the loaded absorbent is heated for regeneration and the released carbon dioxide is separated off, for example in a desorption tower. Before the regenerated absorbent is again introduced into the absorber, it is cooled to a suitable absorption temperature. In order to utilize the energy contained in the absorbent regenerated at high temperature, it is advantageous to preheat the loaded absorbent from the absorber by heat exchange with the high temperature regenerated absorbent. By heat exchange, the loaded absorbent is brought to a higher temperature, so that less energy is used in the regeneration process. By heat exchange, partial regeneration of the loaded absorbent can already be carried out under the release of carbon dioxide. The resulting gas-liquid mixed phase stream is conducted into a phase separation vessel and carbon dioxide is removed from the phase separation vessel; the liquid phase is conducted into a desorption tower for complete regeneration of the absorbent. .

しばしば、脱着塔内で放出された二酸化炭素は引き続き圧縮され、かつ例えば圧力タンクまたは金属イオン封鎖部に供給される。これらの場合において、吸収剤の再生を、高められた圧力、例えば2〜10bar、好ましくは2.5〜5barで実施することが有利でありうる。このために、負荷された吸収剤は、ポンプによって再生圧力に圧縮され、かつ脱着塔内に導入される。二酸化炭素は、このようにより高い圧力レベルで生じる。圧力タンクの圧力レベルに対する圧力差はより僅かなものであり、かつ場合によっては圧縮段階を削減することができる。再生に際してのより高い圧力は、より高い再生温度を必要とする。より高い再生温度の場合には、吸収剤のより僅かな残留負荷量を達成することができる。再生温度は、一般に吸収剤の熱安定性によってのみ制限されている。   Often, the carbon dioxide released in the desorption tower is subsequently compressed and fed, for example, to a pressure tank or a sequestering section. In these cases it may be advantageous to carry out the regeneration of the absorbent at an elevated pressure, for example 2 to 10 bar, preferably 2.5 to 5 bar. For this purpose, the loaded absorbent is compressed to the regeneration pressure by a pump and introduced into the desorption tower. Carbon dioxide is thus produced at higher pressure levels. The pressure difference with respect to the pressure level in the pressure tank is smaller and in some cases the compression stage can be reduced. Higher pressures during regeneration require higher regeneration temperatures. For higher regeneration temperatures, a lower residual load of the absorbent can be achieved. The regeneration temperature is generally limited only by the thermal stability of the absorbent.

本発明による吸収剤処理の前に、燃焼排ガスは、煙道ガスを冷却し、かつ湿潤(急冷)するために、好ましくは水性液体による、殊に水による洗浄にかけられる。   Prior to the absorbent treatment according to the invention, the flue gas is preferably subjected to washing with an aqueous liquid, in particular with water, in order to cool and wet (quenching) the flue gas.

洗浄に際して、ダストまたはガス状の不純物、例えば二酸化硫黄も除去することができる。   During cleaning, dust or gaseous impurities such as sulfur dioxide can also be removed.

Claims (10)

(A)式(I)
Figure 0004996686
[式中、RおよびRは、互いに無関係に、アルキルまたはヒドロキシアルキルであり、かつRは、水素、アルキルまたはヒドロキシアルキルでありまたは基RはRとともにアルキレンを形成し、かつR は、アルキルまたはヒドロキシアルキルであり、
Mは、アルカリ金属であり、かつ
nは、1〜6の整数である]の少なくとも1つのアミノ酸塩15〜50質量%、および
(B)少なくとも1つの第一級アルカノールアミン2〜20質量%
の水溶液を包含する二酸化炭素吸収剤であって、その際、前記二酸化炭素吸収剤は、アルカリ金属炭酸塩もしくはアルカリ土類金属炭酸塩またはアルカリ金属炭酸水素塩もしくはアルカリ土類金属炭酸水素塩を5質量%未満で含有する、二酸化炭素吸収剤。
(A) Formula (I)
Figure 0004996686
Wherein R 1 and R 2 are, independently of one another, alkyl or hydroxyalkyl, and R is hydrogen, alkyl or hydroxyalkyl ; or the group R together with R 1 forms an alkylene and R 2 Is alkyl or hydroxyalkyl;
M is an alkali metal and n is an integer from 1 to 6] at least one amino acid salt of 15-50% by weight, and (B) at least one primary alkanolamine 2-20% by weight
The carbon dioxide absorbent includes an aqueous solution of an alkali metal carbonate, an alkaline earth metal carbonate , an alkali metal bicarbonate or an alkaline earth metal bicarbonate. Carbon dioxide absorbent containing less than mass%.
前記二酸化炭素吸収剤が、アミノ酸塩(A)20〜40質量%およびアルカノールアミン(B)5〜15質量%を含有する、請求項1記載の二酸化炭素吸収剤。  The carbon dioxide absorbent according to claim 1, wherein the carbon dioxide absorbent contains 20 to 40% by mass of an amino acid salt (A) and 5 to 15% by mass of an alkanolamine (B). Mがカリウムである、請求項1または2記載の二酸化炭素吸収剤。  The carbon dioxide absorbent according to claim 1 or 2, wherein M is potassium. nが1または2である、請求項1から3までのいずれか1項記載の二酸化炭素吸収剤。  The carbon dioxide absorbent according to any one of claims 1 to 3, wherein n is 1 or 2. アミノ酸塩(A)が、
N,N−ジメチルアミノ酢酸−カリウム塩、
N,N−ジエチルアミノ酢酸−カリウム塩、および
N−エチル−N−メチルアミノ酢酸−カリウム塩
の中から選択されている、請求項1から4までのいずれか1項記載の二酸化炭素吸収剤。
Amino acid salt (A)
N, N-dimethylaminoacetic acid-potassium salt,
The carbon dioxide absorbent according to any one of claims 1 to 4, which is selected from N, N-diethylaminoacetic acid-potassium salt and N-ethyl-N-methylaminoacetic acid-potassium salt.
アルカノールアミン(B)が、
2−アミノエタノール、
3−アミノプロパノール、
4−アミノブタノール、
2−アミノブタノール、
5−アミノペンタノール、
2−アミノペンタノール、
2−(2−アミノエトキシ)エタノール
の中から選択されている、請求項1から5までのいずれか1項記載の二酸化炭素吸収剤。
Alkanolamine (B)
2-aminoethanol,
3-aminopropanol,
4-aminobutanol,
2-aminobutanol,
5-aminopentanol,
2-aminopentanol,
The carbon dioxide absorbent according to any one of claims 1 to 5, which is selected from 2- (2-aminoethoxy) ethanol.
ガス流からの二酸化炭素の除去法において、その際、前記ガス流を、請求項1から6までのいずれか1項記載の吸収剤と接触させて、前記吸収剤を二酸化炭素で負荷する、ガス流からの二酸化炭素の除去法。  A method for removing carbon dioxide from a gas stream, wherein the gas stream is contacted with an absorbent according to any one of claims 1 to 6 and the absorbent is loaded with carbon dioxide. How to remove carbon dioxide from a stream. ガス流中の二酸化炭素の分圧が500mbar未満である、請求項7記載の方法。  8. A process according to claim 7, wherein the partial pressure of carbon dioxide in the gas stream is less than 500 mbar. ガス流が、酸素を含有する、請求項7または8記載の方法。  9. A method according to claim 7 or 8, wherein the gas stream contains oxygen. 二酸化炭素が負荷された前記吸収剤を、
a)加熱、
b)放圧、
c)不活性流体を用いてのストリッピング
またはこれらの措置の2つのまたは全ての組み合わせによって再生する、請求項7から9までのいずれか1項記載の方法。
The absorbent loaded with carbon dioxide,
a) heating,
b) pressure release,
10. A method according to any one of claims 7 to 9, wherein the regeneration is by c) stripping with an inert fluid or a combination of two or all of these measures.
JP2009526066A 2006-08-28 2007-08-27 Removal of carbon dioxide from flue gas Active JP4996686B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06119660.6 2006-08-28
EP06119660 2006-08-28
PCT/EP2007/058866 WO2008025743A1 (en) 2006-08-28 2007-08-27 Removal of carbon dioxide from combustion exhaust gases

Publications (2)

Publication Number Publication Date
JP2010501343A JP2010501343A (en) 2010-01-21
JP4996686B2 true JP4996686B2 (en) 2012-08-08

Family

ID=38719116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526066A Active JP4996686B2 (en) 2006-08-28 2007-08-27 Removal of carbon dioxide from flue gas

Country Status (10)

Country Link
US (2) US20090320682A1 (en)
EP (1) EP2059327B1 (en)
JP (1) JP4996686B2 (en)
AU (1) AU2007291278B2 (en)
CA (1) CA2660595C (en)
DK (1) DK2059327T3 (en)
ES (1) ES2525428T3 (en)
NO (1) NO340552B1 (en)
PL (1) PL2059327T3 (en)
WO (1) WO2008025743A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472663B (en) 2006-05-18 2013-11-06 巴斯夫欧洲公司 Removal of acid gases from a fluid flow by means of reduced coabsorption of hydrocarbons and oxygen
EP2105189A1 (en) * 2008-03-27 2009-09-30 Siemens Aktiengesellschaft Method and device for separating carbon dioxide from an exhaust gas of a fossil fuel-powered power plant
RU2531197C2 (en) * 2009-01-29 2014-10-20 Басф Се Absorbent for removal of acid gases, containing amino acid and acid promoter
JP5662327B2 (en) * 2009-09-24 2015-01-28 株式会社東芝 Carbon dioxide absorbent
US8795618B2 (en) * 2010-03-26 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Chemical compounds for the removal of carbon dioxide from gases
GB201007085D0 (en) * 2010-04-28 2010-06-09 Univ Leeds Process for the capture of carbon dioxide
US8480787B2 (en) * 2010-07-22 2013-07-09 Honeywell International Inc. Ultrasound-assisted electrospray ionic liquid for carbon dioxide capture
JP5865383B2 (en) * 2010-10-29 2016-02-17 ハンツマン ペトロケミカル エルエルシーHuntsman Petrochemical LLC Use of 2- (3-aminopropoxy) ethane-1-ol as adsorbent for removal of acid gases
DE102011000268B4 (en) 2011-01-21 2012-12-06 Thyssenkrupp Uhde Gmbh Process and apparatus for the reduction of nitrosamines formed by CO2 removal of flue gases by means of an aqueous amine solution
EP2481468A1 (en) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Solvent, method for preparing an absorption liquid, and use of the solvent
EP2481466A1 (en) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Device and method for cleaning a processing unit product contaminated with nitrosamine
EP2481467A1 (en) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Solvent, method for preparing an absorption liquid, and use of the solvent
US20120251421A1 (en) * 2011-03-30 2012-10-04 Alstom Technology Ltd Processes for reducing nitrosamine formation during gas purification in amine based liquid absorption systems
EP2535100A1 (en) * 2011-06-15 2012-12-19 Sinvent AS Process for chemical destruction of compounds from amine-based carbon capture
US20140345458A1 (en) * 2011-09-23 2014-11-27 Dow Global Technologies Llc Reducing nitrosamine content of amine compositions
US8414852B1 (en) * 2011-11-21 2013-04-09 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
US20150147253A1 (en) * 2012-07-17 2015-05-28 Siemens Aktiengesellschaft Washing solution for the absorption of carbon dioxide with reduced formation of nitrosamines
NO20121474A1 (en) * 2012-12-07 2014-06-09 Aker Engineering & Technology Improved aqueous CO2 absorbent
US8660672B1 (en) 2012-12-28 2014-02-25 The Invention Science Fund I Llc Systems and methods for managing emissions from an engine of a vehicle
JP2015029987A (en) * 2013-08-07 2015-02-16 株式会社東芝 Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
GB201322606D0 (en) * 2013-12-19 2014-02-05 Capture Ltd C System for capture and release of acid gases
AU2015217098B2 (en) 2014-02-13 2019-08-15 Research Triangle Institute Water control in non-aqueous acid gas recovery systems
DE102016204931A1 (en) 2016-03-24 2017-09-28 Evonik Degussa Gmbh Process, absorption media for the absorption of CO2 from gas mixtures
US12030013B2 (en) 2021-10-22 2024-07-09 Saudi Arabian Oil Company Process for capturing CO2 from a mobile source using exhaust heat
CN115028329B (en) * 2022-07-11 2023-08-11 沈阳理工大学 Comprehensive utilization method and system for thermal catalytic decomposition, separation and drying of sludge flue gas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2525779B2 (en) * 1975-06-10 1980-02-14 Basf Ag, 6700 Ludwigshafen Process for the simultaneous removal of CO2 and H2 S from ethylene-containing fission gases
DE2525780C2 (en) * 1975-06-10 1984-08-16 Basf Ag, 6700 Ludwigshafen Method for removing CO? 2? and H 2 S from fission gases
US4094957A (en) * 1976-12-14 1978-06-13 Exxon Research & Engineering Co. Process for removing acid gases with hindered amines and amino acids
AU529892B2 (en) * 1976-12-14 1983-06-23 Exxon Research And Engineering Company Gas scrubbing solution
US4440731A (en) * 1981-09-08 1984-04-03 The Dow Chemical Company Process for removal of carbon dioxide from industrial gases
US4405577A (en) * 1981-11-13 1983-09-20 Exxon Research And Engineering Co. Non-sterically hindered-sterically hindered amine co-promoted acid gas scrubbing solution and process for using same
EP0125358B1 (en) * 1983-05-12 1987-09-16 Exxon Research And Engineering Company A non-sterically hindered - sterically hindered amino co-promoted acid gas scrubbing solution and a process for using same
DE3828227A1 (en) * 1988-08-19 1990-02-22 Basf Ag PROCEDURE FOR REMOVING CO (ARROW ALARM) 2 (ARROW DOWN) AND, IF APPLICABLE H (ARROW ALARM) 2 (ARROW DOWN) FROM GAS
US5618506A (en) * 1994-10-06 1997-04-08 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from gases
CN101472663B (en) * 2006-05-18 2013-11-06 巴斯夫欧洲公司 Removal of acid gases from a fluid flow by means of reduced coabsorption of hydrocarbons and oxygen

Also Published As

Publication number Publication date
AU2007291278A1 (en) 2008-03-06
CA2660595A1 (en) 2008-03-06
NO340552B1 (en) 2017-05-08
DK2059327T3 (en) 2015-01-12
EP2059327B1 (en) 2014-10-15
JP2010501343A (en) 2010-01-21
ES2525428T3 (en) 2014-12-22
US20120230896A1 (en) 2012-09-13
WO2008025743A1 (en) 2008-03-06
US20090320682A1 (en) 2009-12-31
AU2007291278B2 (en) 2011-07-21
EP2059327A1 (en) 2009-05-20
CA2660595C (en) 2014-06-10
NO20090566L (en) 2009-03-24
PL2059327T3 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP4996686B2 (en) Removal of carbon dioxide from flue gas
JP4971433B2 (en) Removal of acidic gases from fluid streams with reduced co-absorption of hydrocarbons and oxygen
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
JP4691164B2 (en) Removal of carbon dioxide from absorbent and gas streams.
CA2861539C (en) Carbon dioxide absorbent requiring less regeneration energy
JP4909408B2 (en) Removal of carbon dioxide from flue gas
JP2012530597A (en) Removal of acid gas using absorbent containing stripping aid
JP2007527790A (en) Method for removing carbon dioxide from a gas stream having a low carbon dioxide partial pressure
JP2007527791A (en) Method for removing carbon dioxide from flue gas
JP5506486B2 (en) Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas
US20110217219A1 (en) Scrubbing solution consisting of aqueous ammonia solution amines for the scrubbing of gas and use of such solution
JP5030371B2 (en) Absorbing liquid, apparatus and method for removing CO2 and / or H2S using absorbing liquid
JP2006150298A (en) Absorption liquid, and co2 or h2s removal apparatus and method employing it
JP2006167520A (en) Absorbing liquid and apparatus and method for removing carbon dioxide or hydrogen sulfide in gas by using absorbing liquid
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JPH07246314A (en) Method for removing carbon dioxide in exhaust combustion gas
JP2011152542A (en) Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same
JP5174216B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250