JP4987792B2 - Epitaxial silicon carbide single crystal substrate manufacturing method - Google Patents
Epitaxial silicon carbide single crystal substrate manufacturing method Download PDFInfo
- Publication number
- JP4987792B2 JP4987792B2 JP2008107514A JP2008107514A JP4987792B2 JP 4987792 B2 JP4987792 B2 JP 4987792B2 JP 2008107514 A JP2008107514 A JP 2008107514A JP 2008107514 A JP2008107514 A JP 2008107514A JP 4987792 B2 JP4987792 B2 JP 4987792B2
- Authority
- JP
- Japan
- Prior art keywords
- growth
- epitaxial
- silicon carbide
- single crystal
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 61
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 53
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 51
- 239000013078 crystal Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000007547 defect Effects 0.000 claims description 58
- 239000000463 material Substances 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 60
- 230000003746 surface roughness Effects 0.000 description 26
- 239000010408 film Substances 0.000 description 22
- 239000007789 gas Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 238000000879 optical micrograph Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 208000032750 Device leakage Diseases 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、エピタキシャル炭化珪素(SiC)単結晶基板及びその製造方法に関するものである。 The present invention relates to an epitaxial silicon carbide (SiC) single crystal substrate and a method for manufacturing the same.
炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。 Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates has increased as a substrate for high-frequency, high-voltage electronic devices.
SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的であるが、後者の場合には、注入後に高温でのアニ−ルが必要となるため、エピタキシャル成長による薄膜形成が多用されている。 When manufacturing a power device, a high-frequency device, etc. using a SiC single crystal substrate, a SiC thin film is epitaxially grown on the substrate by a method called thermal CVD (thermochemical vapor deposition) or ion implantation is usually performed. In general, the dopant is directly implanted by the method, but in the latter case, annealing at a high temperature is required after the implantation, so that thin film formation by epitaxial growth is frequently used.
通常、SiC基板上にエピタキシャル成長を行う場合、基板としては(0001)面(Si面)で1°より大きいオフ角度を持つものを用い、所謂ステップフロー成長を実施する。一般的に、エピタキシャル成長には、横形のCVD装置が用いられることが多い。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。 Usually, when epitaxial growth is performed on a SiC substrate, a substrate having a (0001) plane (Si plane) having an off angle larger than 1 ° is used, and so-called step flow growth is performed. In general, a lateral CVD apparatus is often used for epitaxial growth. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film.
図1に、成長を行う際の典型的な成長シーケンスを、ガスの導入タイミングと併せて示す。まず、成長炉に基板をセットし、成長炉内を真空排気した後、水素ガスを導入して圧力を1×104〜3×104Paに調整する。その後、圧力を一定に保ちながら成長炉の温度を上げ、1400℃〜1500℃程度で10〜30分間、水素中あるいは塩化水素を導入した塩化水素中で、基板のエッチングを行う。これは、研磨等に伴う基板表面の変質層を取り除き、清浄な表面を出すためのものである。 FIG. 1 shows a typical growth sequence for the growth, together with the gas introduction timing. First, a substrate is set in a growth furnace, the inside of the growth furnace is evacuated, and hydrogen gas is introduced to adjust the pressure to 1 × 10 4 to 3 × 10 4 Pa. Thereafter, the temperature of the growth furnace is raised while keeping the pressure constant, and the substrate is etched in hydrogen or hydrogen chloride into which hydrogen chloride is introduced at about 1400 ° C. to 1500 ° C. for 10 to 30 minutes. This is for removing the altered layer on the surface of the substrate due to polishing or the like, and providing a clean surface.
その後、温度を成長温度である1500〜1600℃に上げ、材料ガスであるSiH4とC3H8あるいはC2H4を導入して成長を開始する。材料ガス中に含まれる、炭素と珪素の原子数比(C/Si比)が1.5〜2.0になるように、SiH4流量は毎分40〜50cm3、C3H8あるいはC2H4の流量は毎分10〜30cm3程度にして成長を行う。この時の成長速度は毎時5〜6μmである。この成長速度は、通常利用されるエピタキシャル層の膜厚が10μm程度であるため、生産性を考慮して決定されたものである。 Thereafter, the temperature is raised to a growth temperature of 1500 to 1600 ° C., and SiH 4 and C 3 H 8 or C 2 H 4 as material gases are introduced to start growth. The SiH 4 flow rate is 40-50 cm 3 / min, C 3 H 8 or C 2 H 4 so that the atomic ratio of carbon and silicon (C / Si ratio) contained in the material gas is 1.5-2.0. Growth is performed at a flow rate of about 10 to 30 cm 3 per minute. The growth rate at this time is 5 to 6 μm per hour. This growth rate is determined in consideration of productivity because the film thickness of the normally used epitaxial layer is about 10 μm.
一定時間成長し、所望の膜厚が得られた時点でSiH4とC3H8あるいはC2H4の導入を止め、水素ガスのみ流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止め、成長室内を真空排気し、不活性ガスを成長室に導入して、成長室を大気圧に戻してから、基板を取り出す。 When the film is grown for a certain period of time and a desired film thickness is obtained, the introduction of SiH 4 and C 3 H 8 or C 2 H 4 is stopped, and the temperature is lowered with only hydrogen gas flowing. After the temperature has dropped to room temperature, the introduction of hydrogen gas is stopped, the growth chamber is evacuated, an inert gas is introduced into the growth chamber, the growth chamber is returned to atmospheric pressure, and the substrate is taken out.
上記のような方法でエピタキシャル成長を行う場合、通常、基板のオフ角度は8°程度のものが多用されている。これは、このオフ角度を用いることにより、ステップフロー成長が促進され、エピタキシャル成長層に生じる欠陥あるいは表面荒れが低減されて、良好な表面状態が得られるからである(特許文献1)。 When epitaxial growth is performed by the above method, a substrate with an off-angle of about 8 ° is usually used. This is because by using this off-angle, step flow growth is promoted, defects or surface roughness generated in the epitaxial growth layer is reduced, and a good surface state can be obtained (Patent Document 1).
しかし、近年の基板の大口径化に伴い、オフ角度が8°程度であると、バルク単結晶の利用率低下が著しくなり、コスト面での問題が大きくなると言う問題が生じてきている。そこで、4°乃至それ以下と言う従来よりも小さいオフ角度を持つ基板上でのエピタキシャル成長が試みられているが、オフ角度が小さくなると、基板上のステップ密度が減少し、ステップ間のテラスの幅が広くなる。その結果、テラス上での二次元核成長が発生し易くなり、エピタキシャル欠陥密度の増加や、表面荒れの増加等が生じる。 However, with the recent increase in substrate diameter, when the off-angle is about 8 °, there is a problem that the utilization rate of the bulk single crystal is remarkably lowered and the problem in cost is increased. Therefore, epitaxial growth on a substrate having an off angle smaller than the conventional angle of 4 ° or less has been attempted, but as the off angle becomes smaller, the step density on the substrate decreases, and the terrace width between steps. Becomes wider. As a result, two-dimensional nucleus growth is likely to occur on the terrace, resulting in an increase in epitaxial defect density and an increase in surface roughness.
図2(a)、(b)に、上述したようなこれまでの製造方法で基板のオフ角度が4°の場合のエピタキシャル層表面状態を示す。図2(a)では三角形状の欠陥が観察され、図2(b)では欠陥はないが皺状の表面荒れが観察される。特に、図2(a)で示した三角形状の欠陥は、オフ角度が4°以下になった時に見られる特徴的な欠陥であり、これらの表面欠陥あるいは表面荒れを持ったエピタキシャル層上にデバイスを作成した場合、耐圧等のデバイス特性や歩留りが低下することになる。 FIGS. 2 (a) and 2 (b) show the surface state of the epitaxial layer when the off-angle of the substrate is 4 ° by the conventional manufacturing method as described above. In FIG. 2 (a), a triangular defect is observed, and in FIG. 2 (b), a saddle-like surface roughness is observed although there is no defect. In particular, the triangular defects shown in FIG. 2 (a) are characteristic defects that are observed when the off-angle is 4 ° or less, and the device is formed on the epitaxial layer having these surface defects or surface roughness. However, device characteristics such as breakdown voltage and yield will be reduced.
したがって、今後デバイスへの応用が期待されるSiCエピタキシャル成長基板であるが、基板の大口径化に伴うオフ角度の低下が進むと、そのような基板上のエピタキシャル層では、三角形状の表面欠陥密度や表面荒れが大きくなり、良好なデバイスを作成することが困難である。一方、SiCには、(0001)面(Si面)に対しc軸方向に反転位置関係にある(000-1)面(C面)が存在し、C面を用いると、小さいオフ角度でも上記のようなエピタキシャル欠陥や表面荒れの少ない良好な表面モホロジーが得られることが知られている(非特許文献1)。しかし、C面を用いた場合には、Si面に比べて、エピタキシャル成長層内の残留不純物密度を下げることが難しく、そのため、このようなエピタキシャル成長基板を用いた場合には、デバイスのリーク電流が大きくなる等の別の問題が発生し、実用化の弊害となる。
本発明は、4°以下という小さいオフ角度を有するSi面基板上のエピタキシャル成長において、表面欠陥密度や表面荒れの少ない高品質エピタキシャル膜を有するSiC単結晶基板、及びその製造方法を提供するものである。 The present invention provides a SiC single crystal substrate having a high-quality epitaxial film with less surface defect density and surface roughness in epitaxial growth on a Si surface substrate having a small off angle of 4 ° or less, and a method for manufacturing the same. .
本発明は、エピタキシャル成長を行う際に用いられる材料ガス中に含まれる、炭素と珪素の原子数比(C/Si比)及び成長温度と三角形状のエピタキシャル欠陥、表面荒れとの関係に注目し、欠陥及び表面荒れを低減する層(欠陥低減層)を有したエピタキシャル層を形成することで、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
(1) オフ角度が4°以下である炭化珪素単結晶基板上に熱化学蒸着法により炭化珪素をエピタキシャル成長させて、最表面の炭化珪素エピタキシャル層の表面に存在する三角形状欠陥の数が3個/cm 2 以下である電力制御用デバイス向けのエピタキシャル炭化珪素単結晶基板を製造する方法であって、炭化珪素単結晶基板上に、材料ガス中に含まれる炭素と珪素の原子数比(C/Si比)を0.5以上1.0未満として、成長温度1600℃以上1650℃以下でエピタキシャル成長した厚さ0.1〜0.5μmの炭化珪素からなる欠陥低減層を形成した後、C/Si比を1.0以上1.5以下として、成長温度1600℃以上1650℃以下でエピタキシャル成長した厚さ10〜20μmの炭化珪素からなり、かつ、残留不純物密度が2×10 14 cm -3 以下の活性層を形成することを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法、
である。
The present invention pays attention to the relationship between the atomic ratio of carbon and silicon (C / Si ratio) and the growth temperature, triangular epitaxial defects, and surface roughness, which are contained in the material gas used for epitaxial growth, The present inventors have found that the above problems can be solved by forming an epitaxial layer having a layer for reducing defects and surface roughness (defect reduction layer). That is, the present invention
(1) When silicon carbide is epitaxially grown by thermal chemical vapor deposition on a silicon carbide single crystal substrate having an off angle of 4 ° or less, the number of triangular defects present on the surface of the outermost silicon carbide epitaxial layer is three. A method of manufacturing an epitaxial silicon carbide single crystal substrate for a power control device that is less than / cm 2 , wherein the atomic ratio of carbon and silicon contained in a material gas (C / After forming a defect reduction layer made of silicon carbide with a thickness of 0.1 to 0.5 μm that is epitaxially grown at a growth temperature of 1600 ° C. or more and 1650 ° C. or less with a Si ratio of 0.5 or more and less than 1.0, the C / Si ratio is made 1.0 or more and 1.5 or less An epitaxial carbonization characterized by forming an active layer made of silicon carbide having a thickness of 10 to 20 μm and epitaxially grown at a growth temperature of 1600 ° C. to 1650 ° C. and having a residual impurity density of 2 × 10 14 cm −3 or less Silicon single crystal substrate A method of manufacturing,
It is.
本発明によれば、基板のオフ角度が小さいSi面上へのエピタキシャル成長を行った場合でも、三角形状のエピタキシャル欠陥及び表面荒れの少ない高品質なエピタキシャル膜を有するエピタキシャルSiC単結晶基板を提供することが可能である。 According to the present invention, there is provided an epitaxial SiC single crystal substrate having a high-quality epitaxial film with little triangular defects and surface roughness even when epitaxial growth is performed on a Si surface with a small off-angle of the substrate. Is possible.
また、本発明の製造方法は、三角形状のエピタキシャル欠陥及び表面荒れの少ない高品質なSiCエピタキシャル層をCVD法で成長させることができるため、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜が得られる。 In addition, since the manufacturing method of the present invention can grow a high-quality SiC epitaxial layer having a triangular epitaxial defect and less surface roughness by the CVD method, the device configuration is easy and excellent in controllability, uniformity, An epitaxial film with high reproducibility can be obtained.
さらに、本発明のエピタキシャルSiC単結晶基板を用いたデバイスは、三角形状のエピタキシャル欠陥及び表面荒れの少ない高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。 Furthermore, since the device using the epitaxial SiC single crystal substrate of the present invention is formed on a high-quality epitaxial film with little triangular epitaxial defects and surface roughness, the characteristics and yield are improved.
本発明の具体的な内容について述べる。
まず、SiC単結晶基板上へのエピタキシャル成長について述べる。炭化珪素単結晶基板上に炭化珪素エピタキシャル層を堆積できれば、装置・方法は特に問わないが、本発明で好適にエピタキシャル成長に用いる装置は、横型のCVD装置である。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。成長シーケンスとしては、SiC基板をセットし、水素あるいは塩化水素中でのエッチングまでは、図1と同様である。
The specific contents of the present invention will be described.
First, epitaxial growth on a SiC single crystal substrate will be described. The apparatus and method are not particularly limited as long as a silicon carbide epitaxial layer can be deposited on a silicon carbide single crystal substrate, but the apparatus suitably used for epitaxial growth in the present invention is a horizontal CVD apparatus. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film. The growth sequence is the same as in FIG. 1 until the SiC substrate is set and the etching is performed in hydrogen or hydrogen chloride.
その後、所定の成長温度に上げ、材料ガスであるSiH4とC3H8あるいはC2H4を流すが、その時のSiH4ガスに対するC3H8あるいはC2H4ガスの流量を従来の方法よりも小さくして成長を行う。従来の方法では、材料ガスにおける炭素原子と珪素原子の比(C/Si比)は1.5〜2.0程度であり、これはステップフロー成長の場合、成長がSi原子の供給に律速されているためであるが、本発明の場合は、最初にC/Si比を0.5以上1.0未満、より好適には0.6〜0.8、さらには0.7程度に下げて、エピタキシャル成長させた炭化珪素からなる欠陥低減層を成長させる。 After that, the temperature is raised to a predetermined growth temperature, and the material gases SiH 4 and C 3 H 8 or C 2 H 4 are allowed to flow, but the flow rate of C 3 H 8 or C 2 H 4 gas with respect to SiH 4 gas at that time is the conventional flow rate. Grow smaller than the method. In the conventional method, the ratio of carbon atoms to silicon atoms (C / Si ratio) in the material gas is about 1.5 to 2.0, because in the case of step flow growth, the growth is controlled by the supply of Si atoms. However, in the case of the present invention, first, the C / Si ratio is lowered to 0.5 or more and less than 1.0, more preferably 0.6 to 0.8, and further to about 0.7, and a defect reduction layer made of epitaxially grown silicon carbide is grown. .
オフ角度が4°以下の基板の場合、前述のように、基板表面に存在するテラスの幅が大きくなり、表面に到達したSiあるいはC原子がステップに取り込まれるためには、より長い距離を動く必要がある。その結果、テラス上で二次元核を形成し易くなり、エピタキシャル欠陥や表面荒れを引き起こす。しかし、C/Si比が0.5以上1.0未満、より好適には0.6〜0.8、さらには0.7程度と、従来のC/Si比の半分以下として、基板上に存在するC原子の絶対数が減少してくると、テラス上での原子間の相互作用が減少して、二次元核の形成確率が小さくなってくると考えられる。その結果、三角形状欠陥及び表面荒れの少ない高品質エピタキシャル膜が形成されると思われる。 In the case of a substrate with an off angle of 4 ° or less, as described above, the width of the terrace existing on the substrate surface becomes large, and in order for Si or C atoms that have reached the surface to be taken into the step, the distance moves longer. There is a need. As a result, two-dimensional nuclei are easily formed on the terrace, causing epitaxial defects and surface roughness. However, the absolute number of C atoms present on the substrate decreases as the C / Si ratio is 0.5 or more and less than 1.0, more preferably about 0.6 to 0.8, and even about 0.7, less than half of the conventional C / Si ratio. As a result, it is considered that the interaction between atoms on the terrace decreases and the probability of forming a two-dimensional nucleus decreases. As a result, a high-quality epitaxial film with little triangular defects and less surface roughness is expected to be formed.
ただ、C/Si比が1.0より小さくなると、所謂site-competition効果で、雰囲気からの不純物の取り込みが多くなり、膜中の残留不純物が増加して膜の品質に影響を与える。この残留不純物の密度が、デバイス特性に影響を与えない程度であれば、単層の膜として使用できる。しかし、デバイス特性に影響を与えるようであれば、欠陥低減層としての効果を保つ範囲で厚さは小さい方が良く、欠陥低減層の厚さは0.1μm〜0.5μmが好ましい。また、欠陥低減層の数は1層に限定されるものではなく、複数層あっても構わない。欠陥低減層を複数にする場合は、0.1μm〜0.5μmの欠陥低減層を成長した後、以下で述べる活性層を1μm程度成長し、再び0.1μm〜0.5μmの欠陥低減層を成長して、その上に活性層を成長するというプロセスを繰り返す。 However, when the C / Si ratio is smaller than 1.0, the so-called site-competition effect increases the amount of impurities taken in from the atmosphere, increasing residual impurities in the film and affecting the quality of the film. If the density of this residual impurity does not affect the device characteristics, it can be used as a single layer film. However, if the device characteristics are affected, the thickness should be small as long as the effect as the defect reduction layer is maintained, and the thickness of the defect reduction layer is preferably 0.1 μm to 0.5 μm. Further, the number of defect reduction layers is not limited to one, and there may be a plurality of layers. When making a plurality of defect reduction layers, after growing a defect reduction layer of 0.1 μm to 0.5 μm, grow an active layer described below by about 1 μm, grow a defect reduction layer of 0.1 μm to 0.5 μm again, The process of growing an active layer on it is repeated.
欠陥低減層を成長後、C/Si比を1.0以上1.5以下、より好適には1.1〜1.3、さらには1.2程度にして、エピタキシャル成長させた炭化珪素からなる活性層を成長する。この活性層の場合も、C/Si比を従来よりも小さくして、欠陥低減層の成長で得られた良好な表面状態を維持しながら成長を行うが、site-competition効果の影響を小さくするように、C/Si比は1.0以上とする。C/Si比の上限を1.5とした理由は、C/Si比が1.5を超えると、らせん成長を誘発し易くなり、表面欠陥が増え、良好なエピ層が成長されないからである。 After growing the defect reducing layer, an active layer made of epitaxially grown silicon carbide is grown with a C / Si ratio of 1.0 to 1.5, more preferably about 1.1 to 1.3, and further about 1.2. In the case of this active layer as well, the C / Si ratio is made smaller than before and the growth is performed while maintaining the good surface state obtained by the growth of the defect reduction layer, but the influence of the site-competition effect is reduced. Thus, the C / Si ratio is 1.0 or more. The reason why the upper limit of the C / Si ratio is set to 1.5 is that if the C / Si ratio exceeds 1.5, it becomes easy to induce helical growth, surface defects increase, and a good epilayer cannot be grown.
また、最終的に表面に形成される活性層の厚さは、作成されるデバイスの耐圧等を考慮した場合、10μm〜50μmが好ましい。通常、デバイスの耐圧としては、1kV以上が要求されるが、活性層1μm当たり約100Vの耐圧があるため、上記下限値が決定される。また、上限値の50μmは、これ以上の厚さになると表面荒れを起こし易くなることにより、決められたものである。この上下限値の間で、必要とされるデバイスの耐圧に基づき活性層の厚さは決められるが、生産性等も含めたより好ましい範囲は10〜20μmである。 Further, the thickness of the active layer finally formed on the surface is preferably 10 μm to 50 μm in consideration of the breakdown voltage of the device to be produced. Usually, the withstand voltage of the device is required to be 1 kV or higher, but since the withstand voltage is about 100 V per 1 μm of the active layer, the lower limit is determined. Further, the upper limit value of 50 μm is determined because surface roughness is likely to occur when the thickness exceeds this value. The thickness of the active layer is determined between the upper and lower limits based on the required breakdown voltage of the device, but a more preferable range including productivity and the like is 10 to 20 μm.
成長温度に関しては、基板上での原子の運動を促進すると言う観点から、本発明においては、従来の成長温度である1500〜1600℃に対して、1600℃以上1650℃以下、より好適には1625℃とすることが好ましい。成長温度が1650℃を超えると、表面からの原子の再蒸発が生じ易くなり、成長速度の低下あるいは表面荒れ等が発生し易くなるため好ましくない。 Regarding the growth temperature, from the viewpoint of promoting the movement of atoms on the substrate, in the present invention, it is 1600 ° C. or higher and 1650 ° C. or lower, more preferably 1625 ° C., compared to the conventional growth temperature of 1500 to 1600 ° C. It is preferable to set it as ° C. When the growth temperature exceeds 1650 ° C., it is not preferable because atoms re-evaporate from the surface easily and a growth rate is lowered or surface roughness is easily generated.
このような考察の基、材料ガスである、SiH4とC3H8あるいはC2H4の流量に関し、SiH4流量を毎分40cm3、C3H8流量を毎分9cm3、C2H4の場合には毎分14cm3とし(C/Si比は0.7)、成長温度を1625℃にして欠陥低減層を成長し、その上にSiH4流量を毎分40cm3、C3H8流量を毎分16cm3、C2H4の場合には毎分24cm3とし(C/Si比は1.2)、成長温度を1625℃にして活性層を成長したところ、三角形状のエピタキシャル欠陥は3個/cm2以下になると共に、表面粗さのRa値は2.5nm以下であるようなエピタキシャル層を得ることができた。この時の活性層の成長速度は、毎時6.0μmであった。なお、三角形状のエピタキシャル欠陥及びその個数とは、図2に示すようにエピタキシャル層表面を50倍程度の拡大倍率で顕微鏡観察した場合に肉眼で確認できる三角形状の欠陥とその数のことを意味し、後述するように基板のオフ角度が4°の場合、この三角形状のエピタキシャル欠陥の一辺の長さは150μm程度のものが典型的である。また、表面粗さRaはJIS B0601に準拠するものである。 Based on such considerations, regarding the flow rates of SiH 4 and C 3 H 8 or C 2 H 4 which are material gases, the SiH 4 flow rate is 40 cm 3 / min, the C 3 H 8 flow rate is 9 cm 3 / min, C 2 In the case of H 4, the rate is 14 cm 3 / min (C / Si ratio is 0.7), the growth temperature is 1625 ° C., a defect reduction layer is grown, and the SiH 4 flow rate is 40 cm 3 / min, C 3 H 8 When the flow rate was 16 cm 3 / min and C 2 H 4 , the rate was 24 cm 3 / min (C / Si ratio was 1.2), the growth temperature was 1625 ° C., and the active layer was grown. It was possible to obtain an epitaxial layer having a surface roughness Ra value of 2.5 nm or less as well as the number of particles / cm 2 or less. The growth rate of the active layer at this time was 6.0 μm / hour. Note that the triangular epitaxial defects and the number of them mean the triangular defects and the number of them that can be confirmed with the naked eye when the surface of the epitaxial layer is observed with a microscope at a magnification of about 50 times as shown in FIG. As will be described later, when the off-angle of the substrate is 4 °, the length of one side of this triangular epitaxial defect is typically about 150 μm. Further, the surface roughness Ra conforms to JIS B0601.
本発明により、材料ガスのC/Si比を0.5以上1.0未満にして欠陥低減層を、C/Si比を1.0以上1.5以下にして活性層を、それぞれ1600℃以上1650℃以下の成長温度で成長することによって、表面粗さのRa値が2.5nm以下であり、表面に存在する三角形状欠陥の数が3個/cm2以下であるエピタキシャル層を作成することが可能になる。表面粗さのRa値が2.5nm以下である必要性は、通常作成されるMOSトランジスタのゲート酸化膜の厚さが30〜60nm程度であり、酸化膜厚の変動値はその10%以下にしなければならないためである。 According to the present invention, the defect reduction layer is grown with the C / Si ratio of the material gas being 0.5 or more and less than 1.0, and the active layer is grown with the C / Si ratio being 1.0 or more and 1.5 or less at a growth temperature of 1600 ° C. or more and 1650 ° C. or less, respectively. By doing so, it is possible to produce an epitaxial layer having a surface roughness Ra value of 2.5 nm or less and a number of triangular defects existing on the surface of 3 / cm 2 or less. The surface roughness Ra value needs to be 2.5 nm or less because the gate oxide film thickness of a MOS transistor that is usually created is about 30 to 60 nm, and the fluctuation value of the oxide film thickness must be 10% or less. This is because it must be done.
また、表面に存在する三角形状欠陥に関しては、欠陥がSiCエピタキシャル層とSiC単結晶基板との界面から発生するものと考えると、SiC単結晶基板のオフ角度が4°でSiCエピタキシャル層の厚さが10μmの時、概略10μm/tan4°=150μmが欠陥の一辺の長さと考えられる。一方、デバイスのチップの大きさは数mm角であるから、1cm2内に作成されるチップは10個程度である。チップ1個内で、電流の制御に必要な電極の占める面積を200〜300μm角程度とすると、三角形状欠陥の大きさとほぼ同等であるから、欠陥が1個存在するとチップ1個が不良になると考えられる。したがって、最低限のチップの歩留りとして70%を考えた場合、1cm2に存在できる三角形状欠陥は3個以下としなければならない。 In addition, regarding the triangular defects present on the surface, assuming that the defects are generated from the interface between the SiC epitaxial layer and the SiC single crystal substrate, the thickness of the SiC epitaxial layer is 4 ° when the off angle of the SiC single crystal substrate is 4 °. Is 10 μm, approximately 10 μm / tan 4 ° = 150 μm is considered as the length of one side of the defect. On the other hand, since the chip size of the device is several mm square, about 10 chips are created within 1 cm 2 . If the area occupied by the electrodes necessary for current control in one chip is about 200 to 300 μm square, it is almost the same as the size of a triangular defect, so if one defect exists, one chip becomes defective. Conceivable. Therefore, when 70% is considered as the minimum chip yield, the number of triangular defects that can exist in 1 cm 2 must be 3 or less.
このようにして成長させたSiCエピタキシャル層を有するエピタキシャルSiC単結晶基板上に好適に形成されるデバイスは、ショットキーバリアダイオード、MOSダイオード、MOSトランジスタ等であり、特に縦型MOSトランジスタ等の電力制御用に用いられるデバイスである。これら電力制御用デバイスは、特に高い耐圧特性が重要であり、耐圧劣化の原因となる表面荒れや欠陥の少ないエピタキシャル層が求められるためである。 Devices suitably formed on an epitaxial SiC single crystal substrate having an SiC epitaxial layer grown in this way are Schottky barrier diodes, MOS diodes, MOS transistors, etc., and particularly power control of vertical MOS transistors, etc. It is a device used for. This is because, in these power control devices, high breakdown voltage characteristics are particularly important, and an epitaxial layer with few surface roughness and defects causing deterioration of breakdown voltage is required.
(実施例1)
3インチ(76mm)ウェーハ用SiC単結晶インゴットから、約400μmの厚さでスライスし、粗削りとダイヤモンド砥粒による通常研磨を実施した、4H型のポリタイプを有するSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角度は4°である。
(Example 1)
From a SiC single crystal ingot for a 3-inch (76 mm) wafer, sliced at a thickness of about 400 μm, and subjected to rough grinding and normal polishing with diamond abrasive grains, on the Si surface of a SiC single crystal substrate with a 4H type polytype, Epitaxial growth was performed. The off angle of the substrate is 4 °.
成長の手順としては、横型CVD装置の成長炉に上記で得られた基板をセットし、成長炉内を真空排気した後、水素ガスを毎分150L導入しながら圧力を1.0×104 Paに調整した。その後、圧力を一定に保ちながら成長炉の温度を上げ、1500℃〜1550℃に到達した後、水素雰囲気中で10分間基板のエッチングを行った。エッチング後、温度を1625℃まで上げ、SiH4流量を毎分40cm3、C2H4流量を毎分14cm3にして(C/Si比は0.7)、エピタキシャル成長させた炭化珪素からなる欠陥低減層を5μm成長した。成長面は鏡面であり、顕微鏡の倍率を50倍にして表面の三角形状欠陥の数を求めたところ、三角形状の欠陥密度はウェーハ面内平均で2.5個/cm2であった。また、表面のAFM評価を行った結果、Ra値が2.4nmであった。 As a growth procedure, set the substrate obtained above in the growth furnace of the horizontal CVD apparatus, evacuate the growth furnace, and adjust the pressure to 1.0 × 10 4 Pa while introducing 150 L of hydrogen gas per minute did. Thereafter, the temperature of the growth furnace was raised while keeping the pressure constant, and after reaching 1500 ° C. to 1550 ° C., the substrate was etched in a hydrogen atmosphere for 10 minutes. After etching, the temperature is increased to 1625 ° C., the SiH 4 flow rate is 40 cm 3 / min, the C 2 H 4 flow rate is 14 cm 3 / min (C / Si ratio is 0.7), and the defect reduction layer is made of silicon carbide epitaxially grown Was grown to 5 μm. The growth surface was a mirror surface, and the number of triangular defects on the surface was determined at a microscope magnification of 50. The average defect density in the wafer surface was 2.5 / cm 2 . Further, as a result of AFM evaluation of the surface, the Ra value was 2.4 nm.
表面粗さと三角形状の欠陥密度に関しては所望の結果が得られたが、この成長層の残留不純物密度を評価したところ、1〜2×1015 cm-3であった。例えばインバータや整流器のような、通常の電力制御用デバイスは、MOS構造の場合1×1016 cm-3程度、SBD構造の場合5×1015 cm-3程度のドーピング量が必要であり、残留不純物密度はそれよりも1桁程度は小さくなければならない。従ってこの成長層は、限定されたデバイスに対する最低限の応用条件は満足するものの、site-competitionの影響を多少受けていた。 Desired results were obtained with respect to the surface roughness and the triangular defect density. When the residual impurity density of this growth layer was evaluated, it was 1 to 2 × 10 15 cm −3 . For example, ordinary power control devices such as inverters and rectifiers require a doping amount of about 1 × 10 16 cm -3 for the MOS structure and about 5 × 10 15 cm -3 for the SBD structure. The impurity density must be about an order of magnitude less than that. Therefore, this growth layer was somewhat affected by site-competition, while satisfying the minimum application requirements for limited devices.
(実施例2)
基板の準備、オフ角度、及び欠陥低減層の成長までは実施例1と同一であるが、site-competitionの影響を小さくするため、欠陥低減層の厚さを0.5μmとし、その後、成長温度は変えずに、SiH4流量を毎分40cm3、C2H4流量を毎分24cm3にして(C/Si比は1.2)、活性層を10μm成長した。この時の活性層の成長速度は毎時6.0μm程度であった。
(Example 2)
The substrate preparation, the off-angle, and the growth of the defect reduction layer are the same as in Example 1, but in order to reduce the effect of site-competition, the thickness of the defect reduction layer is 0.5 μm, and then the growth temperature is Without changing, the SiH 4 flow rate was 40 cm 3 / min, the C 2 H 4 flow rate was 24 cm 3 / min (C / Si ratio was 1.2), and the active layer was grown by 10 μm. The growth rate of the active layer at this time was about 6.0 μm per hour.
エピタキシャル成長後の表面の光学顕微鏡写真(50倍)を図3に示す。成長面は鏡面であり、表面荒れは見られず、三角形状の欠陥密度はウェーハ面内平均で2個/cm2であった。また、表面のAFM評価を行った結果を図4に示す。図4において、横軸は活性層成長時のC/Si比、縦軸は表面のRa値であり、成長温度は1625℃である。図4より、本発明による欠陥低減層と活性層を持つエピタキシャル層の表面では、Ra値が2.2nmであることが分かる。また、活性層の残留不純物密度は1×1015cm-3以下であることが好ましいが、本実施例の場合の残留不純物密度は2×1014cm-3程度と十分小さく、電力制御用デバイス用エピタキシャル膜の条件を満たしていた。
このようなエピタキシャルSiC単結晶基板を用いてショットキーバリアダイオードを形成した際、ドーピング密度が約1×1016cm-3の時、逆方向耐圧は250〜300Vであり、ほぼ理論値に近い値が得られた。
Fig. 3 shows an optical micrograph (50x) of the surface after epitaxial growth. The growth surface was a mirror surface, no surface roughness was observed, and the triangular defect density was 2 / cm 2 on the wafer surface in average. The results of AFM evaluation of the surface are shown in FIG. In FIG. 4, the horizontal axis represents the C / Si ratio during active layer growth, the vertical axis represents the surface Ra value, and the growth temperature is 1625 ° C. 4 that the Ra value is 2.2 nm on the surface of the epitaxial layer having the defect reducing layer and the active layer according to the present invention. Further, the residual impurity density of the active layer is preferably 1 × 10 15 cm −3 or less, but the residual impurity density in this example is sufficiently small, about 2 × 10 14 cm −3. The conditions for the epitaxial film were satisfied.
When a Schottky barrier diode is formed using such an epitaxial SiC single crystal substrate, when the doping density is about 1 × 10 16 cm −3 , the reverse breakdown voltage is 250 to 300 V, which is almost a theoretical value. was gotten.
(比較例)
比較例として、実施例1と同様にスライス、粗削り、及び通常研磨を行った、4H型のポリタイプを有する3インチ(76mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は4°である。
(Comparative example)
As a comparative example, epitaxial growth was performed on the Si surface of a 3 inch (76 mm) SiC single crystal substrate having a 4H type polytype, which was sliced, roughly ground, and normally polished as in Example 1. The off angle of the substrate is 4 °.
成長手順は、水素雰囲気中でのエッチングまでは、実施例1と同様である。エッチング後、温度を1625℃まで上げ、SiH4流量を毎分40cm3、C2H4流量を毎分32cm3にして(C/Si比は1.6)、欠陥低減層は成長させず、活性層のみを10μm成長した。成長後の表面には、図2(a)で示したような三角形状のエピタキシャル欠陥が発生し、顕微鏡の倍率を50倍にして表面の三角形状欠陥の数を求めたところ、その密度は5〜10個/cm2であった。また、図4より、活性層成長時のC/Si比が1.6の時のRa値は、2.7nmと劣化していることが分かる。
このような基板を用いてショットキーバリアダイオードを形成した際、ドーピング密度が約1×1016cm-3の時、逆方向耐圧の平均は100V程度と、理論値の半分以下の値しか得られず、またデバイスの歩留りも50%以下であった。
The growth procedure is the same as that of Example 1 until etching in a hydrogen atmosphere. After etching, the temperature is increased to 1625 ° C., the SiH 4 flow rate is 40 cm 3 / min, the C 2 H 4 flow rate is 32 cm 3 / min (C / Si ratio is 1.6), the defect reduction layer does not grow, the active layer Only 10 μm was grown. Triangular epitaxial defects as shown in Fig. 2 (a) occurred on the surface after growth, and when the number of triangular defects on the surface was determined with a microscope magnification of 50, the density was 5 It was 10 pieces / cm 2. In addition, it can be seen from FIG. 4 that the Ra value when the C / Si ratio during active layer growth is 1.6 is degraded to 2.7 nm.
When a Schottky barrier diode is formed using such a substrate, when the doping density is about 1 × 10 16 cm −3 , the average reverse breakdown voltage is about 100 V, which is less than half the theoretical value. In addition, the device yield was 50% or less.
この発明によれば、SiC基板上へのエピタキシャル成長において、基板のオフ角度が4°以下であっても、三角形状の欠陥が少なく表面荒れも小さい、高品質エピタキシャル膜を有するエピタキシャルSiC単結晶基板を作成することが可能である。そのため、このような基板上に電子デバイスを形成すればデバイスの特性及び歩留まりが向上することが期待できる。本実施例においては材料ガスとしてSiH4およびC2H4を用いているが、Si源としてトリクロルシラン、C源としてC3H8等を用いた場合についても同様に高品質エピタキシャル膜を有するエピタキシャルSiC単結晶基板を作成することができる。 According to the present invention, in epitaxial growth on a SiC substrate, an epitaxial SiC single crystal substrate having a high-quality epitaxial film having few triangular defects and small surface roughness even when the off-angle of the substrate is 4 ° or less. It is possible to create. Therefore, if an electronic device is formed on such a substrate, it can be expected that the characteristics and yield of the device are improved. In this example, SiH 4 and C 2 H 4 are used as the material gas. However, when trichlorosilane is used as the Si source and C 3 H 8 is used as the C source, an epitaxial having a high-quality epitaxial film is similarly used. SiC single crystal substrate can be created.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008107514A JP4987792B2 (en) | 2008-04-17 | 2008-04-17 | Epitaxial silicon carbide single crystal substrate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008107514A JP4987792B2 (en) | 2008-04-17 | 2008-04-17 | Epitaxial silicon carbide single crystal substrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009256138A JP2009256138A (en) | 2009-11-05 |
JP4987792B2 true JP4987792B2 (en) | 2012-07-25 |
Family
ID=41384074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008107514A Active JP4987792B2 (en) | 2008-04-17 | 2008-04-17 | Epitaxial silicon carbide single crystal substrate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4987792B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10950435B2 (en) | 2017-04-06 | 2021-03-16 | Mitsubishi Electric Corporation | SiC epitaxial wafer, method for manufacturing SiC epitaxial wafer, SiC device, and power conversion apparatus |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4887418B2 (en) | 2009-12-14 | 2012-02-29 | 昭和電工株式会社 | Method for manufacturing SiC epitaxial wafer |
JP5693946B2 (en) | 2010-03-29 | 2015-04-01 | エア・ウォーター株式会社 | Method for producing single crystal 3C-SiC substrate |
JP4850960B2 (en) * | 2010-04-07 | 2012-01-11 | 新日本製鐵株式会社 | Epitaxial silicon carbide single crystal substrate manufacturing method |
JP5353800B2 (en) * | 2010-04-07 | 2013-11-27 | 新日鐵住金株式会社 | Method for manufacturing silicon carbide epitaxial film |
JP4880052B2 (en) | 2010-05-11 | 2012-02-22 | 新日本製鐵株式会社 | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof |
JP5590665B2 (en) * | 2010-05-28 | 2014-09-17 | 学校法人関西学院 | Nanometer standard prototype, standard sample, method for producing nanometer standard prototype, and method for producing standard sample |
KR20120101055A (en) * | 2010-12-27 | 2012-09-12 | 스미토모덴키고교가부시키가이샤 | Silicon carbide substrate, semiconductor device, method of manufacturing silicon carbide substrate and method of manufacturing semiconductor device |
WO2012144614A1 (en) * | 2011-04-21 | 2012-10-26 | 新日本製鐵株式会社 | Epitaxial silicon carbide single-crystal substrate and process for producing same |
JP5897834B2 (en) | 2011-07-19 | 2016-03-30 | 昭和電工株式会社 | Method for manufacturing SiC epitaxial wafer |
JP5664534B2 (en) * | 2011-12-12 | 2015-02-04 | 新日鐵住金株式会社 | Method for manufacturing epitaxial silicon carbide wafer |
KR101942536B1 (en) * | 2011-12-19 | 2019-01-29 | 엘지이노텍 주식회사 | Method for fabrication silicon carbide epi wafer |
KR101942514B1 (en) * | 2011-12-16 | 2019-01-28 | 엘지이노텍 주식회사 | Method for deposition of silicon carbide and silicon carbide epi wafer |
KR101936171B1 (en) * | 2011-12-19 | 2019-04-04 | 엘지이노텍 주식회사 | Method for fabrication silicon carbide epi wafer and silicon carbide epi wafer |
KR101936170B1 (en) * | 2011-12-19 | 2019-01-08 | 엘지이노텍 주식회사 | Method for fabrication silicon carbide epi wafer |
KR101926694B1 (en) * | 2012-05-30 | 2018-12-07 | 엘지이노텍 주식회사 | Silicon carbide epi wafer and method of fabricating the same |
KR101926678B1 (en) * | 2012-05-31 | 2018-12-11 | 엘지이노텍 주식회사 | Silicon carbide epi wafer and method of fabricating the same |
KR101897062B1 (en) | 2012-05-31 | 2018-09-12 | 엘지이노텍 주식회사 | Silicon carbide epi wafer and method of fabricating the same |
JP6037671B2 (en) | 2012-06-19 | 2016-12-07 | 昭和電工株式会社 | SiC epitaxial wafer and manufacturing method thereof |
CN104937699B (en) | 2012-11-30 | 2018-12-18 | Lg 伊诺特有限公司 | Epitaxial wafer and the switch element and light-emitting component for using it |
KR102131245B1 (en) * | 2013-06-28 | 2020-08-05 | 엘지이노텍 주식회사 | Epitaxial wafer |
JP2014154587A (en) * | 2013-02-05 | 2014-08-25 | Sumitomo Electric Ind Ltd | Silicon carbide semiconductor substrate manufacturing method and silicon carbide semiconductor device manufacturing method |
KR102165615B1 (en) * | 2013-06-24 | 2020-10-14 | 엘지이노텍 주식회사 | Epitaxial wafer |
KR102231643B1 (en) * | 2014-03-13 | 2021-03-24 | 엘지이노텍 주식회사 | METHOD FOR GROWIG SiC EPITAXIAL LAYER AND POWER DEVICE |
JP6289952B2 (en) | 2014-03-19 | 2018-03-07 | 株式会社東芝 | SiC epitaxial substrate manufacturing method, semiconductor device manufacturing method |
WO2015170500A1 (en) * | 2014-05-08 | 2015-11-12 | 三菱電機株式会社 | Sic epitaxial wafer and method for manufacturing silicon carbide semiconductor device |
US9957641B2 (en) * | 2014-08-01 | 2018-05-01 | Sumitomo Electric Industries, Ltd. | Epitaxial wafer and method for manufacturing same |
DE112015003959T5 (en) * | 2014-08-29 | 2017-05-18 | Sumitomo Electric Industries Ltd. | A silicon carbide semiconductor device and a method of manufacturing the same |
CN106715767A (en) * | 2014-10-01 | 2017-05-24 | 住友电气工业株式会社 | Silicon carbide epitaxial substrate |
WO2016075957A1 (en) * | 2014-11-12 | 2016-05-19 | 住友電気工業株式会社 | Method for manufacturing silicon carbide epitaxial substrate and silicon carbide epitaxial substrate |
KR102044616B1 (en) | 2015-03-03 | 2019-11-13 | 쇼와 덴코 가부시키가이샤 | SiC epitaxial wafer, manufacturing method of SiC epitaxial wafer |
WO2016185819A1 (en) | 2015-05-18 | 2016-11-24 | 住友電気工業株式会社 | Method for manufacturing silicon carbide epitaxial substrate, silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device |
KR102106722B1 (en) | 2015-07-29 | 2020-05-04 | 쇼와 덴코 가부시키가이샤 | Method for manufacturing epitaxial silicon carbide single crystal wafer |
CN105869996A (en) * | 2016-04-25 | 2016-08-17 | 全球能源互联网研究院 | Silicon carbide epitaxial growth system and growth method thereof |
JP6796407B2 (en) * | 2016-06-27 | 2020-12-09 | 昭和電工株式会社 | Manufacturing method of SiC epitaxial wafer |
JP6824088B2 (en) * | 2017-03-24 | 2021-02-03 | 昭和電工株式会社 | Epitaxy Growth Method for Silicon Carbide |
WO2018211737A1 (en) * | 2017-05-17 | 2018-11-22 | 三菱電機株式会社 | Sic epitaxial wafer and method for manufacturing same |
US12237377B2 (en) | 2018-11-05 | 2025-02-25 | Kwansei Gakuin Educational Foundation | SiC semiconductor substrate, and, production method therefor and production device therefor |
CN114342045A (en) | 2019-08-06 | 2022-04-12 | 学校法人关西学院 | Manufacturing method of SiC substrate |
JPWO2021025084A1 (en) | 2019-08-06 | 2021-02-11 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4185215B2 (en) * | 1999-05-07 | 2008-11-26 | 弘之 松波 | SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer |
US7081420B2 (en) * | 2002-03-19 | 2006-07-25 | Central Research Institute Of Electric Power Industry | Method for preparing SiC crystal and SiC crystal |
JPWO2005116307A1 (en) * | 2004-05-27 | 2008-04-03 | 株式会社ブリヂストン | Method for manufacturing silicon carbide single crystal wafer |
JP2006321707A (en) * | 2005-04-22 | 2006-11-30 | Bridgestone Corp | Silicon carbide single crystal wafer and process for producing the same |
JP4706565B2 (en) * | 2006-06-08 | 2011-06-22 | 株式会社デンソー | Method for producing silicon carbide single crystal |
-
2008
- 2008-04-17 JP JP2008107514A patent/JP4987792B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10950435B2 (en) | 2017-04-06 | 2021-03-16 | Mitsubishi Electric Corporation | SiC epitaxial wafer, method for manufacturing SiC epitaxial wafer, SiC device, and power conversion apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2009256138A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4987792B2 (en) | Epitaxial silicon carbide single crystal substrate manufacturing method | |
KR101333337B1 (en) | Epitaxial silicon carbide single crystal substrate and method for producing same | |
JP4954654B2 (en) | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof | |
JP4850960B2 (en) | Epitaxial silicon carbide single crystal substrate manufacturing method | |
JP4842094B2 (en) | Epitaxial silicon carbide single crystal substrate manufacturing method | |
JP4954593B2 (en) | Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate | |
JP4937685B2 (en) | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof | |
JP4880052B2 (en) | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof | |
JP6524233B2 (en) | Method of manufacturing epitaxial silicon carbide single crystal wafer | |
JP6742477B2 (en) | Epitaxial silicon carbide single crystal wafer manufacturing method and epitaxial silicon carbide single crystal wafer | |
JPWO2009013914A1 (en) | SiC epitaxial substrate and manufacturing method thereof | |
JP4786223B2 (en) | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof | |
JPWO2016010126A1 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
JP5786759B2 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
JP5664534B2 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
JP6052465B2 (en) | Method for manufacturing epitaxial silicon carbide wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120425 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4987792 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |