JP4980204B2 - Method for producing titanium oxide-based deodorant - Google Patents
Method for producing titanium oxide-based deodorant Download PDFInfo
- Publication number
- JP4980204B2 JP4980204B2 JP2007308802A JP2007308802A JP4980204B2 JP 4980204 B2 JP4980204 B2 JP 4980204B2 JP 2007308802 A JP2007308802 A JP 2007308802A JP 2007308802 A JP2007308802 A JP 2007308802A JP 4980204 B2 JP4980204 B2 JP 4980204B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- deodorant
- weight
- particles
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、酸化チタン系粒子に少量の酸化鉄が担持された酸化チタン系消臭剤を製造する方法に関する。 The present invention relates to a method for producing a titanium oxide-based deodorant in which a small amount of iron oxide is supported on titanium oxide-based particles.
酸化チタン粒子はその化学的特性を利用した用途が広く、例えば酸素と適当な結合力を有すると共に耐酸性を有するため、酸化還元触媒あるいは担体、紫外線の遮蔽力を利用した化粧材料またはプラスチック材料の表面コート剤、さらには高屈折を利用した反射防止コート材、導電性を利用した帯電防止材として用いられている。また、これらの効果を組み合わせて機能性材料として用いられたり、さらに光触媒作用を使用した防菌剤、防汚剤、超親水性被膜などにも用いられている。 Titanium oxide particles have a wide range of uses that utilize their chemical properties. For example, they have an appropriate binding force with oxygen and have acid resistance, so that they can be used for oxidation-reduction catalysts or carriers, cosmetic materials or plastic materials that use ultraviolet shielding properties. It is used as a surface coating agent, an antireflection coating material utilizing high refraction, and an antistatic material utilizing conductivity. In addition, these effects are used in combination as a functional material, and further used in antibacterial agents, antifouling agents, superhydrophilic coatings and the like using photocatalytic action.
また、近年では環境問題として「悪臭」がクローズアップされているが、悪臭の発生源としては従前の工場等から生活の場へと重点が移ってきている。これらの悪臭は主に動物や植物などの有機物が腐敗、分解したものであり、例えば、アンモニア、アミン類などの塩基性成分、硫化水素、メルカプタンなどの酸性成分がその原因物質とされている。 In recent years, “bad odor” has been highlighted as an environmental problem, but as a source of bad odor, the emphasis has shifted from a conventional factory to a place of life. These malodors are mainly caused by decay and decomposition of organic substances such as animals and plants. For example, basic components such as ammonia and amines, and acidic components such as hydrogen sulfide and mercaptans are considered as causative substances.
本発明者らは特開2004−250239号公報(特許文献1)において、特定のゾルを用いると、原料を高温で焼成することなく、単分散した管状酸化チタン粒子が高収率で得られ、これに、白金、パラジウム等の金属塩を担持し、還元処理すると消臭性能、酸化触媒性能に優れた管状酸化チタン粒子が得られることを開示している。
しかしながら、このような金属成分を担持した消臭剤は極めて高価であり、必要に応じて金属を回収するとしても経済性に問題があった。
In the Japanese Patent Application Laid-Open No. 2004-250239 (Patent Document 1), when a specific sol is used, monodispersed tubular titanium oxide particles can be obtained in a high yield without firing the raw material at a high temperature. It discloses that tubular titanium oxide particles excellent in deodorizing performance and oxidation catalyst performance can be obtained when a metal salt such as platinum or palladium is supported thereon and subjected to reduction treatment.
However, the deodorant carrying such a metal component is extremely expensive, and even if the metal is recovered as necessary, there is a problem in economy.
本発明者らは特開2005−318999号公報(特許文献2)において、酸化亜鉛を含む酸化チタンコロイド粒子が消臭機能を有することを開示している。
しかしながら、近年さらに消臭性能の向上が要求されるとともに幅広い臭気成分に有効な消臭剤が求められている。
The present inventors have disclosed in JP-A-2005-318999 (Patent Document 2) that titanium oxide colloidal particles containing zinc oxide have a deodorizing function.
However, in recent years, further improvement in deodorizing performance is required, and a deodorant effective for a wide range of odor components is required.
さらに、本発明者らは特開2007−130267号公報(特許文献3)において、高価な金属を担持しなくても高い消臭性能を発現する管状酸化チタン粒子からなる消臭剤として、酸化チタンと、SiO2、ZrO2、ZnO、Al2O3、CeO2、Y2O3、Nd2O3、WO3、Fe2O3、またはSb2O5から選ばれる1種以上の酸化物とからなる特定の管状酸化チタン粒子を開示している。 Furthermore, the present inventors disclosed in Japanese Patent Application Laid-Open No. 2007-130267 (Patent Document 3) as a deodorant composed of tubular titanium oxide particles that exhibit high deodorizing performance without carrying an expensive metal. And at least one oxide selected from SiO 2 , ZrO 2 , ZnO, Al 2 O 3 , CeO 2 , Y 2 O 3 , Nd 2 O 3 , WO 3 , Fe 2 O 3 , or Sb 2 O 5 . Specific tubular titanium oxide particles consisting of:
本発明者らは、鋭意研究を重ねた結果、イオン交換樹脂の存在下、硝酸第2鉄水溶液を用いて酸化チタン系粒子に少量の酸化鉄を担持すると消臭性能が著しく向上することを見出して本願発明を完成するに至った。
即ち、本発明は、高い消臭性能を備えた酸化チタン系消臭剤の製造方法を提供することを発明が解決しようとする課題とするものである。
As a result of extensive research, the present inventors have found that deodorization performance is significantly improved when a small amount of iron oxide is supported on titanium oxide particles using a ferric nitrate aqueous solution in the presence of an ion exchange resin. Thus, the present invention has been completed.
That is, an object of the present invention is to provide a method for producing a titanium oxide-based deodorant having a high deodorizing performance.
本発明の酸化チタン系消臭剤の製造方法は、イオン交換樹脂の存在下、硝酸第2鉄水溶液を酸化チタン系粒子の分散液に混合することにより、該酸化チタン系粒子に酸化鉄をFe2O3として0.01〜5重量%の範囲で担持させることを特徴とするものである。
また、本発明の酸化チタン系消臭剤の製造方法は、前記硝酸第2鉄水溶液を混合した分散液を乾燥し、加熱処理することを特徴とするものである。
The method for producing a titanium oxide-based deodorant of the present invention comprises mixing an aqueous ferric nitrate solution with a dispersion of titanium oxide-based particles in the presence of an ion exchange resin, thereby adding iron oxide to the titanium oxide-based particles. 2 O 3 is supported in the range of 0.01 to 5% by weight.
Moreover, the manufacturing method of the titanium oxide type deodorant of this invention is characterized by drying and heat-processing the dispersion liquid which mixed the said ferric nitrate aqueous solution.
前記酸化チタン系粒子の形状は粒状または管状であることが好ましい。
前記酸化チタン系粒子は、酸化チタンと酸化チタン以外の無機酸化物とからなる複合粒子であることが好ましい。
前記酸化チタン以外の無機酸化物がシリカ、ジルコニアおよび酸化亜鉛から選ばれる1種または2種以上であることが好ましい。
前記シリカおよび/またはジルコニアがSiO2および/またはZrO2として0.1〜30重量%含まれることが好ましい。
前記酸化亜鉛がZnOとして0.1〜15重量%含まれることが好ましい。
前記酸化チタン系粒子に平均粒子径が2〜300nmの範囲にある酸化チタンコロイド粒子が担持されてなることが好ましい。
The shape of the titanium oxide-based particles is preferably granular or tubular.
The titanium oxide-based particles are preferably composite particles composed of titanium oxide and an inorganic oxide other than titanium oxide.
The inorganic oxide other than titanium oxide is preferably one or more selected from silica, zirconia and zinc oxide.
The silica and / or zirconia is preferably contained in an amount of 0.1 to 30% by weight as SiO 2 and / or ZrO 2 .
The zinc oxide is preferably contained in an amount of 0.1 to 15% by weight as ZnO.
It is preferable that titanium oxide colloidal particles having an average particle diameter in the range of 2 to 300 nm are supported on the titanium oxide-based particles.
本発明によれば、酸化チタン系粒子に少量の酸化鉄が担持され、高い消臭性能を備えた消臭剤を製造することができる。この酸化チタン系消臭剤は、広範囲の臭気成分を分解する性能に優れる結果、消臭性能が極めて高い。
According to the present invention, a small amount of iron oxide is supported on titanium oxide-based particles, and a deodorant having high deodorizing performance can be produced. This titanium oxide-based deodorant is excellent in the ability to decompose a wide range of odor components, and as a result, has a very high deodorizing performance.
以下、本発明に係る酸化チタン系消臭剤の製造方法ついて、最良の実施形態を説明する。
本発明に係る酸化チタン系消臭剤の製造方法は、イオン交換樹脂の存在下、硝酸第2鉄水溶液を酸化チタン系粒子の分散液に混合することにより、該酸化チタン系粒子に酸化鉄をFe2O3として0.01〜5重量%の範囲で担持させることを特徴とするものである。
Hereinafter, the best embodiment is described about the manufacturing method of the titanium oxide type deodorizer which concerns on this invention.
In the method for producing a titanium oxide-based deodorant according to the present invention, an aqueous solution of ferric nitrate is mixed with a dispersion of titanium oxide-based particles in the presence of an ion exchange resin, whereby iron oxide is added to the titanium oxide-based particles. Fe 2 O 3 is supported in the range of 0.01 to 5% by weight.
酸化チタン系粒子
本発明において酸化チタン系粒子とは、酸化チタン粒子に加えて、酸化チタンと酸化チタン以外の無機酸化物とからなる複合粒子を意味する。
また、酸化チタン系粒子には、粒状のものと管状のものが含まれる。更に、酸化チタン系粒子は結晶性のものであることが消臭性能に優れることから好ましく、特にアナタース型酸化チタンであることが好ましい。
Titanium oxide-based particles In the present invention, the titanium oxide-based particles mean composite particles composed of titanium oxide and inorganic oxides other than titanium oxide in addition to titanium oxide particles.
Further, the titanium oxide-based particles include granular particles and tubular particles. Furthermore, it is preferable that the titanium oxide-based particles are crystalline because they are excellent in deodorizing performance, and anatase-type titanium oxide is particularly preferable.
粒状酸化チタン系粒子は平均粒子径が2nm〜3μm、さらには5nm〜2μmの範囲にあることが好ましい。
平均粒子径が2nm未満の粒状酸化チタン系粒子は得ることが困難であり、できたとしても凝集し易い。また、後述する酸化鉄の担持が不均一となり、得られる消臭剤も凝集体となり、性能が不充分となるほか、用途が制限される。
粒状酸化チタン系粒子の平均粒子径が3μmを越えると有効な外部表面積が小さくなるため、消臭性能が不充分となることがある。
本発明の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、粒子100個について粒子径を測定し、その平均値として求めることができる。
The granular titanium oxide-based particles preferably have an average particle diameter in the range of 2 nm to 3 μm, more preferably 5 nm to 2 μm.
It is difficult to obtain granular titanium oxide-based particles having an average particle diameter of less than 2 nm, and even if they can, they are easily aggregated. In addition, iron oxide loading described later becomes uneven, and the resulting deodorant becomes an aggregate, resulting in insufficient performance and limited applications.
When the average particle diameter of the granular titanium oxide-based particles exceeds 3 μm, the effective external surface area becomes small, and the deodorizing performance may be insufficient.
The average particle diameter of the present invention can be obtained as an average value obtained by photographing a transmission electron micrograph (TEM), measuring the particle diameter of 100 particles.
管状酸化チタン系粒子にあっては、平均管外径(Dout)が5〜40nm、さらには10〜20nmの範囲にあり、平均管内径(Din)が4〜20nm、さらには5〜15nmの範囲にあり、平均管の厚みが0.5〜10nm、さらには1〜5nmの範囲にあり、平均長さ(Lp)が50〜1000nm、さらには100〜500nmの範囲にあり、アスペクト比(Lp)/(Dout)が10〜200、さらには15〜100の範囲にあることが好ましい。 In the case of tubular titanium oxide-based particles, the average tube outer diameter (D out ) is in the range of 5 to 40 nm, more preferably 10 to 20 nm, and the average tube inner diameter (D in ) is 4 to 20 nm, further 5 to 15 nm. The average tube thickness is in the range of 0.5 to 10 nm, more preferably in the range of 1 to 5 nm, the average length (L p ) is in the range of 50 to 1000 nm, further in the range of 100 to 500 nm, and the aspect ratio (L p ) / (D out ) is preferably in the range of 10 to 200, more preferably 15 to 100.
管状酸化チタン系粒子の平均管外径(Dout)が5nm未満のものは得ることが困難であり、平均管外径(Dout)が40nmを超えるものも得ることが困難であり、得られたとしても、平均管内径が大きくなり、空隙が多くなりすぎて消臭性能が不充分となることがある。
平均長さ(Lp)が50nm未満の場合は、結晶性が不充分な場合があり、消臭性能が不充分となることがある。平均長さ(Lp)が1000nmを超えるものは得ることが困難であり、得られたとしても、後述するように、樹脂に練り込む場合あるいは繊維等に付着させて用いる場合などに成型性あるいは付着性等が不充分となることがある。
Tubular titanium oxide particles having an average tube outer diameter (D out ) of less than 5 nm are difficult to obtain, and those having an average tube outer diameter (D out ) of more than 40 nm are difficult to obtain. Even in such a case, the average inner diameter of the tube may be increased, and the voids may increase so that the deodorizing performance may be insufficient.
When the average length (L p ) is less than 50 nm, the crystallinity may be insufficient, and the deodorizing performance may be insufficient. It is difficult to obtain a material having an average length (L p ) exceeding 1000 nm. Even if it is obtained, as will be described later, when kneaded into a resin or attached to a fiber or the like, the moldability or Adhesion may be insufficient.
上記平均管外径(Dout)、平均管内径(Din)、平均長さ(Lp)等は透過型電子顕微鏡写真を撮影し、100個の粒子について各値を測定し、この平均値として求める。また、平均管内径(Din)は、外径を求める線の内側に認められるコントラストの境をなす線より求めることができる。
このような管状酸化チタン系粒子は、前記特許文献1(特開2004−250239号公報)に開示された方法、あるいはこれに準拠した方法により製造することができる。
The above average tube outer diameter (D out ), average tube inner diameter (D in ), average length (L p ), etc. are taken through a transmission electron micrograph, and each value is measured for 100 particles. Asking. Further, the average tube inner diameter (D in ) can be obtained from a line forming a boundary of contrast recognized inside the line for obtaining the outer diameter.
Such tubular titanium oxide-based particles can be produced by the method disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-250239) or a method based thereon.
次に、前記酸化チタン複合粒子を構成する酸化チタン以外の無機酸化物としては、シリカ、酸化亜鉛、ジルコニア等が挙げられる。 Next, silica, zinc oxide, zirconia, etc. are mentioned as inorganic oxides other than the titanium oxide which comprises the said titanium oxide composite particle.
酸化亜鉛はZnOとして0.1〜15重量%、さらには0.2〜10重量%含むことが好ましい。ZnOの含有量が0.1重量%未満の場合は、消臭性能の向上効果が充分に得られないことがあり、15重量%を越えると酸化チタン系粒子の結晶性が不充分となり充分な消臭性能が得られないことがある。
酸化亜鉛を含む複合酸化チタン粒子は、特開2005−318999号公報(特許文献2)または特開2004−250239号公報(特許文献1)に記載された方法に準じて製造することができる。
Zinc oxide is preferably contained in an amount of 0.1 to 15% by weight, more preferably 0.2 to 10% by weight, as ZnO. When the content of ZnO is less than 0.1% by weight, the effect of improving the deodorizing performance may not be sufficiently obtained. When the content exceeds 15% by weight, the crystallinity of the titanium oxide-based particles is insufficient and sufficient. Deodorant performance may not be obtained.
Composite titanium oxide particles containing zinc oxide can be produced according to the method described in Japanese Patent Application Laid-Open No. 2005-318999 (Patent Document 2) or Japanese Patent Application Laid-Open No. 2004-250239 (Patent Document 1).
即ち、オルソチタン酸のゲルおよび/またはゾルに過酸化水素を添加してペルオキソチタン酸水溶液を得、亜鉛化合物を添加し、50℃以上で加熱処理して無機酸化物微粒子前駆体分散液を調製し、ついで、必要に応じてケイ素化合物および/またはジルコニウム化合物を添加した後、120〜280℃で水熱処理することによって得ることができる。 That is, hydrogen peroxide is added to orthotitanic acid gel and / or sol to obtain a peroxotitanic acid aqueous solution, zinc compound is added, and heat treatment is performed at 50 ° C. or higher to prepare an inorganic oxide fine particle precursor dispersion. Then, after adding a silicon compound and / or a zirconium compound as necessary, it can be obtained by hydrothermal treatment at 120 to 280 ° C.
シリカはSiO2として0.1〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。シリカの含有量が0.1重量%未満の場合は、ジルコニアの含有量にもよるが、安定性が不充分であったり、凝集することがあり、用途や用法に制限がある。シリカの含有量が30重量%を越えても、さらに安定性が向上することもなく、酸化チタンの結晶性の低下と同時に、含有量が低下することによって消臭性能が低下する傾向にある。
シリカを含むことによって、安定性が向上し、複合酸化チタン粒子分散液あるいは塗膜を形成するための塗布液中の複合酸化チタン粒子が高分散し、得られる塗膜は基材との密着性、透明性に優れる。
Silica from 0.1 to 30 wt% as SiO 2, and more preferably in the range of 1 to 20 wt%. When the content of silica is less than 0.1% by weight, although depending on the content of zirconia, stability may be insufficient or agglomeration may occur, and there are limitations on applications and usage. Even if the content of silica exceeds 30% by weight, the stability is not further improved, and at the same time as the crystallinity of titanium oxide is lowered, the deodorization performance tends to be lowered by the content being lowered.
By including silica, stability is improved, and composite titanium oxide particles in the coating liquid for forming a composite titanium oxide particle dispersion or coating film are highly dispersed, and the resulting coating film has adhesion to the substrate. Excellent transparency.
また、ジルコニアを含むことによっても、シリカと同様の効果が得られる。
ジルコニアはZrO2として0〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。
シリカおよび/またはジルコニアを含む複合酸化チタン粒子は、オルソチタン酸のゲルおよび/またはゾルに過酸化水素を添加してペルオキソチタン酸水溶液を得、ケイ酸化合物および/またはジルコニウム化合物を添加し、50℃以上で加熱処理して無機酸化物微粒子前駆体分散液を調製し、ついで、亜鉛化合物を添加した後、120〜280℃で水熱処理することによって得ることができる。
なお、シリカとジルコニアを含む場合はその合計が0.1〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。さらに酸化亜鉛を含む場合もシリカ、ジルコニアと酸化亜鉛の合計が0.1〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。
Moreover, the effect similar to a silica is acquired also by including a zirconia.
Zirconia is preferably in the range of 0 to 30% by weight, more preferably 1 to 20% by weight as ZrO 2 .
The composite titanium oxide particles containing silica and / or zirconia are obtained by adding hydrogen peroxide to an orthotitanic acid gel and / or sol to obtain a peroxotitanic acid aqueous solution, adding a silicate compound and / or a zirconium compound, The inorganic oxide fine particle precursor dispersion is prepared by heat treatment at a temperature of not lower than ° C., and after adding a zinc compound, it can be obtained by hydrothermal treatment at 120 to 280 ° C.
When silica and zirconia are included, the total is preferably in the range of 0.1 to 30% by weight, more preferably 1 to 20% by weight. Further, when zinc oxide is included, the total of silica, zirconia and zinc oxide is preferably in the range of 0.1 to 30% by weight, more preferably 1 to 20% by weight.
本発明の酸化チタン系粒子には平均粒子径が2〜300nm、好ましくは5〜200nmの範囲にある酸化チタンコロイド粒子を担持させることが、消臭性能の向上の点から好ましい。
この場合、前記粒状酸化チタン系粒子の平均粒子径は酸化チタンコロイド粒子の平均粒子径の5倍以上あることが好ましい。平均粒子径が酸化チタンコロイド粒子の平均粒子径の5倍未満であると、担持が困難であり、担持できたとしても単なる混合物と同程度の消臭性能となり、充分な消臭性能の向上効果が得られないことがある。
従って、酸化チタンコロイド粒子が担持された粒状酸化チタン系粒子の平均粒子径は10nm〜3μm、特に25nm〜2μmの範囲にあることが好ましい。
In view of improving the deodorizing performance, it is preferable that the titanium oxide-based particles of the present invention carry titanium oxide colloidal particles having an average particle diameter of 2 to 300 nm, preferably 5 to 200 nm.
In this case, the average particle diameter of the granular titanium oxide-based particles is preferably 5 times or more the average particle diameter of the titanium oxide colloidal particles. If the average particle size is less than 5 times the average particle size of the titanium oxide colloidal particles, it will be difficult to support, and even if it can be supported, it will have the same deodorizing performance as a simple mixture, and the effect of sufficiently improving the deodorizing performance May not be obtained.
Therefore, the average particle diameter of the granular titanium oxide-based particles on which the titanium oxide colloid particles are supported is preferably in the range of 10 nm to 3 μm, particularly 25 nm to 2 μm.
管状酸化チタン系粒子についても、酸化チタンコロイド粒子を担持させることが消臭性能を向上させる上で好ましい。この場合の管状酸化チタン系粒子の平均管外径(Dout)は、粒状酸化チタン系粒子の場合と同様に、酸化チタンコロイド粒子の平均粒子径の5倍以上あることが好ましい。 As for the tubular titanium oxide-based particles, it is preferable to support the titanium oxide colloidal particles in order to improve the deodorizing performance. In this case, the average tube outer diameter (D out ) of the tubular titanium oxide-based particles is preferably 5 times or more the average particle diameter of the titanium oxide colloidal particles as in the case of the granular titanium oxide-based particles.
酸化チタン系粒子分散液
酸化チタン系粒子の分散液の濃度は、次に述べるイオン交換樹脂を分散でき、分散液が均一に撹拌できれば特に制限はないが、酸化物として1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。
分散液の濃度が酸化物として1重量%未満の場合は生産性が低下し、30重量%を越えると最終的に得られる消臭剤が凝集することがある。
Titanium oxide-based particle dispersion The concentration of the titanium oxide-based particle dispersion is not particularly limited as long as the ion-exchange resin described below can be dispersed and the dispersion can be uniformly stirred. Is preferably in the range of 2 to 20% by weight.
When the concentration of the dispersion is less than 1% by weight as an oxide, productivity decreases, and when it exceeds 30% by weight, the deodorant finally obtained may aggregate.
イオン交換樹脂
本発明のイオン交換樹脂としては、硝酸第2鉄の硝酸根を除去するために陰イオン交換樹脂が用いられる。イオン交換樹脂の使用量はイオン交換樹脂のイオン交換容量および硝酸第2鉄の使用量によって変わるが、硝酸根を実質的に全量除去できる量とすることが好ましい。
Ion Exchange Resin As the ion exchange resin of the present invention, an anion exchange resin is used to remove the nitrate radical of ferric nitrate. The amount of ion exchange resin used varies depending on the ion exchange capacity of the ion exchange resin and the amount of ferric nitrate used, but it is preferable that the amount of nitrate radicals be removed substantially.
硝酸第2鉄
本発明では硝酸第2鉄を用いるが、硝酸第1鉄も使用することができ、さらに硫酸第2鉄、塩化第2鉄も使用することができる。しかしながら、理由は明らかではないが硝酸第2鉄は消臭性能に最も優れていることから好適である。さらに、本発明では硝酸第2鉄と他の前記塩を混合して用いることもできる。
硝酸第2鉄の使用量は最終的に得られる消臭剤中の酸化鉄の含有量がFe2O3として0.01〜5重量%、さらには0.02〜2重量%の範囲となるように使用する。
Fe2O3の担持量が0.01重量%未満の場合は消臭性能の向上効果が充分得られないことがあり、5重量%を越えると、理由は必ずしも明らかではないが、酸化鉄が担持されてない場合よりも消臭性能が低くなる場合がある。
Ferric nitrate Although ferric nitrate is used in the present invention, ferrous nitrate can also be used, and ferric sulfate and ferric chloride can also be used. However, although the reason is not clear, ferric nitrate is preferable because it has the best deodorizing performance. Furthermore, in the present invention, ferric nitrate and other salts may be mixed and used.
The amount of ferric nitrate used is such that the content of iron oxide in the deodorant finally obtained is in the range of 0.01 to 5% by weight, more preferably 0.02 to 2% by weight as Fe 2 O 3. To use.
When the amount of Fe 2 O 3 supported is less than 0.01% by weight, the effect of improving the deodorizing performance may not be sufficiently obtained. When the amount exceeds 5% by weight, the reason is not necessarily clear. The deodorizing performance may be lower than when it is not supported.
前記硝酸第2鉄水溶液を添加後、必要に応じて撹拌を継続した後、イオン交換樹脂を分離することによって消臭剤分散液が得られる。得られた消臭剤分散液はそのまま使用することもできるが、必要に応じて濃縮、あるいは希釈して用いることができる。 After adding the ferric nitrate aqueous solution, stirring is continued as necessary, and then the ion exchange resin is separated to obtain a deodorant dispersion. The obtained deodorant dispersion can be used as it is, but can be concentrated or diluted as necessary.
乾燥・加熱処理
前記消臭剤分散液は、これを乾燥し、さらに必要に応じて加熱処理して、消臭剤粉体とすることもできる。また、種々の基材等に消臭剤分散液を塗布後、乾燥し、さらに必要に応じて加熱処理して用いることもできる。
乾燥方法には特別の制限はなく、従来公知の方法を採用することができる。
Drying / heating treatment The deodorant dispersion liquid may be dried and further heat-treated as necessary to obtain a deodorant powder. Moreover, after apply | coating a deodorizer dispersion liquid to various base materials etc., it can also be used after heat-processing as needed.
There is no particular limitation on the drying method, and a conventionally known method can be employed.
加熱処理における、加熱温度は概ね200〜500℃、さらには250〜450℃の範囲が好適である。加熱温度が200℃未満では用法よっては充分な消臭性能が得られないことがある。500℃を超えると担持した酸化鉄が凝集するためか、消臭性能が不充分となったり、粉体粒子によっては強く凝集し、粉砕を必要としたり、用途が制限されることがある。
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
In the heat treatment, the heating temperature is preferably 200 to 500 ° C, more preferably 250 to 450 ° C. If the heating temperature is less than 200 ° C., sufficient deodorizing performance may not be obtained depending on the usage. If the temperature exceeds 500 ° C., the supported iron oxide may be aggregated, or the deodorizing performance may be insufficient, or depending on the powder particles, the powder may be strongly aggregated, requiring pulverization, and the application may be limited.
Hereinafter, although an example explains, the present invention is not limited by these examples.
消臭剤(1)の調製
酸化チタンコロイド粒子分散液(触媒化成工業(株)製:ATOMYBALL-(TZ-R)、ZnO含有量1.0重量%、SiO2含有量1.39重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)2000gにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、これにFe2O3としての濃度1重量%の硝酸第2鉄水溶液20gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮し、酸化物としての濃度10重量%の消臭剤(1)分散液2000gを調製した。消臭剤(1)中のFe2O3含有量を表に示した。
Preparation of deodorant (1) Titanium oxide colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: ATOMYBALL- (TZ-R), ZnO content 1.0 wt%, SiO 2 content 1.39 wt%, Anatase type, average particle diameter 10 nm, solid content concentration 10% by weight) 1000 g of ion exchange resin (Mitsubishi Chemical Corporation: SA20A) 1000 g is mixed, and this is mixed with nitric acid with a concentration of 1% by weight as Fe 2 O 3 . After adding 20 g of a 2 iron aqueous solution and stirring for 1 hour, the ion exchange resin was separated and concentrated with an ultra-thin film to prepare 2000 g of a deodorant (1) dispersion having a concentration of 10% by weight as an oxide. The Fe 2 O 3 content in the deodorant (1) is shown in the table.
消臭性試験(1)
容量1.5Lのビニール製テトラパックに、消臭剤(1)分散液を乾燥して得た消臭剤(1)粉体を0.5g入れ、ついで試験用臭気ガスを封入した。室温にて1時間放置後、検知管((株)ガステック製)にて残存臭気ガスの濃度を測定した。
なお、臭気ガスとしてはアンモニア(濃度100ppm)、硫化水素(濃度28ppm)、ホルムアルデヒド(濃度14ppm)を用い、検知管は各臭気ガス専用の検知管を使用した。結果を表に示した。
Deodorization test (1)
0.5 g of deodorant (1) powder obtained by drying the deodorant (1) dispersion was placed in a 1.5 L vinyl tetrapack, and then a test odor gas was enclosed. After standing at room temperature for 1 hour, the concentration of residual odor gas was measured with a detector tube (manufactured by Gastec Co., Ltd.).
As the odor gas, ammonia (concentration 100 ppm), hydrogen sulfide (concentration 28 ppm), formaldehyde (concentration 14 ppm) was used, and a detection tube dedicated to each odor gas was used. The results are shown in the table.
消臭性試験(2)
スクリュー管(内容積4ml)に消臭剤(1)分散液を乾燥して得た消臭剤(1)粉体を0.25g入れ、ついでイソプロピルアルコール(IPA)を1ml入れ、太陽光(晴天日の日中を想定)を5時間照射した場合と、紫外線(ブラックライト、360nm)を5時間照射した場合について、アセトンの生成量をガスクロマトグラフ質量分析装置(日本電子(株)製:JMF AX505)にて分析し、結果を表1に示した。
Deodorization test (2)
Put 0.25g of deodorant (1) powder obtained by drying the deodorant (1) dispersion into a screw tube (4ml in internal volume), then add 1ml of isopropyl alcohol (IPA), sunlight (clear weather) The amount of acetone produced was measured with a gas chromatograph mass spectrometer (manufactured by JEOL Ltd .: JMF AX505) when irradiated for 5 hours with the assumption of daytime in the day and when irradiated with ultraviolet light (black light, 360 nm) for 5 hours. The results are shown in Table 1.
消臭剤(2)の調製
実施例1において、Fe2O3としての濃度1重量%の硝酸第2鉄水溶液10gを添加した以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(2)分散液を調製した。消臭剤(2)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of Deodorant (2) In Example 1, except that 10 g of a ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added, the concentration of 10% by weight as an oxide was eliminated. An odorant (2) dispersion was prepared. The Fe 2 O 3 content in the deodorant (2) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(3)の調製
実施例1において、Fe2O3としての濃度1重量%の硝酸第2鉄水溶液40gを添加した以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(3)分散液を調製した。消臭剤(3)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (3) In Example 1, except that 40 g of a ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added, the concentration of 10% by weight as an oxide was eliminated. An odorant (3) dispersion was prepared. The Fe 2 O 3 content in the deodorant (3) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(4)の調製
実施例1において、酸化チタンコロイド粒子分散液(触媒化成工業(株)製:TZR、ZnO含有量0.5重量%、SiO2含有量1.39重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)2000gを用いた以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(4)分散液を調製した。消臭剤(4)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (4) In Example 1, titanium colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: TZR, ZnO content 0.5% by weight, SiO 2 content 1.39% by weight, anatase A deodorant (4) dispersion having a total concentration of 10% by weight as an oxide was prepared in the same manner except that 2000 g of a mold, an average particle diameter of 10 nm, and a solid content of 10% by weight were used. The Fe 2 O 3 content in the deodorant (4) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(5)の調製
実施例1において、酸化チタンコロイド粒子分散液(触媒化成工業(株)製:TZR1.5、ZnO含有量1.5重量%、SiO2含有量1.39重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)2000gを用いた以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(5)分散液を調製した。消臭剤(5)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
In example 1 deodorant (5), titanium oxide colloidal particle dispersion (Catalysts & Chemicals Industries Co., Ltd.: TZR1.5, ZnO content of 1.5 wt%, SiO 2 content of 1.39 wt% A deodorant (5) dispersion having a total concentration of 10 wt% as an oxide was prepared in the same manner except that 2000 g of anatase type, average particle diameter of 10 nm, solid content concentration of 10 wt% was used. The Fe 2 O 3 content in the deodorant (5) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(6)の調製
実施例1において、酸化チタンコロイド粒子分散液(触媒化成工業(株)製:PW-1010、TiO2含有量8.4重量%、SiO2含有量1.59重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)2000gを用いた以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(6)分散液を調製した。消臭剤(6)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of Deodorant (6) In Example 1, a titanium oxide colloidal particle dispersion (manufactured by Catalytic Chemical Industry Co., Ltd .: PW-1010, TiO 2 content 8.4 wt%, SiO 2 content 1.59 wt% %, Anatase type, average particle size 10 nm, solid content concentration 10% by weight) was used in the same manner to prepare a deodorant (6) dispersion having a total concentration of 10% by weight as an oxide. The Fe 2 O 3 content in the deodorant (6) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(7)の調製
実施例1において、酸化チタン粒子分散液(触媒化成工業(株)製:PW-6010、TiO2含有量8.4重量%、SiO2含有量1.59重量%、アナタース型、平均粒子径60nm、固形分濃度10重量%)2000gを用いた以外は同様にして、酸化物としての合計濃度10重量%の消臭剤(7)分散液を調製した。消臭剤(7)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of Deodorant (7) In Example 1, titanium oxide particle dispersion (manufactured by Catalyst Chemical Industry Co., Ltd .: PW-6010, TiO 2 content 8.4 wt%, SiO 2 content 1.59 wt% A deodorant (7) dispersion having a total concentration of 10% by weight as an oxide was prepared in the same manner except that 2000 g of anatase type, average particle diameter of 60 nm, solid content of 10% by weight was used. The Fe 2 O 3 content in the deodorant (7) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(8)の調製
酸化チタン粒子分散液(触媒化成工業(株)製:PW-6010、TiO2含有量9.2重量%、SiO2含有量0.69重量%、ZnO含有量0.1重量%、アナタース型、平均粒子径60nm、固形分濃度10重量%)2000gと酸化チタンコロイド粒子分散液(触媒化成工業(株)製:ATOMYBALL-(TZ-R)、ZnO含有量1.0重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)200gとを混合し、オートクレーブにて160℃で2時間水熱処理して固形分濃度11重量%の酸化チタンコロイド粒子を担持した酸化チタン粒子分散液を調製した。
これにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、ついで、Fe2O3としての濃度1重量%の硝酸第2鉄水溶液22gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮し、酸化物としての合計濃度10重量%の消臭剤(8)分散液を調製した。消臭剤(8)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (8) Titanium oxide particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: PW-6010, TiO 2 content 9.2 wt%, SiO 2 content 0.69 wt%, ZnO content 0 1% by weight, anatase type, average particle diameter 60 nm, solid content concentration 10% by weight) and titanium oxide colloidal particle dispersion (manufactured by Catalyst Chemical Industries, Ltd .: ATOMYBALL- (TZ-R), ZnO content 0% by weight, anatase type, average particle size 10 nm, solid content concentration 10% by weight) 200 g, and hydrothermally treated in an autoclave at 160 ° C. for 2 hours to support colloidal particles having a solid content concentration of 11% by weight. A titanium oxide particle dispersion was prepared.
This was mixed with 1000 g of an ion exchange resin (Mitsubishi Chemical Corporation: SA20A), then 22 g of a ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added, and the mixture was stirred for 1 hour. The exchange resin was separated and concentrated with an ultrafiltration membrane to prepare a deodorant (8) dispersion having a total concentration of 10% by weight as an oxide. The Fe 2 O 3 content in the deodorant (8) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(9)の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2として濃度9重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲル100gを純水2900gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら、85℃で3時間加熱し、ペルオキソチタン酸水溶液を調製した。得られたペルオキソチタン酸水溶液のTiO2として濃度は0.5重量%であった。
Preparation of deodorant (9) A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% by weight ammonia water whose temperature was adjusted to 5 ° C. The pH after addition of the aqueous titanium chloride solution was 10.5. Subsequently, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 9% by weight as TiO 2 .
After 100 g of this orthotitanic acid gel was dispersed in 2900 g of pure water, 800 g of hydrogen peroxide having a concentration of 35% by weight was added and heated at 85 ° C. for 3 hours with stirring to prepare a peroxotitanic acid aqueous solution. The concentration of the resulting aqueous peroxotitanic acid solution as TiO 2 was 0.5% by weight.
ついで、95℃で10時間加熱して酸化チタン粒子分散液とし、この酸化チタン粒子分散液に分散液中のTiO2に対するモル比が0.016となるようにテトラメチルアンモニウムハイドロオキサイド(MW=149.2)を添加した。このときの分散液のpHは11であった。ついで、230℃で5時間水熱処理して酸化チタン粒子分散液を調製した。酸化チタン粒子の平均粒子径は30nmであった。 Next, the mixture was heated at 95 ° C. for 10 hours to obtain a titanium oxide particle dispersion, and tetramethylammonium hydroxide (MW = 149.2) was added to the titanium oxide particle dispersion so that the molar ratio to TiO 2 in the dispersion was 0.016. ) Was added. The pH of the dispersion at this time was 11. Next, hydrothermal treatment was performed at 230 ° C. for 5 hours to prepare a titanium oxide particle dispersion. The average particle diameter of the titanium oxide particles was 30 nm.
酸化チタン粒子分散液に、濃度40重量%のKOH水溶液70gを、TiO2のモル数(TM)とアルカリ金属水酸化物のモル数(AM)とのモル比(AM)/(TM)が10となるように添加し、150℃で2時間水熱処理した。
得られた粒子は純水にて充分洗浄した。このときのK2O残存量は0.9重量%であった。純水で洗浄した後、管状酸化チタン粒子の水分散液(TiO2としての濃度5重量%)とし、これに管状酸化チタン粒子と同量の陽イオン交換樹脂と陰イオン交換樹脂とを添加し、60℃で24時間処理してアルカリの除去等、高純度化を行った。
ついで、300℃で1時間焼成して管状酸化チタン粒子を調製した。
得られた管状酸化チタン粒子のTEM写真を撮影して平均粒子長(L)と平均管外径(Dout)および平均管内径(Din)を求め、結果を表に示した。
Titanium oxide particle dispersion liquid, a KOH aqueous solution 70g of concentration 40 wt%, TiO 2 molar number (T M) and the number of moles of alkali metal hydroxide (A M) and the molar ratio of (A M) / (T M ) was added to 10 and hydrothermally treated at 150 ° C. for 2 hours.
The obtained particles were sufficiently washed with pure water. At this time, the residual amount of K 2 O was 0.9% by weight. After washing with pure water, an aqueous dispersion of tubular titanium oxide particles (concentration of 5% by weight as TiO 2 ) was added, and the same amount of cation exchange resin and anion exchange resin as tubular titanium oxide particles were added thereto. The resulting solution was purified at 60 ° C. for 24 hours to remove alkali or the like.
Subsequently, it baked at 300 degreeC for 1 hour, and the tubular titanium oxide particle was prepared.
A TEM photograph of the obtained tubular titanium oxide particles was taken to obtain an average particle length (L), an average tube outer diameter (D out ), and an average tube inner diameter (D in ), and the results are shown in the table.
続いて、管状酸化チタン粒子分散液(固形分濃度10重量%)2000gを調製し、これにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、ついで、Fe2O3としての濃度1重量%の硝酸第2鉄水溶液20gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮して酸化物としての合計濃度10重量%の消臭剤(9)分散液を調製した。消臭剤(9)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Subsequently, 2000 g of a tubular titanium oxide particle dispersion (solid content concentration: 10% by weight) was prepared, and 1000 g of an ion exchange resin (manufactured by Mitsubishi Chemical Corporation: SA20A) was mixed therewith, and then Fe 2 O 3 was used. After adding 20 g of ferric nitrate aqueous solution with a concentration of 1% by weight and stirring for 1 hour, the ion exchange resin was separated and concentrated on the outer membrane to give a deodorant with a total concentration of 10% by weight (9 ) A dispersion was prepared. The Fe 2 O 3 content in the deodorant (9) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(10)の調製
実施例9と同様にして調製した管状酸化チタン粒子分散液(固形分濃度10重量%)2000gと酸化チタンコロイド粒子分散液(触媒化成工業(株)製:ATOMYBALL-(TZ-R)、SiO2含有量1.39重量%、ZnO含有量1.0重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)200gとを混合し、オートクレーブにて160℃で2時間水熱処理して固形分濃度11重量%の酸化チタンコロイド粒子を担持した管状酸化チタン粒子分散液を調製した。これにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、ついで、Fe2O3としての濃度1重量%の硝酸第2鉄水溶液22gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮して酸化物としての合計濃度10重量%の消臭剤(10)分散液を調製した。消臭剤(10)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (10) 2000 g of tubular titanium oxide particle dispersion (solid content concentration: 10% by weight) prepared in the same manner as in Example 9 and titanium oxide colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: ATOMYBALL- (TZ-R), SiO 2 content 1.39% by weight, ZnO content 1.0% by weight, anatase type, average particle size 10 nm, solid content concentration 10% by weight) and 200 g are mixed and 160 by an autoclave. A tubular titanium oxide particle dispersion carrying titanium oxide colloid particles having a solid content of 11% by weight was prepared by hydrothermal treatment at 2 ° C. for 2 hours. This was mixed with 1000 g of an ion exchange resin (Mitsubishi Chemical Corporation: SA20A), then 22 g of a ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added, and the mixture was stirred for 1 hour. The exchange resin was separated and concentrated with an ultra-membrane to prepare a deodorant (10) dispersion having a total concentration of 10% by weight as an oxide. The Fe 2 O 3 content in the deodorant (10) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(11)の調製
酸化チタンコロイド粒子分散液(触媒化成工業(株)製:HPW-10R、アナタース型、平均粒子径10nm、固形分濃度10重量%)2000gにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、これにFe2O3としての濃度1重量%の硝酸第2鉄水溶液20gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮し、酸化物としての濃度10重量%の消臭剤(11)分散液2000gを調製した。消臭剤(11)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (11) Titanium oxide colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: HPW-10R, anatase type, average particle size 10 nm, solid content concentration 10% by weight) to 2000 g of ion exchange resin (Mitsubishi Chemical) (Product: SA20A) 1000 g was mixed, 20 g of ferric nitrate aqueous solution having a concentration of 1% by weight as Fe 2 O 3 was added thereto, stirred for 1 hour, and then the ion exchange resin was separated. Concentrated with a membrane, 2000 g of a deodorant (11) dispersion having a concentration of 10% by weight as an oxide was prepared. The Fe 2 O 3 content in the deodorant (11) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(12)の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液180gを調製した。別途、塩化亜鉛水溶液を純水で希釈してZnOとして濃度5重量%の塩化亜鉛水溶液20gを調製し、塩化チタン水溶液と混合した。
この混合水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。混合水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2・ZnOとして濃度9重量%のゲルを得た。
このゲル100gを純水2900gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら、85℃で3時間加熱して溶解した。得られた溶液のTiO2・ZnOとしての濃度は0.5重量%であった。
Preparation of Deodorant (12) A titanium chloride aqueous solution was diluted with pure water to prepare 180 g of a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . Separately, a zinc chloride aqueous solution was diluted with pure water to prepare 20 g of a zinc chloride aqueous solution having a concentration of 5% by weight as ZnO and mixed with the titanium chloride aqueous solution.
This mixed aqueous solution was neutralized and hydrolyzed by adding it to ammonia water having a concentration of 15% by weight adjusted to 5 ° C. The pH after addition of the mixed aqueous solution was 10.5. Subsequently, the produced gel was washed by filtration to obtain a gel having a concentration of 9% by weight as TiO 2 · ZnO.
After 100 g of this gel was dispersed in 2900 g of pure water, 800 g of hydrogen peroxide having a concentration of 35% by weight was added and dissolved by heating at 85 ° C. for 3 hours while stirring. The concentration of the resulting solution as TiO 2 · ZnO was 0.5% by weight.
ついで、95℃で10時間加熱して酸化チタン・酸化亜鉛複合粒子分散液とし、この酸化チタン・酸化亜鉛複合粒子分散液にテトラメチルアンモニウムハイドロオキサイド(MW=149.2)を添加して分散液のpHを11とした。ついで、230℃で5時間水熱処理して酸化チタン・酸化亜鉛複合粒子分散液を調製した。分散液を限外濾過膜にて洗浄し、ついで濃縮してTiO2・ZnOとして濃度10重量%の分散液とした。酸化チタン・酸化亜鉛複合粒子の平均粒子径は20nmであった。 Next, the mixture is heated at 95 ° C. for 10 hours to obtain a titanium oxide / zinc oxide composite particle dispersion, and tetramethylammonium hydroxide (MW = 149.2) is added to the titanium oxide / zinc oxide composite particle dispersion to adjust the pH of the dispersion. Was set to 11. Subsequently, hydrothermal treatment was performed at 230 ° C. for 5 hours to prepare a titanium oxide / zinc oxide composite particle dispersion. The dispersion was washed with an ultrafiltration membrane and then concentrated to obtain a dispersion having a concentration of 10% by weight as TiO 2 · ZnO. The average particle size of the titanium oxide / zinc oxide composite particles was 20 nm.
酸化チタン・酸化亜鉛複合粒子分散液2000gにイオン交換樹脂(三菱化学(株)製:SA20A)1000gを混合し、これにFe2O3としての濃度1重量%の硝酸第2鉄水溶液20gを添加し、1時間撹拌した後、イオン交換樹脂を分離し、限外膜で濃縮し、酸化物としての濃度10重量%の消臭剤(12)分散液2000gを調製した。消臭剤(12)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
1000 g of ion exchange resin (Mitsubishi Chemical Corporation: SA20A) 1000 g is mixed with 2000 g of titanium oxide / zinc oxide composite particle dispersion, and 20 g of ferric nitrate aqueous solution having a concentration of 1 wt% as Fe 2 O 3 is added thereto. Then, after stirring for 1 hour, the ion exchange resin was separated and concentrated with an ultrafiltration membrane to prepare 2000 g of a deodorant (12) dispersion having a concentration of 10% by weight as an oxide. The Fe 2 O 3 content in the deodorant (12) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(R1)の調製
酸化チタンコロイド粒子分散液(触媒化成工業(株)製:ATOMYBALL-(TZ-R)、ZnO含有量7.6重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)500gを120℃で2時間乾燥し、ついで400℃で1時間焼成して消臭剤(R1)を調製した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (R1) Titanium oxide colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: ATOMYBALL- (TZ-R), ZnO content 7.6% by weight, anatase type, average particle size 10 nm, solid content A deodorizer (R1) was prepared by drying 500 g of 10% by weight) at 120 ° C. for 2 hours and then baking at 400 ° C. for 1 hour.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(R2)の調製
酸化チタンコロイド粒子分散液(触媒化成工業(株)製:PW-1010、TiO2含有量8.4重量%、アナタース型、平均粒子径10nm、固形分濃度10重量%)500gを120℃で2時間乾燥し、ついで 400℃で1時間焼成して消臭剤(R2)を調製した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (R2) Titanium oxide colloidal particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: PW-1010, TiO 2 content 8.4 wt%, anatase type, average particle size 10 nm, solid content concentration 10 wt% %) Was dried at 120 ° C. for 2 hours and then calcined at 400 ° C. for 1 hour to prepare a deodorant (R2).
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(R3)の調製
酸化チタン粒子分散液(触媒化成工業(株)製:PW-6010、TiO2含有量8.4重量%、アナタース型、平均粒子径 60nm、固形分濃度10重量%)500gを120℃で2時間乾燥し、ついで400℃で1時間焼成して消臭剤(R3)を調製した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (R3) Titanium oxide particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: PW-6010, TiO 2 content 8.4 wt%, anatase type, average particle size 60 nm, solid content concentration 10 wt% ) 500 g was dried at 120 ° C. for 2 hours, and then calcined at 400 ° C. for 1 hour to prepare a deodorant (R3).
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(R4)の調製
実施例9で得られたFe2O3担持前の管状酸化チタン粒子分散液(TiO2含有量9.9重量%、アナタース型、固形分濃度10重量%)500gを120℃で2時間乾燥し、ついで400℃で1時間焼成して消臭剤(R4)を調製した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (R4 ) 500 g of a tubular titanium oxide particle dispersion (TiO 2 content 9.9 wt%, anatase type, solid content concentration 10 wt%) obtained in Example 9 before supporting Fe 2 O 3 Was dried at 120 ° C. for 2 hours and then calcined at 400 ° C. for 1 hour to prepare a deodorant (R4).
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
消臭剤(R5)の調製
酸化チタン粒子分散液(触媒化成工業(株)製:PW-6010、TiO2含有量8.4重量%、アナタース型、平均粒子径60nm、固形分濃度10重量%)を乾燥して酸化チタン粒子の粉体とした。この酸化チタン粒子の粉体200gにFe2O3としての濃度0.1重量%の硝酸第2鉄水溶液200gを添加し、均一に混合した。この時、固形分濃度は50重量%であり、ペースト状であった。
ついで、120℃で2時間乾燥し、塊を解砕した後、400℃で1時間焼成して消臭剤(R5)を調製した。消臭剤(R5)中のFe2O3含有量を表に示した。
ついで、消臭性試験(1)および消臭試験(2)を実施し、結果を表に示した。
Preparation of deodorant (R5) Titanium oxide particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: PW-6010, TiO 2 content 8.4 wt%, anatase type, average particle diameter 60 nm, solid content concentration 10 wt% ) Was dried to obtain a powder of titanium oxide particles. To 200 g of the powder of titanium oxide particles, 200 g of a ferric nitrate aqueous solution having a concentration of 0.1% by weight as Fe 2 O 3 was added and mixed uniformly. At this time, the solid content concentration was 50% by weight, and it was in the form of a paste.
Next, after drying at 120 ° C. for 2 hours, the lump was crushed and then calcined at 400 ° C. for 1 hour to prepare a deodorant (R5). The Fe 2 O 3 content in the deodorant (R5) is shown in the table.
Subsequently, a deodorization test (1) and a deodorization test (2) were carried out, and the results are shown in the table.
本発明の消臭剤はそのまま消臭剤として用いることもできるが、本願出願人の出願による特開平9−299460号公報に開示したように、(1)繊維への適用、(2)樹脂、ゴムへの適用、(3)塗料への適用、(4)その他、塗料、食品、樹脂等の製造・加工工場から排出される悪臭、飲食店等から排出される調理品、煙草などの臭いの消臭に有効である。また、家屋の建築材料、建具材(壁紙、襖、障子、畳等)、セラミックス類(タイル、陶器、磁気等)、革類製品(鞄、靴、毛皮、サイフ、定期入れ等)、木製品(机、戸棚、タンス、床板、天井板、内装材等)、紙製品(ティシュペーパー、ダンボール紙、紙コップ、紙皿等)、ガラス製品(花瓶、水槽等)、金属製品(サッシ、ケトル、カーエアコン等)などに消臭性を付与することができる。更に、本発明の消臭剤は、浄水器、プールの水などの水処理剤、化粧品材料、猫砂などの防臭に使用しても好適である。 Although the deodorant of the present invention can be used as a deodorant as it is, as disclosed in JP-A-9-299460 filed by the applicant of the present application, (1) application to fibers, (2) resin, Application to rubber, (3) Application to paints, (4) Other bad odors emitted from manufacturing and processing factories of paints, foods, resins, etc. Effective for deodorization. Also, building materials for homes, joinery materials (wallpaper, bags, shoji, tatami, etc.), ceramics (tiles, pottery, magnetism, etc.), leather products (bags, shoes, fur, wallets, regular holders, etc.), wooden products ( Desks, cupboards, chests, floorboards, ceiling boards, interior materials, etc.), paper products (tissue paper, corrugated paper, paper cups, paper plates, etc.), glass products (vases, water tanks, etc.), metal products (sashes, kettles, cars) Deodorizing properties can be imparted to air conditioners, etc. Furthermore, the deodorant of the present invention is also suitable for use in deodorizing water treatment agents such as water purifiers and pool water, cosmetic materials, and cat sand.
また、バインダー成分と混合し、ハニカム状、円柱状、板状、シート状、繊維状、膜状など任意の形状に成形して用いることもできる。成型方法は特に制限はなく従来公知の方法を採用することができる。
バインダー成分としては、従来公知のものを用いることができ、SiO2、Al2O3、TiO2、ZrO2、SiO2−Al2O3等のゲルあるいはゾル等の他、カオリナイト、ベントナイト等の粘土鉱物を用いることができ、さらに有機樹脂、無機樹脂等を用いることもできる。
Further, it can be mixed with a binder component and formed into an arbitrary shape such as a honeycomb shape, a columnar shape, a plate shape, a sheet shape, a fiber shape, or a film shape. The molding method is not particularly limited, and a conventionally known method can be employed.
As the binder component, can be a conventionally known, SiO 2, Al 2 O 3 , TiO 2, ZrO 2, SiO 2 -Al 2 other gel or sol, etc. O 3 such as kaolinite, bentonite In addition, an organic resin, an inorganic resin, or the like can also be used.
特に本発明に係る消臭剤は常温にても高い活性を発現することから生活環境内で発生する各種臭気や室内の建材、家具等から発生するホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、フタル酸ジ−n−ブチル、エチルベンゼン、スチレン、パラジクロロベンゼン、クロルピリホス、その他の有機溶剤を含むVOC等、空気中の臭気成分あるいは有害物質を常温で酸化分解して除去できる消臭剤として好適である。 In particular, the deodorant according to the present invention exhibits high activity even at room temperature, so various odors generated in the living environment, formaldehyde generated from indoor building materials, furniture, etc., acetaldehyde, acetone, toluene, xylene, methyl isobutyl Oxidative decomposition and removal of odorous components or harmful substances in the air such as ketones, ethyl acetate, butyl acetate, di-n-butyl phthalate, ethylbenzene, styrene, paradichlorobenzene, chlorpyrifos, and other organic solvents. It is suitable as a deodorant that can be used.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007308802A JP4980204B2 (en) | 2007-11-29 | 2007-11-29 | Method for producing titanium oxide-based deodorant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007308802A JP4980204B2 (en) | 2007-11-29 | 2007-11-29 | Method for producing titanium oxide-based deodorant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009131756A JP2009131756A (en) | 2009-06-18 |
JP4980204B2 true JP4980204B2 (en) | 2012-07-18 |
Family
ID=40864223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007308802A Active JP4980204B2 (en) | 2007-11-29 | 2007-11-29 | Method for producing titanium oxide-based deodorant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4980204B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003083169A1 (en) * | 2002-04-01 | 2003-10-09 | Ans Inc | Apparatus and method for depositing organic matter of vapor phase |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5854590B2 (en) * | 2010-10-29 | 2016-02-09 | 日揮触媒化成株式会社 | Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article |
DE102015114757A1 (en) | 2014-09-04 | 2016-03-10 | Seoul Viosys Co., Ltd | PHOTOCATALYTIC FILTER, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR THE REACTIVATION THEREOF |
JP6144311B2 (en) * | 2014-09-30 | 2017-06-07 | ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. | Photocatalytic filter excellent in removal performance for mixed gas and method for producing the same |
CN104588019A (en) * | 2015-02-06 | 2015-05-06 | 广州星帮尼环保科技有限公司 | Graphene-iron ion modified TiO2 photocatalyst composite material and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3746327B2 (en) * | 1996-05-14 | 2006-02-15 | 触媒化成工業株式会社 | Deodorant precursor material and method for producing the same |
JP4293801B2 (en) * | 2003-02-18 | 2009-07-08 | 日揮触媒化成株式会社 | Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant |
JP4053911B2 (en) * | 2003-03-19 | 2008-02-27 | 株式会社日本触媒 | Photocatalyst and method for producing photocatalyst |
JP4849778B2 (en) * | 2004-05-07 | 2012-01-11 | 日揮触媒化成株式会社 | Antibacterial deodorant and method for producing the same |
JP5127134B2 (en) * | 2005-11-10 | 2013-01-23 | 日揮触媒化成株式会社 | Deodorant comprising tubular titanium oxide particles |
-
2007
- 2007-11-29 JP JP2007308802A patent/JP4980204B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003083169A1 (en) * | 2002-04-01 | 2003-10-09 | Ans Inc | Apparatus and method for depositing organic matter of vapor phase |
Also Published As
Publication number | Publication date |
---|---|
JP2009131756A (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4293801B2 (en) | Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant | |
TWI523691B (en) | Methods of inactivating viruses and articles with antiviral properties | |
TWI490037B (en) | Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same | |
JP2013505187A (en) | Stable nanotitania sols and their preparation | |
KR101265781B1 (en) | Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst | |
JP4980204B2 (en) | Method for producing titanium oxide-based deodorant | |
WO2013118714A1 (en) | Deodorant against aldehyde-based gases and process for manufacturing same | |
JP2002001125A (en) | Photocatalyst powder and slurry, and polymer composition, coating material, photocatalytic functional formed body and photocatalytic functional structural body containing the powder | |
CN118019583A (en) | High-efficiency detergent additives comprising metal oxide nanoparticles in a metal or semi-metal nanoparticle matrix for addition to paints, formulations and the like for protecting, coating or decorating soft or hard surfaces | |
JP4878141B2 (en) | Composite photocatalyst | |
JP2012096133A (en) | Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film | |
JP5544515B2 (en) | Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film | |
JP2004243307A (en) | High activity photocatalyst particle, manufacturing method therefor and usage thereof | |
KR102265903B1 (en) | Coating composition comprising photocatalyst for visible rays and articles comprising same | |
JP5127134B2 (en) | Deodorant comprising tubular titanium oxide particles | |
JP4233324B2 (en) | Optical functional powder and its use | |
JP5358433B2 (en) | Composite, method for producing the same, and composition containing the same | |
JP3978636B2 (en) | Coating composition for photocatalyst film formation | |
JP5610329B2 (en) | Titanium oxide volatile organic compound decomposition material coated with silicate | |
WO2008018178A1 (en) | Photocatalyst, method for producing the same, photocatalyst dispersion containing photocatalyst, and photocatalyst coating composition | |
JP3876124B2 (en) | Method for producing hydrated iron-containing aluminum oxide | |
WO2005044447A1 (en) | Composite oxide type titania photocatalyst and use thereof | |
JP4296533B2 (en) | Titanium oxide photocatalyst with excellent nitrogen oxide removal performance | |
JP4580197B2 (en) | Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same | |
CN101254461B (en) | Composite photocatalyst, method for producing same, and composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120417 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4980204 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |