[go: up one dir, main page]

JP4987569B2 - In-vehicle magnetic levitation type rotating body mechanism - Google Patents

In-vehicle magnetic levitation type rotating body mechanism Download PDF

Info

Publication number
JP4987569B2
JP4987569B2 JP2007140027A JP2007140027A JP4987569B2 JP 4987569 B2 JP4987569 B2 JP 4987569B2 JP 2007140027 A JP2007140027 A JP 2007140027A JP 2007140027 A JP2007140027 A JP 2007140027A JP 4987569 B2 JP4987569 B2 JP 4987569B2
Authority
JP
Japan
Prior art keywords
rotating body
cooling
temperature superconducting
superconducting bulk
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140027A
Other languages
Japanese (ja)
Other versions
JP2008295251A (en
Inventor
仁司 尾作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007140027A priority Critical patent/JP4987569B2/en
Publication of JP2008295251A publication Critical patent/JP2008295251A/en
Application granted granted Critical
Publication of JP4987569B2 publication Critical patent/JP4987569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Linear Motors (AREA)

Description

本発明は、車載可能な磁気浮上式回転体機構(モーター、ギヤ)に関するものである。   The present invention relates to a magnetically levitated rotating mechanism (motor, gear) that can be mounted on a vehicle.

現在開発されている超電導フライホイールは装置全体を真空にしている。また、フライホイールはコマ型である。このためオイラーの運動方程式により、回転軸ぶれが起こり易い。更に、従来の装置は大型で構造が複雑であるといった問題があった。
また、鉛直状の回転体を制御型ラジアル磁気軸受と、制御型アキシャル磁気軸受で安定回転位置に支持した状態で、超電導体を冷却して超電導軸受を作動状態にし、超電導軸受とラジアル磁気軸受で回転体を安定回転支持し、回転体を回転させて運転を開始するようにした超電導軸受装置が提案されている(下記特許文献1参照)。
The superconducting flywheel currently being developed places the entire device in a vacuum. The flywheel is a top type. For this reason, rotation axis shake is likely to occur due to Euler's equation of motion. Further, the conventional apparatus has a problem that it is large and complicated in structure.
Also, with the vertical rotating body supported at the stable rotational position by the control type radial magnetic bearing and the control type axial magnetic bearing, the superconductor is cooled and the superconducting bearing is activated, and the superconducting bearing and the radial magnetic bearing are used. There has been proposed a superconducting bearing device that stably supports a rotating body and starts operation by rotating the rotating body (see Patent Document 1 below).

しかしながら、従来の装置は、構造が大型で、かつ複雑であり、コストが上昇するといった問題があった。
特開平10−231840号公報 特願2006−340692号 特願2007−055241号
However, the conventional apparatus has a problem that the structure is large and complicated, and the cost increases.
Japanese Patent Laid-Open No. 10-231840 Japanese Patent Application No. 2006-340692 Japanese Patent Application No. 2007-055241

そこで、本発明者は、上記問題を解決するために、高温超電導体により浮上させた円筒型発電装置(上記特許文献2)、高温超電導バルク体連結型多角形冷却容器の組立装置(上記特許文献3)を提案した。
本発明は、上記状況に鑑みて、コンパクトであり、車載可能な磁気浮上式回転体機構を提供することを目的とする。
In order to solve the above problems, the present inventor has developed a cylindrical power generator levitated by a high-temperature superconductor (Patent Document 2) and an assembly apparatus for a high-temperature superconducting bulk coupled polygon cooling container (Patent Document 2). 3) was proposed.
In view of the above situation, an object of the present invention is to provide a magnetically levitated rotating body mechanism that is compact and can be mounted on a vehicle.

本発明は、上記目的を達成するために、
〔1〕車載可能な磁気浮上式回転体機構において、上下方向又は左右方向の回転体(3,13)の両側に固定される高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)と、この高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)間に配置される、浮上用円柱状磁石(4,5;14,15)とその中心軸に配置される浮上用磁石軸(6,7;16,17)とを有する前記回転体(3,13)とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a magnetically levitated rotator mechanism that can be mounted on a vehicle, a cooling container (1, 18) having a high-temperature superconducting bulk body (8, 18) fixed on both sides of a rotator (3, 13) in the vertical direction or the horizontal direction . 2; 11, 12) and a floating cylindrical magnet (4, 5; 14, 15 ) disposed between the cooling vessel (1, 2; 11, 12) having the high-temperature superconducting bulk body (8, 18). characterized by comprising a rotating body (3, 13) having a 16, 17);) and its center the magnet shaft disposed axis (6, 7.

〔2〕上記〔1〕記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体(8)を有する冷却容器(1,2)が前記回転体(3)の上下に配置され、前記浮上用磁石軸(6,7)を有する回転体(3)が前記高温超電導バルク体(8)を有する冷却容器(1,2)に対して水平に配置されることを特徴とする。
〔3〕上記〔1〕記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体(18)を有する冷却容器(11,12)が前記回転体(13)の左右に配置され、前記浮上用磁石軸(16,17)とを有する回転体(13)が前記高温超電導バルク体(18)を有する冷却容器(11,12)に対して垂直に配置されることを特徴とする。
[2] In the vehicle-mounted magnetic levitation rotating body mechanism according to [1], cooling containers (1, 2) having the high-temperature superconducting bulk body (8) are arranged above and below the rotating body (3), The rotating body (3) having the levitation magnet shaft (6, 7) is disposed horizontally with respect to the cooling vessel (1, 2) having the high-temperature superconducting bulk body (8) .
[3] The magnetically levitated rotating body mechanism that can be mounted on a vehicle according to [1], wherein cooling containers (11, 12) having the high-temperature superconducting bulk body (18) are arranged on the left and right of the rotating body (13), The rotating body (13) having the levitation magnet shaft (16, 17) is arranged perpendicular to the cooling vessel (11, 12) having the high-temperature superconducting bulk body (18) .

〔4〕上記〔〕記載の車載可能な磁気浮上式回転体機構において、前記冷却容器の回転体との対向面の縁部前記回転体の脱落防止用突起(10)を具備することを特徴とする。
〔5〕上記〔1〕記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体を有する冷却容器は、複数の多角形冷却容器を連結して構成され、それらの間に前記回転体を並列に配置することを特徴とする。
[4] In the above-mentioned [2], vehicle possible magnetic levitation rotating body mechanism according, to be provided with a rotating body falling-off preventing protrusion of the edge of the opposing surfaces of the rotating body of the cooling vessel (10) Features.
[5] The magnetically levitated rotating body mechanism that can be mounted on a vehicle according to the above [1], wherein the cooling container having the high-temperature superconducting bulk body is configured by connecting a plurality of polygonal cooling containers, and the rotating container between them. It is characterized by arranging the bodies in parallel.

〔6〕上記〔1〕記載の車載可能な磁気浮上式回転体機構において、前記回転体の両側に固定される前記高温超電導バルク体を有する冷却容器と、この冷却容器を支持する支持装置と、前記冷却容器間に浮上される前記回転体とを具備することを特徴とする。 [6] In [1] above vehicle capable maglev rotator mechanism, comprising: a cooling vessel having a high-temperature superconducting bulk body fixed to both sides of the rotating body, a supporting device for supporting the cooling container, characterized by comprising the said rotary member to be levitated between said cooling vessel.

本発明によれば、コンパクトであり、車載可能な磁気浮上式回転体機構を提供することができる。   According to the present invention, it is possible to provide a magnetically levitated rotating body mechanism that is compact and can be mounted on a vehicle.

本発明の車載可能な磁気浮上式回転体機構は、上下方向又は左右方向の回転体(3,13)の両側に固定される高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)と、この高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)間に配置される、浮上用円柱状磁石(4,5;14,15)とその中心軸に配置される浮上用磁石軸(6,7;16,17)とを有する前記回転体(3,13)とを具備する。 The magnetically levitated rotating body mechanism that can be mounted on a vehicle according to the present invention includes a cooling container (1, 18) having a high-temperature superconducting bulk body (8, 18) fixed on both sides of a rotating body (3, 13) in the vertical direction or the left-right direction . 2; 11, 12) and a floating cylindrical magnet (4, 5; 14, 15 ) disposed between the cooling vessel (1, 2; 11, 12) having the high-temperature superconducting bulk body (8, 18). wherein comprising a rotating body (3, 13) having a 16, 17);) and its center the magnet shaft disposed axis (6, 7.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の第1実施例を示す磁気浮上式回転体機構の模式図である。
この図において、1は下部に配置される高温超電導バルク体を有する冷却容器、2は上部に配置される高温超電導バルク体を有する冷却容器、3は冷却容器1と2間に配置される下部と上部に浮上用円柱状磁石4,5と浮上用磁石軸6,7をそれぞれ有する回転体である。なお、冷却容器1と2は上記特許文献3において開示されたものと同じものを配置することができ、内部には高温超電導バルク体8を有しており、側面に形成される開口(図示なし)を介して冷却媒体、例えば、窒素(液体あるいは低温ガス)9を封入し、冷却できるようになっている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view of a magnetically levitated rotating body mechanism showing a first embodiment of the present invention.
In this figure, 1 cooling vessel having a high-temperature superconducting bulk bodies are arranged in the lower part, 2 is a cooling container having a high-temperature superconducting bulk body arranged on the upper, 3 is arranged between the cooling vessel 1 and 2, The rotating bodies have floating columnar magnets 4 and 5 and floating magnet shafts 6 and 7 respectively at the lower and upper portions. The cooling containers 1 and 2 can be the same as those disclosed in Patent Document 3 above, and have a high-temperature superconducting bulk body 8 inside, and have openings (not shown) formed on the side surfaces. ) Through which a cooling medium, for example, nitrogen (liquid or low-temperature gas) 9 is sealed and cooled.

このように構成したので、回転体3の軸が上下に形成され、回転体3をより安定に回転させることができる。
図2は本発明の第1実施例の変形例を示す磁気浮上式回転体機構の模式図である。
この実施例では、冷却容器1と2の回転体3との対向面の部に回転体3の脱落防止機構、ここでは脱落防止用突起10を配置するようにした。
Since it comprised in this way, the axis | shaft of the rotary body 3 is formed up and down, and the rotary body 3 can be rotated more stably.
FIG. 2 is a schematic diagram of a magnetically levitated rotator mechanism showing a modification of the first embodiment of the present invention.
In this embodiment, a mechanism for preventing the rotator 3 from falling off, here, a protrusion 10 for preventing detachment, is arranged at the edge of the surface of the cooling vessel 1 facing the rotating body 3.

このように構成することにより、回転体3が水平方向に移動して脱落することを防止することができる。
図3は本発明の第2実施例を示す磁気浮上式回転体機構の模式図である。
この図において、11は左側に配置される高温超電導バルク体を有する冷却容器、12は右側に配置される高温超電導バルク体を有する冷却容器、13は冷却容器11と12間に配置される左側と右側浮上用円柱状磁石14,15と浮上用磁石軸16,17をそれぞれ有する回転体である。なお、冷却容器11と12は上記特許文献3において開示されたものと同じものを配置することができ、内部には高温超電導バルク体18を有しており、上部に形成される開口(図示なし)を介して冷却媒体、例えば、窒素(液体あるいは低温ガス)19を封入し、冷却できるようになっている。
By comprising in this way, it can prevent that the rotary body 3 moves to a horizontal direction, and falls.
FIG. 3 is a schematic view of a magnetically levitated rotator mechanism showing a second embodiment of the present invention.
In this figure, 11 is the cooling vessel having a high-temperature superconducting bulk bodies are arranged on the left side, 12 is the cooling vessel having a high-temperature superconducting bulk bodies are arranged on the right side, 13 is disposed between the cooling vessel 11 and 12, left and right side and levitating cylindrical magnet 14 and 15 the magnet axis 16, 17 is a rotary member having, respectively. The cooling containers 11 and 12 can be the same as those disclosed in Patent Document 3 above, and have a high-temperature superconducting bulk body 18 inside, and have an opening (not shown) formed in the upper part. ) Through which a cooling medium, for example, nitrogen (liquid or low temperature gas) 19 is enclosed, and can be cooled.

ここで、高温超電導バルク体18は磁場のエネルギーを一定に保とうとするので、図3に示すように回転体13を横にしてもギャップgを維持することができる。
このように構成したので、本発明の第1及び第2実施例によれば、対向して配置された冷却容器を互いの間隔を維持したまま同一方向に移動させても回転体の方向もそれに伴って、冷却容器とのギャップを維持しながら変わるので、安定した回転を得ることができ、それによって車載可能な磁気浮上式回転体機構を実現できる。また、非常にコンパクトな非接触ギアを構成することができる。
Here, since the high-temperature superconducting bulk body 18 tries to keep the energy of the magnetic field constant, the gap g can be maintained even if the rotating body 13 is placed sideways as shown in FIG.
Since it comprised in this way, according to the 1st and 2nd Example of this invention, even if it moves the cooling container arrange | positioned facing in the same direction, maintaining a mutual space | interval, the direction of a rotary body also changes. and I accompanied, so they change while maintaining the gap between the cooling vessel, it is possible to obtain stable rotation, thereby realizing a magnetic levitation rotating body mechanism capable vehicle. In addition, a very compact non-contact gear can be configured.

図4は本発明の第3実施例を示す磁気浮上式回転体機構(非接触ギア)の模式図であり、図4(a)はその全体構成図、図4(b)は高温超電導バルク体を有する冷却容器の正面図である。
この図において、31は左側に配置される高温超電導バルク体を有する冷却容器、31Aは冷却媒体の出入口、31Bは封入螺子、32は右側に配置される高温超電導バルク体を有する冷却容器、33は冷却容器31と32との間に配置される回転体、34は冷却容器31の固定台(非磁性体)、35は冷却容器32の固定台(非磁性体)、41は支持体(母体)、42,43は振動吸収体、36は支持体(母体)41と固定台34とを固定する固定ボルト(非磁性体)、37は支持体(母体)41と固定台35とを固定する固定ボルト(非磁性体)、44は支持体(母体)41の底部に配置される振動吸収体、45は支持体(母体)土台、46,47は支持体(母体)41を支持体(母体)土台45に固定する固定ボルト(非磁性体)である。なお、支持体(母体)41は、回転体33や高温超電導バルク体の捕捉磁場の影響がない場合には非磁性体でなくともよい。
FIG. 4 is a schematic diagram of a magnetically levitated rotating mechanism (non-contact gear) showing a third embodiment of the present invention, FIG. 4 (a) is an overall configuration diagram, and FIG. 4 (b) is a high-temperature superconducting bulk body. It is a front view of the cooling container which has this.
In this figure, 31 is a cooling container having a high-temperature superconducting bulk body arranged on the left side, 31A is an inlet / outlet of a cooling medium, 31B is an enclosing screw, 32 is a cooling container having a high-temperature superconducting bulk body arranged on the right side, and 33 is A rotating body disposed between the cooling containers 31 and 32, 34 is a fixing base (non-magnetic body) for the cooling container 31, 35 is a fixing base (non-magnetic body) for the cooling container 32, and 41 is a support body (matrix). , 42 and 43 are vibration absorbers, 36 is a fixing bolt (non-magnetic material) for fixing the support (matrix) 41 and the fixing base 34, and 37 is a fixing for fixing the support (matrix) 41 and the fixing base 35. Bolts (non-magnetic material), 44 is a vibration absorber disposed at the bottom of the support (matrix) 41, 45 is a support (matrix) base, and 46 and 47 are support (matrix) 41 support (matrix). It is a fixing bolt (non-magnetic material) for fixing to the base 45 . Note that the support body (matrix) 41 may not be a non-magnetic body when there is no influence of the trapping magnetic field of the rotating body 33 or the high-temperature superconducting bulk body.

このように構成したので、車搭載型のモーター、車搭載型の非接触ギアをコンパクトに構成することができる。
図5は本発明の第4実施例を示す連結された磁気浮上式回転機構を示す模式図であり、図5(a)はその上面図、図5(b)はその一方の側の固定子の正面図である
これらの図において、51は一方側の高温超電導バルク体を有する冷却容器を示しており、この一方側の高温超電導バルク体を有する冷却容器51は、第1の冷却容器要素51A、第2の冷却容器要素51B、第3の冷却容器要素51Cからなり、51−1は冷却媒体の入口、51−2は冷却媒体の出口である。
Since it comprised in this way, a vehicle-mounted motor and a vehicle-mounted non-contact gear can be comprised compactly.
FIG. 5 is a schematic view showing a coupled magnetic levitation type rotating mechanism showing a fourth embodiment of the present invention. FIG. 5 (a) is a top view thereof, and FIG. 5 (b) is a stator on one side thereof. FIG .
In these drawings, reference numeral 51 denotes a cooling container having a high-temperature superconducting bulk body on one side, and the cooling container 51 having the high-temperature superconducting bulk body on one side includes a first cooling container element 51A and a second cooling container. It consists of a container element 51B and a third cooling container element 51C, 51-1 is an inlet for the cooling medium, and 51-2 is an outlet for the cooling medium.

一方、52はもう一方側の高温超電導バルク体を有する冷却容器を示しており、このもう一方側の高温超電導バルク体を有する冷却容器52は、第1の冷却容器要素52A、第2の冷却容器要素52B、第3の冷却容器要素52Cから構成されており、52−1は冷却媒体の入口、52−2は冷却媒体の出口である。
これらに対応して回転子53が配置されている。この回転子53は、第1の回転子要素53A、第2の回転子要素53B、第3の回転子要素53Cから構成されている。
On the other hand, 52 indicates a cooling container having a high-temperature superconducting bulk body on the other side, and the cooling container 52 having the high-temperature superconducting bulk body on the other side includes a first cooling container element 52A and a second cooling container. It is composed of an element 52B and a third cooling vessel element 52C, where 52-1 is an inlet for the cooling medium and 52-2 is an outlet for the cooling medium.
Times rotor 53 corresponding to these are arranged. This round rotor 53, the first rotor element 53A, the second rotor element 53B, and a third rotor element 53C.

このように構成したので、第4実施例によれば、対向して配置された冷却容器を互いの間隔を維持したまま同一方向に移動させても回転体の方向もそれに伴って、冷却容器とのギャップを維持しながら変わるので、安定した回転を得ることができ、それによって車載可能な磁気浮上式回転体機構を実現できる。また、非常にコンパクトな非接触ギアを構成することができる。 Since such a configuration, according to the fourth embodiment, the cooling vessel disposed opposite also moved in the same direction while keeping the distance therebetween, I accompanied therewith also the direction of the rotating body, cooling Since it changes while maintaining the gap with the container, a stable rotation can be obtained, thereby realizing a magnetically levitated rotating body mechanism that can be mounted on a vehicle. In addition, a very compact non-contact gear can be configured.

図6は回転子が4極(N極2個、S極2個)を有する場合の回転機構と回転方向を示す図であり、図6(a)は横から見た回転子を示す図、図6(b)は上方から見た回転子を示す図である。この図では回転体と磁石は外周が異なるが、回転体と磁石外周同一であってもよい。
図7は本発明の第5実施例を示す回転子の回転伝達方向の転換例を示す図、図8はその回転伝達方向の換における回転子の回転方向を示す図である。
FIG. 6 is a diagram showing a rotation mechanism and a rotation direction when the rotor has four poles (two N poles and two S poles), and FIG. 6A is a diagram showing the rotor viewed from the side, 6 (b) is Ru FIG der illustrating a rotor seen from above. Although periphery rotor and magnet in this figure is different, the outer periphery of the rotor and the magnet may be the same.
7 is a diagram, Figure 8 showing a conversion example of the rotation transmitting direction of the rotor illustrating a fifth embodiment of the present invention is a diagram showing the rotational direction of the rotor in the rotation conversion of the rotation transmitting direction.

この図において、61は第1の回転機構を示しており、高温超電導バルク体を有する冷却容器61Aと61Bの間に回転子61Cを配置している。この回転子61Cは回転体61C−1にリング状(わっぱ状)の磁石61C−2がはめ込まれて構成されている。また、62は第2の回転機構を示しており、高温超電導バルク体を有する冷却容器62Aと62Bの間に回転子62Cを配置している。この回転子62Cは回転体62C−1にリング状(わっぱ状)の磁石62C−2がはめ込まれて構成されている。さらに、63は第3の回転機構を示しており、高温超電導バルク体を有する冷却容器63Aと63Bの間に回転子63Cを配置している。この回転子63Cは回転体63C−1にリング状(わっぱ状)の磁石63C−2がはめ込まれて構成されている。各固定子には冷却媒体の出入口が組み合わせの阻害にならないように配置される。 In this figure, reference numeral 61 denotes a first rotating mechanism, in which a rotor 61C is arranged between cooling vessels 61A and 61B having a high-temperature superconducting bulk body. The rotor 61 C is that is constituted by the magnet 61C-2 of the ring-shaped (wappa shape) is fitted to the rotary member 61C-1. Reference numeral 62 denotes a second rotating mechanism, in which a rotor 62C is disposed between cooling containers 62A and 62B having a high-temperature superconducting bulk body. The rotor 62 C is that is constituted by the magnet 62C-2 of the ring-shaped (wappa shape) is fitted to the rotary member 62C-1. Reference numeral 63 denotes a third rotating mechanism, in which a rotor 63C is disposed between cooling containers 63A and 63B having a high-temperature superconducting bulk body. The rotor 63 C is that is constituted by the magnet 63C-2 of the ring-shaped (wappa shape) is fitted to the rotary member 63C-1. Each stator is arranged so that the inlet / outlet of the cooling medium does not interfere with the combination.

この実施例では、図8に示すように、第1の回転機構の回転子61Cと第3の回転機構の回転子63Cとは回転伝達の方向が反対になるように転換される構となっている。つまり、第1の回転機構の回転子61Cと第2の回転機構の回転子62Cと間では空間的に直交する90°の変換が行われ、第2の回転機構の回転子62Cと第3の回転機構の回転子63Cとの間では空間的に直交する90°の変換が行われ、回転伝達の方向が回転子61Cから回転子63Cに至るまで180°転換されるように構成されている。 In this embodiment, as shown in FIG. 8, the rotor 61C of the first rotation mechanism and the rotor 63C of the third rotating mechanism a configuration that will be transformed so that the direction of the rotation transmission is reversed ing. That is, the rotor 61C of the first rotation mechanism and is between the rotor 62C of the second rotary mechanism conversion takes place 90 ° spatially orthogonal rotor 62C and the third of the second rotary mechanism A 90 ° spatially orthogonal conversion is performed between the rotating mechanism and the rotor 63C of the rotating mechanism, and the direction of rotation transmission is changed by 180 ° from the rotor 61C to the rotor 63C . .

図9は本発明の第6実施例を示す磁石固定用補助円盤を有する回転子を示す図、図10はその回転子を備えた回転機構の組立図である。
図9に示すように、71は回転子であり、この回転子71は中心部に回転体72をその外周部にリング状の磁石固定用補助円盤73をその外周部にリング状の永久磁石74を配置するようにしている。
FIG. 9 is a view showing a rotor having a magnet-fixing auxiliary disk according to a sixth embodiment of the present invention, and FIG. 10 is an assembly view of a rotating mechanism provided with the rotor.
As shown in FIG. 9, 71 is a rotor, the rotor 71 rotating body 72 in the center, a magnet fixing auxiliary disc 73 a ring-shaped on its outer periphery, a ring-shaped permanent peripherally thereof A magnet 74 is arranged.

このように構成された回転子71を、図10に示すように、高温超電導体を有する冷却容器81と91との間に配置する。なお、83,93は冷却容器の固定台(非磁性体)、95は支持体(母体)、84,94は固定用ボルトである。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Thus the rotor 71 which is configured, as shown in FIG. 10, is disposed between the cooling vessel 81 and 9 1 and having a Atsushi Ko superconductor. Reference numerals 83 and 93 denote fixing bases (non-magnetic body) for the cooling container, 95 denotes a support body (matrix), and 84 and 94 denote fixing bolts.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の磁気浮上式回転体機構は、コンパクトであり、車載可能な磁気浮上式回転体機構として利用可能である。   The magnetic levitation rotator mechanism of the present invention is compact and can be used as a magnetic levitation rotator mechanism that can be mounted on a vehicle.

本発明の第1実施例を示す磁気浮上式回転体機構の模式図である。It is a schematic diagram of the magnetic levitation type rotator mechanism showing the first embodiment of the present invention. 本発明の第1実施例の変形例を示す磁気浮上式回転体機構の模式図である。It is a schematic diagram of the magnetic levitation type rotating body mechanism which shows the modification of 1st Example of this invention. 本発明の第2実施例を示す磁気浮上式回転体機構の模式図である。It is a schematic diagram of the magnetic levitation type rotator mechanism showing a second embodiment of the present invention. 本発明の第3実施例を示す磁気浮上式回転体機構(非接触ギア)の模式図である。It is a schematic diagram of the magnetic levitation type rotator mechanism (non-contact gear) showing the third embodiment of the present invention. 本発明の第4実施例を示す連結された磁気浮上式回転機構を示す模式図である。It is a schematic diagram which shows the connected magnetic levitation type rotation mechanism which shows 4th Example of this invention. 回転子が4極(N極2個、S極2個)を有する場合の回転機構と回転方向を示す図である。It is a figure which shows a rotation mechanism and rotation direction in case a rotor has 4 poles (2 N poles and 2 S poles) . 本発明の第5実施例を示す回転子の回転伝達方向の転換例を示す図である。It is a figure which shows the example of a change of the rotation transmission direction of the rotor which shows 5th Example of this invention. 図7における回転伝達方向の換における回転子の回転方向を示す図である。It shows the direction of rotation of the rotor in the rotation conversion of the rotation transmitting direction in FIG. 本発明の第6実施例を示す磁石固定用補助円盤を有する回転子を示す図である。It is a figure which shows the rotor which has an auxiliary disk for magnet fixation which shows the 6th Example of this invention. 図9における回転子を備えた回転機構の組立図である。FIG. 10 is an assembly diagram of a rotation mechanism including the rotor in FIG. 9.

1 下部に配置される高温超電導バルク体を有する冷却容器
2 上部に配置される高温超電導バルク体を有する冷却容器
3,13,33 回転体
4,5,14,15 浮上用円柱状磁石
6,7,16,17 浮上用磁石軸
8,18 高温超電導バルク体
9,19 窒素(液体あるいは低温ガス)
10 脱落防止用突起
11,31 左側に配置される高温超電導バルク体を有する冷却容器
12,32 右側に配置される高温超電導バルク体を有する冷却容器
31A 冷却媒体の出入口
31B 封入螺子
34,35,83,93 冷却容器の固定台(非磁性体)
36,37,46,47,84,94 固定ボルト(非磁性体)
41,95 支持体(母体)
42,43,44 振動吸収体
45 支持体(母体)土台
一方側の高温超電導バルク体を有する冷却容器
51A,52A 第1の冷却容器要素
51B,52B 第2の冷却容器要素
51C,52C 第3の冷却容器要素
51−1,52−1 冷却媒体の入口
51−2,52−2 冷却媒体の出口
52 もう一方側の高温超電導バルク体を有する冷却容器
53,61C,62C,63C,71 回転子
53A 第1の回転子要素
53B 第2の回転子要素
53C 第3の回転子要素
61 第1の回転機構
61A,61B,62A,62B,63A,63B,81,91 高温超電導バルク体を有する冷却容器
61C−1,62C−,63C−1,72 回転体
61C−2,62C−2,63C−2 リング状(わっぱ状)の磁石
62 第2の回転機構
63 第3の回転機構
73 リング状の磁石固定用補助円盤
74 永久磁石
DESCRIPTION OF SYMBOLS 1 Cooling container which has a high-temperature superconducting bulk body arranged in the lower part 2 Cooling container which has a high-temperature superconducting bulk body arranged in the upper part 3,13,33 Rotating body 4,5,14,15 Levitating cylindrical magnet 6,7 , 16, 17 Levitation magnet shaft 8, 18 High-temperature superconducting bulk material 9, 19 Nitrogen (liquid or low-temperature gas)
DESCRIPTION OF SYMBOLS 10 Drop prevention protrusion 11, 31 Cooling container which has a high-temperature superconducting bulk body arranged on the left side 12, 32 Cooling container having a high-temperature superconducting bulk body arranged on the right side 31A Cooling medium inlet / outlet 31B Enclosed screws 34, 35, 83 , 93 Cooling container fixing base (non-magnetic material)
36, 37, 46, 47, 84, 94 Fixing bolt (non-magnetic material)
41,95 Support (matrix)
42, 43, 44 Vibration absorber 45 Support (matrix) base 5 1 Cooling vessel 51A, 52A with one side high temperature superconducting bulk body First cooling vessel element 51B, 52B Second cooling vessel element 51C, 52C First 3 Cooling vessel elements 51-1, 52-1 Cooling medium inlet 51-2, 52-2 Cooling medium outlet 52 Cooling vessel 53 having a high-temperature superconducting bulk on the other side 53 , 61C, 62C, 63C, 71 rotations Child 53A First rotor element 53B Second rotor element 53C Third rotor element 61 First rotation mechanism 61A, 61B, 62A, 62B, 63A, 63B, 81, 91 Cooling with a high-temperature superconducting bulk body Container 61C- 1 , 62C- 1 , 63C- 1 , 72 Rotating body 61C-2, 62C-2, 63C-2 Ring-shaped (wappa-shaped) magnet 62 Second rotating machine Structure 63 Third rotating mechanism 73 Auxiliary disk for fixing ring-shaped magnet
74 permanent magnet

Claims (6)

上下方向又は左右方向の回転体(3,13)の両側に固定される高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)、該高温超電導バルク体(8,18)を有する冷却容器(1,2;11,12)間に配置される、浮上用円柱状磁石(4,5;14,15)とその中心軸に配置される浮上用磁石軸(6,7;16,17)とを有する前記回転体(3,13)とを具備する車載可能な磁気浮上式回転体機構。 Vertical or horizontal direction of the rotating body is secured to both sides of (3,13), high-temperature superconducting bulk body (8, 18) cooling vessel having; and (1,2 11,12), the high-temperature superconducting bulk ( cooling vessel having 8,18) (1,2; 11,12) are disposed between, levitating cylindrical magnet (4, 5; 14, 15) and the magnet axis which is disposed at the center axis ( 6, 7; 16, 17) and the above-described rotating body (3, 13) . 請求項1記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体(8)を有する冷却容器(1,2)が前記回転体(3)の上下に配置され、前記浮上用磁石軸(6,7)を有する回転体(3)前記高温超電導バルク体(8)を有する冷却容器(1,2)に対して水平に配置されることを特徴とする車載可能な磁気浮上式回転体機構。 2. The on-vehicle magnetic levitation rotating body mechanism according to claim 1, wherein cooling containers (1, 2) having the high-temperature superconducting bulk body (8) are arranged above and below the rotating body (3), and the levitation magnet A vehicle-mounted magnetic levitation system characterized in that a rotating body (3) having shafts (6, 7) is disposed horizontally with respect to a cooling container (1, 2) having the high-temperature superconducting bulk body (8). Rotating body mechanism. 請求項1記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体(18)を有する冷却容器(11,12)が前記回転体(13)の左右に配置され、前記浮上用磁石軸(16,17)とを有する回転体(13)が前記高温超電導バルク体(18)を有する冷却容器(11,12)に対して垂直に配置されることを特徴とする車載可能な磁気浮上式回転体機構。 The magnetically levitated rotating body mechanism according to claim 1, wherein cooling containers (11, 12) having the high-temperature superconducting bulk body (18) are arranged on the left and right of the rotating body (13), and the levitating magnet is provided. A vehicle-mounted magnetic levitation characterized in that a rotating body (13) having a shaft (16, 17) is disposed perpendicular to a cooling vessel (11, 12) having the high-temperature superconducting bulk body (18). Rotary body mechanism. 請求項記載の車載可能な磁気浮上式回転体機構において、前記冷却容器の回転体(3)との対向面の縁部前記回転体の脱落防止用突起(10)を具備することを特徴とする車載可能な磁気浮上式回転体機構。 In-vehicle capable maglev rotator mechanism according to claim 2, characterized in that said comprises a rotating body of the cooling vessel (3) and the rotating body falling-off preventing protrusion of the edge of the opposing surface (10) A magnetically levitated rotating body mechanism that can be mounted on a vehicle. 請求項1記載の車載可能な磁気浮上式回転体機構において、前記高温超電導バルク体を有する冷却容器は、複数の多角形冷却容器を連結して構成され、それらの間に前記回転体を並列に配置することを特徴とする車載可能な磁気浮上式回転体機構。   The magnetically levitated rotating body mechanism according to claim 1, wherein the cooling container having the high-temperature superconducting bulk body is configured by connecting a plurality of polygonal cooling containers, and the rotating body is arranged in parallel between them. A magnetically levitated rotating body mechanism that can be mounted on a vehicle. 請求項1記載の車載可能な磁気浮上式回転体機構において、前記回転体の両側に固定される前記高温超電導バルク体を有する冷却容器と、該冷却容器を支持する支持装置と、前記冷却容器間に浮上される前記回転体とを具備することを特徴とする車載可能な磁気浮上式回転体機構。 In-vehicle capable maglev rotator mechanism according to claim 1, wherein the cooling vessel having a high-temperature superconducting bulk body fixed to both sides of the rotating body, a supporting device for supporting the cooling container, between said cooling vessel vehicle capable maglev rotator mechanism, characterized by comprising a rotating body to be levitated.
JP2007140027A 2007-05-28 2007-05-28 In-vehicle magnetic levitation type rotating body mechanism Expired - Fee Related JP4987569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140027A JP4987569B2 (en) 2007-05-28 2007-05-28 In-vehicle magnetic levitation type rotating body mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140027A JP4987569B2 (en) 2007-05-28 2007-05-28 In-vehicle magnetic levitation type rotating body mechanism

Publications (2)

Publication Number Publication Date
JP2008295251A JP2008295251A (en) 2008-12-04
JP4987569B2 true JP4987569B2 (en) 2012-07-25

Family

ID=40169411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140027A Expired - Fee Related JP4987569B2 (en) 2007-05-28 2007-05-28 In-vehicle magnetic levitation type rotating body mechanism

Country Status (1)

Country Link
JP (1) JP4987569B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799802B2 (en) * 1992-06-19 1998-09-21 住友特殊金属株式会社 Superconducting levitation type rotating device
JPH07327338A (en) * 1994-05-30 1995-12-12 Sumitomo Special Metals Co Ltd Superconducting levitation rotary system
JP4690032B2 (en) * 2004-12-24 2011-06-01 住友電気工業株式会社 Axial gap type motor
JP2006204085A (en) * 2004-12-24 2006-08-03 Sumitomo Electric Ind Ltd Axial gap type superconducting motor

Also Published As

Publication number Publication date
JP2008295251A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US6043577A (en) Flywheel energy accumulator
US10139226B2 (en) Control moment gyroscope
JP3058452B2 (en) Magnetically mounted position stabilizing flywheel
Han et al. Study of superconductor bearings for a 35ákWh superconductor flywheel energy storage system
US6619221B2 (en) Oscillation suppression device
Zhang et al. Control for the magnetically suspended flat rotor tilting by axial forces in a small-scale control moment gyro
CN109347284A (en) An electric magnetic levitation double-frame momentum ball device
JP3570204B2 (en) Inertia damper
JP5578243B2 (en) Motor equipment
JP4987569B2 (en) In-vehicle magnetic levitation type rotating body mechanism
JP2011112068A (en) High speed rotation device
US20080271550A1 (en) Gyroscope Apparatus
US6369476B1 (en) High temperature superconductor bearings
JP2011189926A (en) Momentum exchange assemblies and inner gimbal assemblies for use in control moment gyroscopes
RU2519924C2 (en) Advanced electric energy storage unit using kinetic energy and rail vehicle with this device
JP5037187B2 (en) Vacuum insulated container for rotating bodies using magnetic levitation using high-temperature superconducting bulk material
Matsuoka et al. Development of a high-speed motor at extremely low temperatures with an axial self-bearing motor and a superconducting magnetic bearing
JP4987572B2 (en) In-vehicle magnetic levitation generator
JPWO2018079488A1 (en) Rotating device
JP2001343020A (en) Superconducting magnetic bearing and superconducting flywheel device
JP2003037948A (en) Flywheel battery
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JP5630320B2 (en) Direct drive motor for vehicle and vehicle
JPH0791447A (en) Superconductive magnetic bearing device
JP2014185559A (en) Wave power generator and rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees